disas/libvixl: Update to upstream VIXL 1.5

Update our copy of libvixl to upstream's 1.5 release.
This includes the upstream versions of the fixes we
were carrying locally (commit ffebe899).

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 1407162987-4659-1-git-send-email-peter.maydell@linaro.org
This commit is contained in:
Peter Maydell 2014-08-29 15:00:27 +01:00
parent d9aa688557
commit 508280f566
13 changed files with 561 additions and 96 deletions

View file

@ -28,6 +28,7 @@
#define VIXL_A64_ASSEMBLER_A64_H_
#include <list>
#include <stack>
#include "globals.h"
#include "utils.h"
@ -574,34 +575,107 @@ class MemOperand {
class Label {
public:
Label() : is_bound_(false), link_(NULL), target_(NULL) {}
Label() : location_(kLocationUnbound) {}
~Label() {
// If the label has been linked to, it needs to be bound to a target.
VIXL_ASSERT(!IsLinked() || IsBound());
}
inline Instruction* link() const { return link_; }
inline Instruction* target() const { return target_; }
inline bool IsBound() const { return is_bound_; }
inline bool IsLinked() const { return link_ != NULL; }
inline void set_link(Instruction* new_link) { link_ = new_link; }
static const int kEndOfChain = 0;
inline bool IsBound() const { return location_ >= 0; }
inline bool IsLinked() const { return !links_.empty(); }
private:
// Indicates if the label has been bound, ie its location is fixed.
bool is_bound_;
// Branches instructions branching to this label form a chained list, with
// their offset indicating where the next instruction is located.
// link_ points to the latest branch instruction generated branching to this
// branch.
// If link_ is not NULL, the label has been linked to.
Instruction* link_;
// The label location.
Instruction* target_;
// The list of linked instructions is stored in a stack-like structure. We
// don't use std::stack directly because it's slow for the common case where
// only one or two instructions refer to a label, and labels themselves are
// short-lived. This class behaves like std::stack, but the first few links
// are preallocated (configured by kPreallocatedLinks).
//
// If more than N links are required, this falls back to std::stack.
class LinksStack {
public:
LinksStack() : size_(0), links_extended_(NULL) {}
~LinksStack() {
delete links_extended_;
}
size_t size() const {
return size_;
}
bool empty() const {
return size_ == 0;
}
void push(ptrdiff_t value) {
if (size_ < kPreallocatedLinks) {
links_[size_] = value;
} else {
if (links_extended_ == NULL) {
links_extended_ = new std::stack<ptrdiff_t>();
}
VIXL_ASSERT(size_ == (links_extended_->size() + kPreallocatedLinks));
links_extended_->push(value);
}
size_++;
}
ptrdiff_t top() const {
return (size_ <= kPreallocatedLinks) ? links_[size_ - 1]
: links_extended_->top();
}
void pop() {
size_--;
if (size_ >= kPreallocatedLinks) {
links_extended_->pop();
VIXL_ASSERT(size_ == (links_extended_->size() + kPreallocatedLinks));
}
}
private:
static const size_t kPreallocatedLinks = 4;
size_t size_;
ptrdiff_t links_[kPreallocatedLinks];
std::stack<ptrdiff_t> * links_extended_;
};
inline ptrdiff_t location() const { return location_; }
inline void Bind(ptrdiff_t location) {
// Labels can only be bound once.
VIXL_ASSERT(!IsBound());
location_ = location;
}
inline void AddLink(ptrdiff_t instruction) {
// If a label is bound, the assembler already has the information it needs
// to write the instruction, so there is no need to add it to links_.
VIXL_ASSERT(!IsBound());
links_.push(instruction);
}
inline ptrdiff_t GetAndRemoveNextLink() {
VIXL_ASSERT(IsLinked());
ptrdiff_t link = links_.top();
links_.pop();
return link;
}
// The offsets of the instructions that have linked to this label.
LinksStack links_;
// The label location.
ptrdiff_t location_;
static const ptrdiff_t kLocationUnbound = -1;
// It is not safe to copy labels, so disable the copy constructor by declaring
// it private (without an implementation).
Label(const Label&);
// The Assembler class is responsible for binding and linking labels, since
// the stored offsets need to be consistent with the Assembler's buffer.
friend class Assembler;
};
@ -635,10 +709,49 @@ class Literal {
};
// Control whether or not position-independent code should be emitted.
enum PositionIndependentCodeOption {
// All code generated will be position-independent; all branches and
// references to labels generated with the Label class will use PC-relative
// addressing.
PositionIndependentCode,
// Allow VIXL to generate code that refers to absolute addresses. With this
// option, it will not be possible to copy the code buffer and run it from a
// different address; code must be generated in its final location.
PositionDependentCode,
// Allow VIXL to assume that the bottom 12 bits of the address will be
// constant, but that the top 48 bits may change. This allows `adrp` to
// function in systems which copy code between pages, but otherwise maintain
// 4KB page alignment.
PageOffsetDependentCode
};
// Control how scaled- and unscaled-offset loads and stores are generated.
enum LoadStoreScalingOption {
// Prefer scaled-immediate-offset instructions, but emit unscaled-offset,
// register-offset, pre-index or post-index instructions if necessary.
PreferScaledOffset,
// Prefer unscaled-immediate-offset instructions, but emit scaled-offset,
// register-offset, pre-index or post-index instructions if necessary.
PreferUnscaledOffset,
// Require scaled-immediate-offset instructions.
RequireScaledOffset,
// Require unscaled-immediate-offset instructions.
RequireUnscaledOffset
};
// Assembler.
class Assembler {
public:
Assembler(byte* buffer, unsigned buffer_size);
Assembler(byte* buffer, unsigned buffer_size,
PositionIndependentCodeOption pic = PositionIndependentCode);
// The destructor asserts that one of the following is true:
// * The Assembler object has not been used.
@ -662,12 +775,15 @@ class Assembler {
// Label.
// Bind a label to the current PC.
void bind(Label* label);
int UpdateAndGetByteOffsetTo(Label* label);
inline int UpdateAndGetInstructionOffsetTo(Label* label) {
VIXL_ASSERT(Label::kEndOfChain == 0);
return UpdateAndGetByteOffsetTo(label) >> kInstructionSizeLog2;
}
// Return the address of a bound label.
template <typename T>
inline T GetLabelAddress(const Label * label) {
VIXL_ASSERT(label->IsBound());
VIXL_STATIC_ASSERT(sizeof(T) >= sizeof(uintptr_t));
VIXL_STATIC_ASSERT(sizeof(*buffer_) == 1);
return reinterpret_cast<T>(buffer_ + label->location());
}
// Instruction set functions.
@ -733,6 +849,12 @@ class Assembler {
// Calculate the address of a PC offset.
void adr(const Register& rd, int imm21);
// Calculate the page address of a label.
void adrp(const Register& rd, Label* label);
// Calculate the page address of a PC offset.
void adrp(const Register& rd, int imm21);
// Data Processing instructions.
// Add.
void add(const Register& rd,
@ -1112,31 +1234,76 @@ class Assembler {
// Memory instructions.
// Load integer or FP register.
void ldr(const CPURegister& rt, const MemOperand& src);
void ldr(const CPURegister& rt, const MemOperand& src,
LoadStoreScalingOption option = PreferScaledOffset);
// Store integer or FP register.
void str(const CPURegister& rt, const MemOperand& dst);
void str(const CPURegister& rt, const MemOperand& dst,
LoadStoreScalingOption option = PreferScaledOffset);
// Load word with sign extension.
void ldrsw(const Register& rt, const MemOperand& src);
void ldrsw(const Register& rt, const MemOperand& src,
LoadStoreScalingOption option = PreferScaledOffset);
// Load byte.
void ldrb(const Register& rt, const MemOperand& src);
void ldrb(const Register& rt, const MemOperand& src,
LoadStoreScalingOption option = PreferScaledOffset);
// Store byte.
void strb(const Register& rt, const MemOperand& dst);
void strb(const Register& rt, const MemOperand& dst,
LoadStoreScalingOption option = PreferScaledOffset);
// Load byte with sign extension.
void ldrsb(const Register& rt, const MemOperand& src);
void ldrsb(const Register& rt, const MemOperand& src,
LoadStoreScalingOption option = PreferScaledOffset);
// Load half-word.
void ldrh(const Register& rt, const MemOperand& src);
void ldrh(const Register& rt, const MemOperand& src,
LoadStoreScalingOption option = PreferScaledOffset);
// Store half-word.
void strh(const Register& rt, const MemOperand& dst);
void strh(const Register& rt, const MemOperand& dst,
LoadStoreScalingOption option = PreferScaledOffset);
// Load half-word with sign extension.
void ldrsh(const Register& rt, const MemOperand& src);
void ldrsh(const Register& rt, const MemOperand& src,
LoadStoreScalingOption option = PreferScaledOffset);
// Load integer or FP register (with unscaled offset).
void ldur(const CPURegister& rt, const MemOperand& src,
LoadStoreScalingOption option = PreferUnscaledOffset);
// Store integer or FP register (with unscaled offset).
void stur(const CPURegister& rt, const MemOperand& src,
LoadStoreScalingOption option = PreferUnscaledOffset);
// Load word with sign extension.
void ldursw(const Register& rt, const MemOperand& src,
LoadStoreScalingOption option = PreferUnscaledOffset);
// Load byte (with unscaled offset).
void ldurb(const Register& rt, const MemOperand& src,
LoadStoreScalingOption option = PreferUnscaledOffset);
// Store byte (with unscaled offset).
void sturb(const Register& rt, const MemOperand& dst,
LoadStoreScalingOption option = PreferUnscaledOffset);
// Load byte with sign extension (and unscaled offset).
void ldursb(const Register& rt, const MemOperand& src,
LoadStoreScalingOption option = PreferUnscaledOffset);
// Load half-word (with unscaled offset).
void ldurh(const Register& rt, const MemOperand& src,
LoadStoreScalingOption option = PreferUnscaledOffset);
// Store half-word (with unscaled offset).
void sturh(const Register& rt, const MemOperand& dst,
LoadStoreScalingOption option = PreferUnscaledOffset);
// Load half-word with sign extension (and unscaled offset).
void ldursh(const Register& rt, const MemOperand& src,
LoadStoreScalingOption option = PreferUnscaledOffset);
// Load integer or FP register pair.
void ldp(const CPURegister& rt, const CPURegister& rt2,
@ -1166,6 +1333,79 @@ class Assembler {
// Load single precision floating point literal to FP register.
void ldr(const FPRegister& ft, float imm);
// Store exclusive byte.
void stxrb(const Register& rs, const Register& rt, const MemOperand& dst);
// Store exclusive half-word.
void stxrh(const Register& rs, const Register& rt, const MemOperand& dst);
// Store exclusive register.
void stxr(const Register& rs, const Register& rt, const MemOperand& dst);
// Load exclusive byte.
void ldxrb(const Register& rt, const MemOperand& src);
// Load exclusive half-word.
void ldxrh(const Register& rt, const MemOperand& src);
// Load exclusive register.
void ldxr(const Register& rt, const MemOperand& src);
// Store exclusive register pair.
void stxp(const Register& rs,
const Register& rt,
const Register& rt2,
const MemOperand& dst);
// Load exclusive register pair.
void ldxp(const Register& rt, const Register& rt2, const MemOperand& src);
// Store-release exclusive byte.
void stlxrb(const Register& rs, const Register& rt, const MemOperand& dst);
// Store-release exclusive half-word.
void stlxrh(const Register& rs, const Register& rt, const MemOperand& dst);
// Store-release exclusive register.
void stlxr(const Register& rs, const Register& rt, const MemOperand& dst);
// Load-acquire exclusive byte.
void ldaxrb(const Register& rt, const MemOperand& src);
// Load-acquire exclusive half-word.
void ldaxrh(const Register& rt, const MemOperand& src);
// Load-acquire exclusive register.
void ldaxr(const Register& rt, const MemOperand& src);
// Store-release exclusive register pair.
void stlxp(const Register& rs,
const Register& rt,
const Register& rt2,
const MemOperand& dst);
// Load-acquire exclusive register pair.
void ldaxp(const Register& rt, const Register& rt2, const MemOperand& src);
// Store-release byte.
void stlrb(const Register& rt, const MemOperand& dst);
// Store-release half-word.
void stlrh(const Register& rt, const MemOperand& dst);
// Store-release register.
void stlr(const Register& rt, const MemOperand& dst);
// Load-acquire byte.
void ldarb(const Register& rt, const MemOperand& src);
// Load-acquire half-word.
void ldarh(const Register& rt, const MemOperand& src);
// Load-acquire register.
void ldar(const Register& rt, const MemOperand& src);
// Move instructions. The default shift of -1 indicates that the move
// instruction will calculate an appropriate 16-bit immediate and left shift
// that is equal to the 64-bit immediate argument. If an explicit left shift
@ -1214,6 +1454,9 @@ class Assembler {
// System hint.
void hint(SystemHint code);
// Clear exclusive monitor.
void clrex(int imm4 = 0xf);
// Data memory barrier.
void dmb(BarrierDomain domain, BarrierType type);
@ -1429,6 +1672,11 @@ class Assembler {
return rt2.code() << Rt2_offset;
}
static Instr Rs(CPURegister rs) {
VIXL_ASSERT(rs.code() != kSPRegInternalCode);
return rs.code() << Rs_offset;
}
// These encoding functions allow the stack pointer to be encoded, and
// disallow the zero register.
static Instr RdSP(Register rd) {
@ -1619,6 +1867,11 @@ class Assembler {
return imm7 << ImmHint_offset;
}
static Instr CRm(int imm4) {
VIXL_ASSERT(is_uint4(imm4));
return imm4 << CRm_offset;
}
static Instr ImmBarrierDomain(int imm2) {
VIXL_ASSERT(is_uint2(imm2));
return imm2 << ImmBarrierDomain_offset;
@ -1660,16 +1913,20 @@ class Assembler {
}
// Size of the code generated in bytes
uint64_t SizeOfCodeGenerated() const {
size_t SizeOfCodeGenerated() const {
VIXL_ASSERT((pc_ >= buffer_) && (pc_ < (buffer_ + buffer_size_)));
return pc_ - buffer_;
}
// Size of the code generated since label to the current position.
uint64_t SizeOfCodeGeneratedSince(Label* label) const {
size_t SizeOfCodeGeneratedSince(Label* label) const {
size_t pc_offset = SizeOfCodeGenerated();
VIXL_ASSERT(label->IsBound());
VIXL_ASSERT((pc_ >= label->target()) && (pc_ < (buffer_ + buffer_size_)));
return pc_ - label->target();
VIXL_ASSERT(pc_offset >= static_cast<size_t>(label->location()));
VIXL_ASSERT(pc_offset < buffer_size_);
return pc_offset - label->location();
}
@ -1693,6 +1950,15 @@ class Assembler {
void EmitLiteralPool(LiteralPoolEmitOption option = NoJumpRequired);
size_t LiteralPoolSize();
inline PositionIndependentCodeOption pic() {
return pic_;
}
inline bool AllowPageOffsetDependentCode() {
return (pic() == PageOffsetDependentCode) ||
(pic() == PositionDependentCode);
}
protected:
inline const Register& AppropriateZeroRegFor(const CPURegister& reg) const {
return reg.Is64Bits() ? xzr : wzr;
@ -1701,7 +1967,8 @@ class Assembler {
void LoadStore(const CPURegister& rt,
const MemOperand& addr,
LoadStoreOp op);
LoadStoreOp op,
LoadStoreScalingOption option = PreferScaledOffset);
static bool IsImmLSUnscaled(ptrdiff_t offset);
static bool IsImmLSScaled(ptrdiff_t offset, LSDataSize size);
@ -1717,9 +1984,9 @@ class Assembler {
LogicalOp op);
static bool IsImmLogical(uint64_t value,
unsigned width,
unsigned* n,
unsigned* imm_s,
unsigned* imm_r);
unsigned* n = NULL,
unsigned* imm_s = NULL,
unsigned* imm_r = NULL);
void ConditionalCompare(const Register& rn,
const Operand& operand,
@ -1823,6 +2090,17 @@ class Assembler {
void RecordLiteral(int64_t imm, unsigned size);
// Link the current (not-yet-emitted) instruction to the specified label, then
// return an offset to be encoded in the instruction. If the label is not yet
// bound, an offset of 0 is returned.
ptrdiff_t LinkAndGetByteOffsetTo(Label * label);
ptrdiff_t LinkAndGetInstructionOffsetTo(Label * label);
ptrdiff_t LinkAndGetPageOffsetTo(Label * label);
// A common implementation for the LinkAndGet<Type>OffsetTo helpers.
template <int element_size>
ptrdiff_t LinkAndGetOffsetTo(Label* label);
// Emit the instruction at pc_.
void Emit(Instr instruction) {
VIXL_STATIC_ASSERT(sizeof(*pc_) == 1);
@ -1864,12 +2142,15 @@ class Assembler {
// The buffer into which code and relocation info are generated.
Instruction* buffer_;
// Buffer size, in bytes.
unsigned buffer_size_;
size_t buffer_size_;
Instruction* pc_;
std::list<Literal*> literals_;
Instruction* next_literal_pool_check_;
unsigned literal_pool_monitor_;
PositionIndependentCodeOption pic_;
friend class Label;
friend class BlockLiteralPoolScope;
#ifdef DEBUG

View file

@ -46,13 +46,13 @@ R(24) R(25) R(26) R(27) R(28) R(29) R(30) R(31)
#define INSTRUCTION_FIELDS_LIST(V_) \
/* Register fields */ \
V_(Rd, 4, 0, Bits) /* Destination register. */ \
V_(Rn, 9, 5, Bits) /* First source register. */ \
V_(Rm, 20, 16, Bits) /* Second source register. */ \
V_(Ra, 14, 10, Bits) /* Third source register. */ \
V_(Rt, 4, 0, Bits) /* Load dest / store source. */ \
V_(Rt2, 14, 10, Bits) /* Load second dest / */ \
/* store second source. */ \
V_(Rd, 4, 0, Bits) /* Destination register. */ \
V_(Rn, 9, 5, Bits) /* First source register. */ \
V_(Rm, 20, 16, Bits) /* Second source register. */ \
V_(Ra, 14, 10, Bits) /* Third source register. */ \
V_(Rt, 4, 0, Bits) /* Load/store register. */ \
V_(Rt2, 14, 10, Bits) /* Load/store second register. */ \
V_(Rs, 20, 16, Bits) /* Exclusive access status. */ \
V_(PrefetchMode, 4, 0, Bits) \
\
/* Common bits */ \
@ -126,6 +126,13 @@ V_(SysOp1, 18, 16, Bits) \
V_(SysOp2, 7, 5, Bits) \
V_(CRn, 15, 12, Bits) \
V_(CRm, 11, 8, Bits) \
\
/* Load-/store-exclusive */ \
V_(LdStXLoad, 22, 22, Bits) \
V_(LdStXNotExclusive, 23, 23, Bits) \
V_(LdStXAcquireRelease, 15, 15, Bits) \
V_(LdStXSizeLog2, 31, 30, Bits) \
V_(LdStXPair, 21, 21, Bits) \
#define SYSTEM_REGISTER_FIELDS_LIST(V_, M_) \
@ -585,6 +592,13 @@ enum MemBarrierOp {
ISB = MemBarrierFixed | 0x00000040
};
enum SystemExclusiveMonitorOp {
SystemExclusiveMonitorFixed = 0xD503305F,
SystemExclusiveMonitorFMask = 0xFFFFF0FF,
SystemExclusiveMonitorMask = 0xFFFFF0FF,
CLREX = SystemExclusiveMonitorFixed
};
// Any load or store.
enum LoadStoreAnyOp {
LoadStoreAnyFMask = 0x0a000000,
@ -702,7 +716,7 @@ enum LoadStoreUnscaledOffsetOp {
// Load/store (post, pre, offset and unsigned.)
enum LoadStoreOp {
LoadStoreOpMask = 0xC4C00000,
LoadStoreOpMask = 0xC4C00000,
#define LOAD_STORE(A, B, C, D) \
A##B##_##C = D
LOAD_STORE_OP_LIST(LOAD_STORE),
@ -756,6 +770,44 @@ enum LoadStoreRegisterOffset {
#undef LOAD_STORE_REGISTER_OFFSET
};
enum LoadStoreExclusive {
LoadStoreExclusiveFixed = 0x08000000,
LoadStoreExclusiveFMask = 0x3F000000,
LoadStoreExclusiveMask = 0xFFE08000,
STXRB_w = LoadStoreExclusiveFixed | 0x00000000,
STXRH_w = LoadStoreExclusiveFixed | 0x40000000,
STXR_w = LoadStoreExclusiveFixed | 0x80000000,
STXR_x = LoadStoreExclusiveFixed | 0xC0000000,
LDXRB_w = LoadStoreExclusiveFixed | 0x00400000,
LDXRH_w = LoadStoreExclusiveFixed | 0x40400000,
LDXR_w = LoadStoreExclusiveFixed | 0x80400000,
LDXR_x = LoadStoreExclusiveFixed | 0xC0400000,
STXP_w = LoadStoreExclusiveFixed | 0x80200000,
STXP_x = LoadStoreExclusiveFixed | 0xC0200000,
LDXP_w = LoadStoreExclusiveFixed | 0x80600000,
LDXP_x = LoadStoreExclusiveFixed | 0xC0600000,
STLXRB_w = LoadStoreExclusiveFixed | 0x00008000,
STLXRH_w = LoadStoreExclusiveFixed | 0x40008000,
STLXR_w = LoadStoreExclusiveFixed | 0x80008000,
STLXR_x = LoadStoreExclusiveFixed | 0xC0008000,
LDAXRB_w = LoadStoreExclusiveFixed | 0x00408000,
LDAXRH_w = LoadStoreExclusiveFixed | 0x40408000,
LDAXR_w = LoadStoreExclusiveFixed | 0x80408000,
LDAXR_x = LoadStoreExclusiveFixed | 0xC0408000,
STLXP_w = LoadStoreExclusiveFixed | 0x80208000,
STLXP_x = LoadStoreExclusiveFixed | 0xC0208000,
LDAXP_w = LoadStoreExclusiveFixed | 0x80608000,
LDAXP_x = LoadStoreExclusiveFixed | 0xC0608000,
STLRB_w = LoadStoreExclusiveFixed | 0x00808000,
STLRH_w = LoadStoreExclusiveFixed | 0x40808000,
STLR_w = LoadStoreExclusiveFixed | 0x80808000,
STLR_x = LoadStoreExclusiveFixed | 0xC0808000,
LDARB_w = LoadStoreExclusiveFixed | 0x00C08000,
LDARH_w = LoadStoreExclusiveFixed | 0x40C08000,
LDAR_w = LoadStoreExclusiveFixed | 0x80C08000,
LDAR_x = LoadStoreExclusiveFixed | 0xC0C08000
};
// Conditional compare.
enum ConditionalCompareOp {
ConditionalCompareMask = 0x60000000,

View file

@ -28,6 +28,7 @@
#define VIXL_CPU_A64_H
#include "globals.h"
#include "instructions-a64.h"
namespace vixl {
@ -42,6 +43,32 @@ class CPU {
// safely run.
static void EnsureIAndDCacheCoherency(void *address, size_t length);
// Handle tagged pointers.
template <typename T>
static T SetPointerTag(T pointer, uint64_t tag) {
VIXL_ASSERT(is_uintn(kAddressTagWidth, tag));
// Use C-style casts to get static_cast behaviour for integral types (T),
// and reinterpret_cast behaviour for other types.
uint64_t raw = (uint64_t)pointer;
VIXL_STATIC_ASSERT(sizeof(pointer) == sizeof(raw));
raw = (raw & ~kAddressTagMask) | (tag << kAddressTagOffset);
return (T)raw;
}
template <typename T>
static uint64_t GetPointerTag(T pointer) {
// Use C-style casts to get static_cast behaviour for integral types (T),
// and reinterpret_cast behaviour for other types.
uint64_t raw = (uint64_t)pointer;
VIXL_STATIC_ASSERT(sizeof(pointer) == sizeof(raw));
return (raw & kAddressTagMask) >> kAddressTagOffset;
}
private:
// Return the content of the cache type register.
static uint32_t GetCacheType();

View file

@ -171,9 +171,9 @@ void Decoder::DecodePCRelAddressing(Instruction* instr) {
void Decoder::DecodeBranchSystemException(Instruction* instr) {
VIXL_ASSERT((instr->Bits(27, 24) == 0x4) ||
(instr->Bits(27, 24) == 0x5) ||
(instr->Bits(27, 24) == 0x6) ||
(instr->Bits(27, 24) == 0x7) );
(instr->Bits(27, 24) == 0x5) ||
(instr->Bits(27, 24) == 0x6) ||
(instr->Bits(27, 24) == 0x7) );
switch (instr->Bits(31, 29)) {
case 0:
@ -272,16 +272,15 @@ void Decoder::DecodeBranchSystemException(Instruction* instr) {
void Decoder::DecodeLoadStore(Instruction* instr) {
VIXL_ASSERT((instr->Bits(27, 24) == 0x8) ||
(instr->Bits(27, 24) == 0x9) ||
(instr->Bits(27, 24) == 0xC) ||
(instr->Bits(27, 24) == 0xD) );
(instr->Bits(27, 24) == 0x9) ||
(instr->Bits(27, 24) == 0xC) ||
(instr->Bits(27, 24) == 0xD) );
if (instr->Bit(24) == 0) {
if (instr->Bit(28) == 0) {
if (instr->Bit(29) == 0) {
if (instr->Bit(26) == 0) {
// TODO: VisitLoadStoreExclusive.
VisitUnimplemented(instr);
VisitLoadStoreExclusive(instr);
} else {
DecodeAdvSIMDLoadStore(instr);
}

View file

@ -59,6 +59,7 @@
V(LoadStorePreIndex) \
V(LoadStoreRegisterOffset) \
V(LoadStoreUnsignedOffset) \
V(LoadStoreExclusive) \
V(LogicalShifted) \
V(AddSubShifted) \
V(AddSubExtended) \

View file

@ -24,6 +24,7 @@
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <cstdlib>
#include "a64/disasm-a64.h"
namespace vixl {
@ -529,7 +530,7 @@ void Disassembler::VisitExtract(Instruction* instr) {
void Disassembler::VisitPCRelAddressing(Instruction* instr) {
switch (instr->Mask(PCRelAddressingMask)) {
case ADR: Format(instr, "adr", "'Xd, 'AddrPCRelByte"); break;
// ADRP is not implemented.
case ADRP: Format(instr, "adrp", "'Xd, 'AddrPCRelPage"); break;
default: Format(instr, "unimplemented", "(PCRelAddressing)");
}
}
@ -943,6 +944,49 @@ void Disassembler::VisitLoadStorePairNonTemporal(Instruction* instr) {
}
void Disassembler::VisitLoadStoreExclusive(Instruction* instr) {
const char *mnemonic = "unimplemented";
const char *form;
switch (instr->Mask(LoadStoreExclusiveMask)) {
case STXRB_w: mnemonic = "stxrb"; form = "'Ws, 'Wt, ['Xns]"; break;
case STXRH_w: mnemonic = "stxrh"; form = "'Ws, 'Wt, ['Xns]"; break;
case STXR_w: mnemonic = "stxr"; form = "'Ws, 'Wt, ['Xns]"; break;
case STXR_x: mnemonic = "stxr"; form = "'Ws, 'Xt, ['Xns]"; break;
case LDXRB_w: mnemonic = "ldxrb"; form = "'Wt, ['Xns]"; break;
case LDXRH_w: mnemonic = "ldxrh"; form = "'Wt, ['Xns]"; break;
case LDXR_w: mnemonic = "ldxr"; form = "'Wt, ['Xns]"; break;
case LDXR_x: mnemonic = "ldxr"; form = "'Xt, ['Xns]"; break;
case STXP_w: mnemonic = "stxp"; form = "'Ws, 'Wt, 'Wt2, ['Xns]"; break;
case STXP_x: mnemonic = "stxp"; form = "'Ws, 'Xt, 'Xt2, ['Xns]"; break;
case LDXP_w: mnemonic = "ldxp"; form = "'Wt, 'Wt2, ['Xns]"; break;
case LDXP_x: mnemonic = "ldxp"; form = "'Xt, 'Xt2, ['Xns]"; break;
case STLXRB_w: mnemonic = "stlxrb"; form = "'Ws, 'Wt, ['Xns]"; break;
case STLXRH_w: mnemonic = "stlxrh"; form = "'Ws, 'Wt, ['Xns]"; break;
case STLXR_w: mnemonic = "stlxr"; form = "'Ws, 'Wt, ['Xns]"; break;
case STLXR_x: mnemonic = "stlxr"; form = "'Ws, 'Xt, ['Xns]"; break;
case LDAXRB_w: mnemonic = "ldaxrb"; form = "'Wt, ['Xns]"; break;
case LDAXRH_w: mnemonic = "ldaxrh"; form = "'Wt, ['Xns]"; break;
case LDAXR_w: mnemonic = "ldaxr"; form = "'Wt, ['Xns]"; break;
case LDAXR_x: mnemonic = "ldaxr"; form = "'Xt, ['Xns]"; break;
case STLXP_w: mnemonic = "stlxp"; form = "'Ws, 'Wt, 'Wt2, ['Xns]"; break;
case STLXP_x: mnemonic = "stlxp"; form = "'Ws, 'Xt, 'Xt2, ['Xns]"; break;
case LDAXP_w: mnemonic = "ldaxp"; form = "'Wt, 'Wt2, ['Xns]"; break;
case LDAXP_x: mnemonic = "ldaxp"; form = "'Xt, 'Xt2, ['Xns]"; break;
case STLRB_w: mnemonic = "stlrb"; form = "'Wt, ['Xns]"; break;
case STLRH_w: mnemonic = "stlrh"; form = "'Wt, ['Xns]"; break;
case STLR_w: mnemonic = "stlr"; form = "'Wt, ['Xns]"; break;
case STLR_x: mnemonic = "stlr"; form = "'Xt, ['Xns]"; break;
case LDARB_w: mnemonic = "ldarb"; form = "'Wt, ['Xns]"; break;
case LDARH_w: mnemonic = "ldarh"; form = "'Wt, ['Xns]"; break;
case LDAR_w: mnemonic = "ldar"; form = "'Wt, ['Xns]"; break;
case LDAR_x: mnemonic = "ldar"; form = "'Xt, ['Xns]"; break;
default: form = "(LoadStoreExclusive)";
}
Format(instr, mnemonic, form);
}
void Disassembler::VisitFPCompare(Instruction* instr) {
const char *mnemonic = "unimplemented";
const char *form = "'Fn, 'Fm";
@ -1162,7 +1206,15 @@ void Disassembler::VisitSystem(Instruction* instr) {
const char *mnemonic = "unimplemented";
const char *form = "(System)";
if (instr->Mask(SystemSysRegFMask) == SystemSysRegFixed) {
if (instr->Mask(SystemExclusiveMonitorFMask) == SystemExclusiveMonitorFixed) {
switch (instr->Mask(SystemExclusiveMonitorMask)) {
case CLREX: {
mnemonic = "clrex";
form = (instr->CRm() == 0xf) ? NULL : "'IX";
break;
}
}
} else if (instr->Mask(SystemSysRegFMask) == SystemSysRegFixed) {
switch (instr->Mask(SystemSysRegMask)) {
case MRS: {
mnemonic = "mrs";
@ -1184,7 +1236,6 @@ void Disassembler::VisitSystem(Instruction* instr) {
}
}
} else if (instr->Mask(SystemHintFMask) == SystemHintFixed) {
VIXL_ASSERT(instr->Mask(SystemHintMask) == HINT);
switch (instr->ImmHint()) {
case NOP: {
mnemonic = "nop";
@ -1312,6 +1363,7 @@ int Disassembler::SubstituteRegisterField(Instruction* instr,
case 'n': reg_num = instr->Rn(); break;
case 'm': reg_num = instr->Rm(); break;
case 'a': reg_num = instr->Ra(); break;
case 's': reg_num = instr->Rs(); break;
case 't': {
if (format[2] == '2') {
reg_num = instr->Rt2();
@ -1458,6 +1510,10 @@ int Disassembler::SubstituteImmediateField(Instruction* instr,
AppendToOutput("#0x%" PRIx64, instr->ImmException());
return 6;
}
case 'X': { // IX - CLREX instruction.
AppendToOutput("#0x%" PRIx64, instr->CRm());
return 2;
}
default: {
VIXL_UNIMPLEMENTED();
return 0;
@ -1564,21 +1620,20 @@ int Disassembler::SubstituteConditionField(Instruction* instr,
int Disassembler::SubstitutePCRelAddressField(Instruction* instr,
const char* format) {
USE(format);
VIXL_ASSERT(strncmp(format, "AddrPCRel", 9) == 0);
VIXL_ASSERT((strcmp(format, "AddrPCRelByte") == 0) || // Used by `adr`.
(strcmp(format, "AddrPCRelPage") == 0)); // Used by `adrp`.
int offset = instr->ImmPCRel();
int64_t offset = instr->ImmPCRel();
Instruction * base = instr;
// Only ADR (AddrPCRelByte) is supported.
VIXL_ASSERT(strcmp(format, "AddrPCRelByte") == 0);
char sign = '+';
if (offset < 0) {
offset = -offset;
sign = '-';
if (format[9] == 'P') {
offset *= kPageSize;
base = AlignDown(base, kPageSize);
}
VIXL_STATIC_ASSERT(sizeof(*instr) == 1);
AppendToOutput("#%c0x%x (addr %p)", sign, offset, instr + offset);
char sign = (offset < 0) ? '-' : '+';
void * target = reinterpret_cast<void *>(base + offset);
AppendToOutput("#%c0x%" PRIx64 " (addr %p)", sign, std::abs(offset), target);
return 13;
}
@ -1606,7 +1661,8 @@ int Disassembler::SubstituteBranchTargetField(Instruction* instr,
sign = '-';
}
VIXL_STATIC_ASSERT(sizeof(*instr) == 1);
AppendToOutput("#%c0x%" PRIx64 " (addr %p)", sign, offset, instr + offset);
void * address = reinterpret_cast<void *>(instr + offset);
AppendToOutput("#%c0x%" PRIx64 " (addr %p)", sign, offset, address);
return 8;
}

View file

@ -85,7 +85,7 @@ class Disassembler: public DecoderVisitor {
bool IsMovzMovnImm(unsigned reg_size, uint64_t value);
void ResetOutput();
void AppendToOutput(const char* string, ...);
void AppendToOutput(const char* string, ...) PRINTF_CHECK(2, 3);
char* buffer_;
uint32_t buffer_pos_;

View file

@ -149,17 +149,24 @@ LSDataSize CalcLSPairDataSize(LoadStorePairOp op) {
Instruction* Instruction::ImmPCOffsetTarget() {
Instruction * base = this;
ptrdiff_t offset;
if (IsPCRelAddressing()) {
// PC-relative addressing. Only ADR is supported.
// ADR and ADRP.
offset = ImmPCRel();
if (Mask(PCRelAddressingMask) == ADRP) {
base = AlignDown(base, kPageSize);
offset *= kPageSize;
} else {
VIXL_ASSERT(Mask(PCRelAddressingMask) == ADR);
}
} else {
// All PC-relative branches.
VIXL_ASSERT(BranchType() != UnknownBranchType);
// Relative branch offsets are instruction-size-aligned.
offset = ImmBranch() << kInstructionSizeLog2;
}
return this + offset;
return base + offset;
}
@ -185,10 +192,16 @@ void Instruction::SetImmPCOffsetTarget(Instruction* target) {
void Instruction::SetPCRelImmTarget(Instruction* target) {
// ADRP is not supported, so 'this' must point to an ADR instruction.
VIXL_ASSERT(Mask(PCRelAddressingMask) == ADR);
Instr imm = Assembler::ImmPCRelAddress(target - this);
int32_t imm21;
if ((Mask(PCRelAddressingMask) == ADR)) {
imm21 = target - this;
} else {
VIXL_ASSERT(Mask(PCRelAddressingMask) == ADRP);
uintptr_t this_page = reinterpret_cast<uintptr_t>(this) / kPageSize;
uintptr_t target_page = reinterpret_cast<uintptr_t>(target) / kPageSize;
imm21 = target_page - this_page;
}
Instr imm = Assembler::ImmPCRelAddress(imm21);
SetInstructionBits(Mask(~ImmPCRel_mask) | imm);
}

View file

@ -41,6 +41,10 @@ const unsigned kLiteralEntrySize = 4;
const unsigned kLiteralEntrySizeLog2 = 2;
const unsigned kMaxLoadLiteralRange = 1 * MBytes;
// This is the nominal page size (as used by the adrp instruction); the actual
// size of the memory pages allocated by the kernel is likely to differ.
const unsigned kPageSize = 4 * KBytes;
const unsigned kWRegSize = 32;
const unsigned kWRegSizeLog2 = 5;
const unsigned kWRegSizeInBytes = kWRegSize / 8;
@ -79,6 +83,12 @@ const unsigned kZeroRegCode = 31;
const unsigned kSPRegInternalCode = 63;
const unsigned kRegCodeMask = 0x1f;
const unsigned kAddressTagOffset = 56;
const unsigned kAddressTagWidth = 8;
const uint64_t kAddressTagMask =
((UINT64_C(1) << kAddressTagWidth) - 1) << kAddressTagOffset;
VIXL_STATIC_ASSERT(kAddressTagMask == UINT64_C(0xff00000000000000));
// AArch64 floating-point specifics. These match IEEE-754.
const unsigned kDoubleMantissaBits = 52;
const unsigned kDoubleExponentBits = 11;