mirror of
https://github.com/Motorhead1991/qemu.git
synced 2025-08-04 00:03:54 -06:00
Merge remote-tracking branch 'kwolf/for-anthony' into staging
# By Paolo Bonzini (14) and others # Via Kevin Wolf * kwolf/for-anthony: (24 commits) ide: Add fall through annotations block: Create proper size file for disk mirror ahci: Add migration support ahci: Change data types in preparation for migration ahci: Remove unused AHCIDevice fields hbitmap: add assertion on hbitmap_iter_init mirror: do nothing on zero-sized disk block/vdi: Check for bad signature block/vdi: Improved return values from vdi_open block/vdi: Improve debug output for signature block: Use error code EMEDIUMTYPE for wrong format in some block drivers block: Add special error code for wrong format mirror: support arbitrarily-sized iterations mirror: support more than one in-flight AIO operation mirror: add buf-size argument to drive-mirror mirror: switch mirror_iteration to AIO mirror: allow customizing the granularity block: allow customizing the granularity of the dirty bitmap block: return count of dirty sectors, not chunks mirror: perform COW if the cluster size is bigger than the granularity ...
This commit is contained in:
commit
503cb22e05
30 changed files with 1729 additions and 231 deletions
|
@ -2,7 +2,7 @@ util-obj-y = osdep.o cutils.o qemu-timer-common.o
|
|||
util-obj-$(CONFIG_WIN32) += oslib-win32.o qemu-thread-win32.o event_notifier-win32.o
|
||||
util-obj-$(CONFIG_POSIX) += oslib-posix.o qemu-thread-posix.o event_notifier-posix.o
|
||||
util-obj-y += envlist.o path.o host-utils.o cache-utils.o module.o
|
||||
util-obj-y += bitmap.o bitops.o
|
||||
util-obj-y += bitmap.o bitops.o hbitmap.o
|
||||
util-obj-y += acl.o
|
||||
util-obj-y += error.o qemu-error.o
|
||||
util-obj-$(CONFIG_POSIX) += compatfd.o
|
||||
|
|
401
util/hbitmap.c
Normal file
401
util/hbitmap.c
Normal file
|
@ -0,0 +1,401 @@
|
|||
/*
|
||||
* Hierarchical Bitmap Data Type
|
||||
*
|
||||
* Copyright Red Hat, Inc., 2012
|
||||
*
|
||||
* Author: Paolo Bonzini <pbonzini@redhat.com>
|
||||
*
|
||||
* This work is licensed under the terms of the GNU GPL, version 2 or
|
||||
* later. See the COPYING file in the top-level directory.
|
||||
*/
|
||||
|
||||
#include <string.h>
|
||||
#include <glib.h>
|
||||
#include <assert.h>
|
||||
#include "qemu/osdep.h"
|
||||
#include "qemu/hbitmap.h"
|
||||
#include "qemu/host-utils.h"
|
||||
#include "trace.h"
|
||||
|
||||
/* HBitmaps provides an array of bits. The bits are stored as usual in an
|
||||
* array of unsigned longs, but HBitmap is also optimized to provide fast
|
||||
* iteration over set bits; going from one bit to the next is O(logB n)
|
||||
* worst case, with B = sizeof(long) * CHAR_BIT: the result is low enough
|
||||
* that the number of levels is in fact fixed.
|
||||
*
|
||||
* In order to do this, it stacks multiple bitmaps with progressively coarser
|
||||
* granularity; in all levels except the last, bit N is set iff the N-th
|
||||
* unsigned long is nonzero in the immediately next level. When iteration
|
||||
* completes on the last level it can examine the 2nd-last level to quickly
|
||||
* skip entire words, and even do so recursively to skip blocks of 64 words or
|
||||
* powers thereof (32 on 32-bit machines).
|
||||
*
|
||||
* Given an index in the bitmap, it can be split in group of bits like
|
||||
* this (for the 64-bit case):
|
||||
*
|
||||
* bits 0-57 => word in the last bitmap | bits 58-63 => bit in the word
|
||||
* bits 0-51 => word in the 2nd-last bitmap | bits 52-57 => bit in the word
|
||||
* bits 0-45 => word in the 3rd-last bitmap | bits 46-51 => bit in the word
|
||||
*
|
||||
* So it is easy to move up simply by shifting the index right by
|
||||
* log2(BITS_PER_LONG) bits. To move down, you shift the index left
|
||||
* similarly, and add the word index within the group. Iteration uses
|
||||
* ffs (find first set bit) to find the next word to examine; this
|
||||
* operation can be done in constant time in most current architectures.
|
||||
*
|
||||
* Setting or clearing a range of m bits on all levels, the work to perform
|
||||
* is O(m + m/W + m/W^2 + ...), which is O(m) like on a regular bitmap.
|
||||
*
|
||||
* When iterating on a bitmap, each bit (on any level) is only visited
|
||||
* once. Hence, The total cost of visiting a bitmap with m bits in it is
|
||||
* the number of bits that are set in all bitmaps. Unless the bitmap is
|
||||
* extremely sparse, this is also O(m + m/W + m/W^2 + ...), so the amortized
|
||||
* cost of advancing from one bit to the next is usually constant (worst case
|
||||
* O(logB n) as in the non-amortized complexity).
|
||||
*/
|
||||
|
||||
struct HBitmap {
|
||||
/* Number of total bits in the bottom level. */
|
||||
uint64_t size;
|
||||
|
||||
/* Number of set bits in the bottom level. */
|
||||
uint64_t count;
|
||||
|
||||
/* A scaling factor. Given a granularity of G, each bit in the bitmap will
|
||||
* will actually represent a group of 2^G elements. Each operation on a
|
||||
* range of bits first rounds the bits to determine which group they land
|
||||
* in, and then affect the entire page; iteration will only visit the first
|
||||
* bit of each group. Here is an example of operations in a size-16,
|
||||
* granularity-1 HBitmap:
|
||||
*
|
||||
* initial state 00000000
|
||||
* set(start=0, count=9) 11111000 (iter: 0, 2, 4, 6, 8)
|
||||
* reset(start=1, count=3) 00111000 (iter: 4, 6, 8)
|
||||
* set(start=9, count=2) 00111100 (iter: 4, 6, 8, 10)
|
||||
* reset(start=5, count=5) 00000000
|
||||
*
|
||||
* From an implementation point of view, when setting or resetting bits,
|
||||
* the bitmap will scale bit numbers right by this amount of bits. When
|
||||
* iterating, the bitmap will scale bit numbers left by this amount of
|
||||
* bits.
|
||||
*/
|
||||
int granularity;
|
||||
|
||||
/* A number of progressively less coarse bitmaps (i.e. level 0 is the
|
||||
* coarsest). Each bit in level N represents a word in level N+1 that
|
||||
* has a set bit, except the last level where each bit represents the
|
||||
* actual bitmap.
|
||||
*
|
||||
* Note that all bitmaps have the same number of levels. Even a 1-bit
|
||||
* bitmap will still allocate HBITMAP_LEVELS arrays.
|
||||
*/
|
||||
unsigned long *levels[HBITMAP_LEVELS];
|
||||
};
|
||||
|
||||
static inline int popcountl(unsigned long l)
|
||||
{
|
||||
return BITS_PER_LONG == 32 ? ctpop32(l) : ctpop64(l);
|
||||
}
|
||||
|
||||
/* Advance hbi to the next nonzero word and return it. hbi->pos
|
||||
* is updated. Returns zero if we reach the end of the bitmap.
|
||||
*/
|
||||
unsigned long hbitmap_iter_skip_words(HBitmapIter *hbi)
|
||||
{
|
||||
size_t pos = hbi->pos;
|
||||
const HBitmap *hb = hbi->hb;
|
||||
unsigned i = HBITMAP_LEVELS - 1;
|
||||
|
||||
unsigned long cur;
|
||||
do {
|
||||
cur = hbi->cur[--i];
|
||||
pos >>= BITS_PER_LEVEL;
|
||||
} while (cur == 0);
|
||||
|
||||
/* Check for end of iteration. We always use fewer than BITS_PER_LONG
|
||||
* bits in the level 0 bitmap; thus we can repurpose the most significant
|
||||
* bit as a sentinel. The sentinel is set in hbitmap_alloc and ensures
|
||||
* that the above loop ends even without an explicit check on i.
|
||||
*/
|
||||
|
||||
if (i == 0 && cur == (1UL << (BITS_PER_LONG - 1))) {
|
||||
return 0;
|
||||
}
|
||||
for (; i < HBITMAP_LEVELS - 1; i++) {
|
||||
/* Shift back pos to the left, matching the right shifts above.
|
||||
* The index of this word's least significant set bit provides
|
||||
* the low-order bits.
|
||||
*/
|
||||
pos = (pos << BITS_PER_LEVEL) + ffsl(cur) - 1;
|
||||
hbi->cur[i] = cur & (cur - 1);
|
||||
|
||||
/* Set up next level for iteration. */
|
||||
cur = hb->levels[i + 1][pos];
|
||||
}
|
||||
|
||||
hbi->pos = pos;
|
||||
trace_hbitmap_iter_skip_words(hbi->hb, hbi, pos, cur);
|
||||
|
||||
assert(cur);
|
||||
return cur;
|
||||
}
|
||||
|
||||
void hbitmap_iter_init(HBitmapIter *hbi, const HBitmap *hb, uint64_t first)
|
||||
{
|
||||
unsigned i, bit;
|
||||
uint64_t pos;
|
||||
|
||||
hbi->hb = hb;
|
||||
pos = first >> hb->granularity;
|
||||
assert(pos < hb->size);
|
||||
hbi->pos = pos >> BITS_PER_LEVEL;
|
||||
hbi->granularity = hb->granularity;
|
||||
|
||||
for (i = HBITMAP_LEVELS; i-- > 0; ) {
|
||||
bit = pos & (BITS_PER_LONG - 1);
|
||||
pos >>= BITS_PER_LEVEL;
|
||||
|
||||
/* Drop bits representing items before first. */
|
||||
hbi->cur[i] = hb->levels[i][pos] & ~((1UL << bit) - 1);
|
||||
|
||||
/* We have already added level i+1, so the lowest set bit has
|
||||
* been processed. Clear it.
|
||||
*/
|
||||
if (i != HBITMAP_LEVELS - 1) {
|
||||
hbi->cur[i] &= ~(1UL << bit);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bool hbitmap_empty(const HBitmap *hb)
|
||||
{
|
||||
return hb->count == 0;
|
||||
}
|
||||
|
||||
int hbitmap_granularity(const HBitmap *hb)
|
||||
{
|
||||
return hb->granularity;
|
||||
}
|
||||
|
||||
uint64_t hbitmap_count(const HBitmap *hb)
|
||||
{
|
||||
return hb->count << hb->granularity;
|
||||
}
|
||||
|
||||
/* Count the number of set bits between start and end, not accounting for
|
||||
* the granularity. Also an example of how to use hbitmap_iter_next_word.
|
||||
*/
|
||||
static uint64_t hb_count_between(HBitmap *hb, uint64_t start, uint64_t last)
|
||||
{
|
||||
HBitmapIter hbi;
|
||||
uint64_t count = 0;
|
||||
uint64_t end = last + 1;
|
||||
unsigned long cur;
|
||||
size_t pos;
|
||||
|
||||
hbitmap_iter_init(&hbi, hb, start << hb->granularity);
|
||||
for (;;) {
|
||||
pos = hbitmap_iter_next_word(&hbi, &cur);
|
||||
if (pos >= (end >> BITS_PER_LEVEL)) {
|
||||
break;
|
||||
}
|
||||
count += popcountl(cur);
|
||||
}
|
||||
|
||||
if (pos == (end >> BITS_PER_LEVEL)) {
|
||||
/* Drop bits representing the END-th and subsequent items. */
|
||||
int bit = end & (BITS_PER_LONG - 1);
|
||||
cur &= (1UL << bit) - 1;
|
||||
count += popcountl(cur);
|
||||
}
|
||||
|
||||
return count;
|
||||
}
|
||||
|
||||
/* Setting starts at the last layer and propagates up if an element
|
||||
* changes from zero to non-zero.
|
||||
*/
|
||||
static inline bool hb_set_elem(unsigned long *elem, uint64_t start, uint64_t last)
|
||||
{
|
||||
unsigned long mask;
|
||||
bool changed;
|
||||
|
||||
assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
|
||||
assert(start <= last);
|
||||
|
||||
mask = 2UL << (last & (BITS_PER_LONG - 1));
|
||||
mask -= 1UL << (start & (BITS_PER_LONG - 1));
|
||||
changed = (*elem == 0);
|
||||
*elem |= mask;
|
||||
return changed;
|
||||
}
|
||||
|
||||
/* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)... */
|
||||
static void hb_set_between(HBitmap *hb, int level, uint64_t start, uint64_t last)
|
||||
{
|
||||
size_t pos = start >> BITS_PER_LEVEL;
|
||||
size_t lastpos = last >> BITS_PER_LEVEL;
|
||||
bool changed = false;
|
||||
size_t i;
|
||||
|
||||
i = pos;
|
||||
if (i < lastpos) {
|
||||
uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
|
||||
changed |= hb_set_elem(&hb->levels[level][i], start, next - 1);
|
||||
for (;;) {
|
||||
start = next;
|
||||
next += BITS_PER_LONG;
|
||||
if (++i == lastpos) {
|
||||
break;
|
||||
}
|
||||
changed |= (hb->levels[level][i] == 0);
|
||||
hb->levels[level][i] = ~0UL;
|
||||
}
|
||||
}
|
||||
changed |= hb_set_elem(&hb->levels[level][i], start, last);
|
||||
|
||||
/* If there was any change in this layer, we may have to update
|
||||
* the one above.
|
||||
*/
|
||||
if (level > 0 && changed) {
|
||||
hb_set_between(hb, level - 1, pos, lastpos);
|
||||
}
|
||||
}
|
||||
|
||||
void hbitmap_set(HBitmap *hb, uint64_t start, uint64_t count)
|
||||
{
|
||||
/* Compute range in the last layer. */
|
||||
uint64_t last = start + count - 1;
|
||||
|
||||
trace_hbitmap_set(hb, start, count,
|
||||
start >> hb->granularity, last >> hb->granularity);
|
||||
|
||||
start >>= hb->granularity;
|
||||
last >>= hb->granularity;
|
||||
count = last - start + 1;
|
||||
|
||||
hb->count += count - hb_count_between(hb, start, last);
|
||||
hb_set_between(hb, HBITMAP_LEVELS - 1, start, last);
|
||||
}
|
||||
|
||||
/* Resetting works the other way round: propagate up if the new
|
||||
* value is zero.
|
||||
*/
|
||||
static inline bool hb_reset_elem(unsigned long *elem, uint64_t start, uint64_t last)
|
||||
{
|
||||
unsigned long mask;
|
||||
bool blanked;
|
||||
|
||||
assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
|
||||
assert(start <= last);
|
||||
|
||||
mask = 2UL << (last & (BITS_PER_LONG - 1));
|
||||
mask -= 1UL << (start & (BITS_PER_LONG - 1));
|
||||
blanked = *elem != 0 && ((*elem & ~mask) == 0);
|
||||
*elem &= ~mask;
|
||||
return blanked;
|
||||
}
|
||||
|
||||
/* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)... */
|
||||
static void hb_reset_between(HBitmap *hb, int level, uint64_t start, uint64_t last)
|
||||
{
|
||||
size_t pos = start >> BITS_PER_LEVEL;
|
||||
size_t lastpos = last >> BITS_PER_LEVEL;
|
||||
bool changed = false;
|
||||
size_t i;
|
||||
|
||||
i = pos;
|
||||
if (i < lastpos) {
|
||||
uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
|
||||
|
||||
/* Here we need a more complex test than when setting bits. Even if
|
||||
* something was changed, we must not blank bits in the upper level
|
||||
* unless the lower-level word became entirely zero. So, remove pos
|
||||
* from the upper-level range if bits remain set.
|
||||
*/
|
||||
if (hb_reset_elem(&hb->levels[level][i], start, next - 1)) {
|
||||
changed = true;
|
||||
} else {
|
||||
pos++;
|
||||
}
|
||||
|
||||
for (;;) {
|
||||
start = next;
|
||||
next += BITS_PER_LONG;
|
||||
if (++i == lastpos) {
|
||||
break;
|
||||
}
|
||||
changed |= (hb->levels[level][i] != 0);
|
||||
hb->levels[level][i] = 0UL;
|
||||
}
|
||||
}
|
||||
|
||||
/* Same as above, this time for lastpos. */
|
||||
if (hb_reset_elem(&hb->levels[level][i], start, last)) {
|
||||
changed = true;
|
||||
} else {
|
||||
lastpos--;
|
||||
}
|
||||
|
||||
if (level > 0 && changed) {
|
||||
hb_reset_between(hb, level - 1, pos, lastpos);
|
||||
}
|
||||
}
|
||||
|
||||
void hbitmap_reset(HBitmap *hb, uint64_t start, uint64_t count)
|
||||
{
|
||||
/* Compute range in the last layer. */
|
||||
uint64_t last = start + count - 1;
|
||||
|
||||
trace_hbitmap_reset(hb, start, count,
|
||||
start >> hb->granularity, last >> hb->granularity);
|
||||
|
||||
start >>= hb->granularity;
|
||||
last >>= hb->granularity;
|
||||
|
||||
hb->count -= hb_count_between(hb, start, last);
|
||||
hb_reset_between(hb, HBITMAP_LEVELS - 1, start, last);
|
||||
}
|
||||
|
||||
bool hbitmap_get(const HBitmap *hb, uint64_t item)
|
||||
{
|
||||
/* Compute position and bit in the last layer. */
|
||||
uint64_t pos = item >> hb->granularity;
|
||||
unsigned long bit = 1UL << (pos & (BITS_PER_LONG - 1));
|
||||
|
||||
return (hb->levels[HBITMAP_LEVELS - 1][pos >> BITS_PER_LEVEL] & bit) != 0;
|
||||
}
|
||||
|
||||
void hbitmap_free(HBitmap *hb)
|
||||
{
|
||||
unsigned i;
|
||||
for (i = HBITMAP_LEVELS; i-- > 0; ) {
|
||||
g_free(hb->levels[i]);
|
||||
}
|
||||
g_free(hb);
|
||||
}
|
||||
|
||||
HBitmap *hbitmap_alloc(uint64_t size, int granularity)
|
||||
{
|
||||
HBitmap *hb = g_malloc0(sizeof (struct HBitmap));
|
||||
unsigned i;
|
||||
|
||||
assert(granularity >= 0 && granularity < 64);
|
||||
size = (size + (1ULL << granularity) - 1) >> granularity;
|
||||
assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
|
||||
|
||||
hb->size = size;
|
||||
hb->granularity = granularity;
|
||||
for (i = HBITMAP_LEVELS; i-- > 0; ) {
|
||||
size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
|
||||
hb->levels[i] = g_malloc0(size * sizeof(unsigned long));
|
||||
}
|
||||
|
||||
/* We necessarily have free bits in level 0 due to the definition
|
||||
* of HBITMAP_LEVELS, so use one for a sentinel. This speeds up
|
||||
* hbitmap_iter_skip_words.
|
||||
*/
|
||||
assert(size == 1);
|
||||
hb->levels[0][0] |= 1UL << (BITS_PER_LONG - 1);
|
||||
return hb;
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue