ppc patch queue 2020-10-09

Here's the next set of ppc related patches for qemu-5.2.  There are
 two main things here:
 
 * Cleanups to error handling in spapr from Greg Kurz
 * Improvements to NUMA handling for spapr from Daniel Barboza
 
 There are also a handful of other bugfixes.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEEdfRlhq5hpmzETofcbDjKyiDZs5IFAl9//PUACgkQbDjKyiDZ
 s5KdQQ/9EKl8GRuNw1CaoMRZFnD5YCDnr6Piy24HpcINHm8khvC4SWEaMm2ESOLU
 J5e9rQn2vXlHLWDA0qQ8pTTEMqfgAOuYllGQXTnTKF3tjePEZzsYzdg49v8O3dsb
 EHOAvixsHocH+8KMsiQkbV5BZYEEJukX6RoGGm6vte+MTXdRlpyxmp9Xf52tGmEB
 pU/Q2Y9oLR6OW7POWv3kfpmCfxklkOXstguEMTP42+ZGP17PBvpKXAXfW13gCl8t
 yGvvcjWr64m9uTyqTxYWK/jFxxYa8hraKPk4BY/001UCypd+T/DrD7E/xlBMZwPh
 eDRX7fV+YPcRqv66x47Gu40afEVm3mlQXzr0QaK5qm772f+v6C/xyLUznLNxYdLy
 s9lKSi7wSxjBS8M8jztRoCJEx+zVe6BclJbwdzGQMYODiY13HKVENFUzPxrC9bfN
 IxYAU3uAN3VL/agslEYV+aBrX0qj96c1Ek6CcFG2XXdR3k9QnYvUcQuPKcfuCBSX
 TVS2mYger8Ba4E47tapH++TKj5jHoVKgTciSN663+gUCGzNTw+5UEZBxEHTQaPOX
 a5SKh5t06PEkxpBK4ITnQfeRwvkMg4ERjJoKPXWzcqvHUWK+xaI8XbBlqCDMiC3T
 mBAVHMIrKEe6J9tTqeURyct3ItUioneueLWNSplBUN3BPkE+7AQ=
 =dbvK
 -----END PGP SIGNATURE-----

Merge remote-tracking branch 'remotes/dgibson/tags/ppc-for-5.2-20201009' into staging

ppc patch queue 2020-10-09

Here's the next set of ppc related patches for qemu-5.2.  There are
two main things here:

* Cleanups to error handling in spapr from Greg Kurz
* Improvements to NUMA handling for spapr from Daniel Barboza

There are also a handful of other bugfixes.

# gpg: Signature made Fri 09 Oct 2020 07:02:29 BST
# gpg:                using RSA key 75F46586AE61A66CC44E87DC6C38CACA20D9B392
# gpg: Good signature from "David Gibson <david@gibson.dropbear.id.au>" [full]
# gpg:                 aka "David Gibson (Red Hat) <dgibson@redhat.com>" [full]
# gpg:                 aka "David Gibson (ozlabs.org) <dgibson@ozlabs.org>" [full]
# gpg:                 aka "David Gibson (kernel.org) <dwg@kernel.org>" [unknown]
# Primary key fingerprint: 75F4 6586 AE61 A66C C44E  87DC 6C38 CACA 20D9 B392

* remotes/dgibson/tags/ppc-for-5.2-20201009:
  specs/ppc-spapr-numa: update with new NUMA support
  spapr_numa: consider user input when defining associativity
  spapr_numa: change reference-points and maxdomain settings
  spapr_numa: forbid asymmetrical NUMA setups
  spapr: add spapr_machine_using_legacy_numa() helper
  ppc/pnv: Increase max firmware size
  spapr: Add a return value to spapr_check_pagesize()
  spapr: Add a return value to spapr_nvdimm_validate()
  spapr: Simplify error handling in spapr_cpu_core_realize()
  spapr: Add a return value to spapr_set_vcpu_id()
  spapr: Simplify error handling in prop_get_fdt()
  spapr: Add a return value to spapr_drc_attach()
  spapr: Simplify error handling in spapr_vio_busdev_realize()
  spapr: Simplify error handling in do_client_architecture_support()
  spapr: Get rid of cas_check_pvr() error reporting
  spapr: Simplify error handling in callers of ppc_set_compat()
  ppc: Fix return value in cpu_post_load() error path
  ppc: Add a return value to ppc_set_compat() and ppc_set_compat_all()
  spapr: Fix error leak in spapr_realize_vcpu()
  spapr: Handle HPT allocation failure in nested guest

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
Peter Maydell 2020-10-09 15:48:04 +01:00
commit 4a7c0bd9dc
17 changed files with 514 additions and 128 deletions

View file

@ -61,7 +61,7 @@
#define FW_FILE_NAME "skiboot.lid"
#define FW_LOAD_ADDR 0x0
#define FW_MAX_SIZE (4 * MiB)
#define FW_MAX_SIZE (16 * MiB)
#define KERNEL_LOAD_ADDR 0x20000000
#define KERNEL_MAX_SIZE (256 * MiB)

View file

@ -294,6 +294,15 @@ static hwaddr spapr_node0_size(MachineState *machine)
return machine->ram_size;
}
bool spapr_machine_using_legacy_numa(SpaprMachineState *spapr)
{
MachineState *machine = MACHINE(spapr);
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
return smc->pre_5_2_numa_associativity ||
machine->numa_state->num_nodes <= 1;
}
static void add_str(GString *s, const gchar *s1)
{
g_string_append_len(s, s1, strlen(s1) + 1);
@ -1483,6 +1492,12 @@ void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
spapr_free_hpt(spapr);
rc = kvmppc_reset_htab(shift);
if (rc == -EOPNOTSUPP) {
error_setg(errp, "HPT not supported in nested guests");
return;
}
if (rc < 0) {
/* kernel-side HPT needed, but couldn't allocate one */
error_setg_errno(errp, errno,
@ -3365,22 +3380,19 @@ static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
int i;
uint64_t addr = addr_start;
bool hotplugged = spapr_drc_hotplugged(dev);
Error *local_err = NULL;
for (i = 0; i < nr_lmbs; i++) {
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
addr / SPAPR_MEMORY_BLOCK_SIZE);
g_assert(drc);
spapr_drc_attach(drc, dev, &local_err);
if (local_err) {
if (!spapr_drc_attach(drc, dev, errp)) {
while (addr > addr_start) {
addr -= SPAPR_MEMORY_BLOCK_SIZE;
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
addr / SPAPR_MEMORY_BLOCK_SIZE);
spapr_drc_detach(drc);
}
error_propagate(errp, local_err);
return;
}
if (!hotplugged) {
@ -3475,9 +3487,7 @@ static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
}
if (is_nvdimm) {
spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, &local_err);
if (local_err) {
error_propagate(errp, local_err);
if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
return;
}
} else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
@ -3489,9 +3499,7 @@ static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
&error_abort);
pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
spapr_check_pagesize(spapr, pagesize, &local_err);
if (local_err) {
error_propagate(errp, local_err);
if (!spapr_check_pagesize(spapr, pagesize, errp)) {
return;
}
@ -3761,7 +3769,6 @@ static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
CPUCore *cc = CPU_CORE(dev);
CPUState *cs;
SpaprDrc *drc;
Error *local_err = NULL;
CPUArchId *core_slot;
int index;
bool hotplugged = spapr_drc_hotplugged(dev);
@ -3779,9 +3786,7 @@ static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
g_assert(drc || !mc->has_hotpluggable_cpus);
if (drc) {
spapr_drc_attach(drc, dev, &local_err);
if (local_err) {
error_propagate(errp, local_err);
if (!spapr_drc_attach(drc, dev, errp)) {
return;
}
@ -3811,10 +3816,9 @@ static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
*/
if (hotplugged) {
for (i = 0; i < cc->nr_threads; i++) {
ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
&local_err);
if (local_err) {
error_propagate(errp, local_err);
if (ppc_set_compat(core->threads[i],
POWERPC_CPU(first_cpu)->compat_pvr,
errp) < 0) {
return;
}
}
@ -3934,7 +3938,6 @@ static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
SpaprDrc *drc;
bool hotplugged = spapr_drc_hotplugged(dev);
Error *local_err = NULL;
if (!smc->dr_phb_enabled) {
return;
@ -3944,9 +3947,7 @@ static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
/* hotplug hooks should check it's enabled before getting this far */
assert(drc);
spapr_drc_attach(drc, dev, &local_err);
if (local_err) {
error_propagate(errp, local_err);
if (!spapr_drc_attach(drc, dev, errp)) {
return;
}
@ -4290,7 +4291,7 @@ int spapr_get_vcpu_id(PowerPCCPU *cpu)
return cpu->vcpu_id;
}
void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
MachineState *ms = MACHINE(spapr);
@ -4303,10 +4304,11 @@ void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
error_append_hint(errp, "Adjust the number of cpus to %d "
"or try to raise the number of threads per core\n",
vcpu_id * ms->smp.threads / spapr->vsmt);
return;
return false;
}
cpu->vcpu_id = vcpu_id;
return true;
}
PowerPCCPU *spapr_find_cpu(int vcpu_id)
@ -4526,8 +4528,11 @@ DEFINE_SPAPR_MACHINE(5_2, "5.2", true);
*/
static void spapr_machine_5_1_class_options(MachineClass *mc)
{
SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
spapr_machine_5_2_class_options(mc);
compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
smc->pre_5_2_numa_associativity = true;
}
DEFINE_SPAPR_MACHINE(5_1, "5.1", false);

View file

@ -310,13 +310,13 @@ static void cap_safe_indirect_branch_apply(SpaprMachineState *spapr,
#define VALUE_DESC_TRISTATE " (broken, workaround, fixed)"
void spapr_check_pagesize(SpaprMachineState *spapr, hwaddr pagesize,
bool spapr_check_pagesize(SpaprMachineState *spapr, hwaddr pagesize,
Error **errp)
{
hwaddr maxpagesize = (1ULL << spapr->eff.caps[SPAPR_CAP_HPT_MAXPAGESIZE]);
if (!kvmppc_hpt_needs_host_contiguous_pages()) {
return;
return true;
}
if (maxpagesize > pagesize) {
@ -324,7 +324,10 @@ void spapr_check_pagesize(SpaprMachineState *spapr, hwaddr pagesize,
"Can't support %"HWADDR_PRIu" kiB guest pages with %"
HWADDR_PRIu" kiB host pages with this KVM implementation",
maxpagesize >> 10, pagesize >> 10);
return false;
}
return true;
}
static void cap_hpt_maxpagesize_apply(SpaprMachineState *spapr,

View file

@ -227,15 +227,14 @@ static void spapr_cpu_core_unrealize(DeviceState *dev)
g_free(sc->threads);
}
static void spapr_realize_vcpu(PowerPCCPU *cpu, SpaprMachineState *spapr,
static bool spapr_realize_vcpu(PowerPCCPU *cpu, SpaprMachineState *spapr,
SpaprCpuCore *sc, Error **errp)
{
CPUPPCState *env = &cpu->env;
CPUState *cs = CPU(cpu);
Error *local_err = NULL;
if (!qdev_realize(DEVICE(cpu), NULL, errp)) {
return;
return false;
}
/* Set time-base frequency to 512 MHz */
@ -244,15 +243,16 @@ static void spapr_realize_vcpu(PowerPCCPU *cpu, SpaprMachineState *spapr,
cpu_ppc_set_vhyp(cpu, PPC_VIRTUAL_HYPERVISOR(spapr));
kvmppc_set_papr(cpu);
if (spapr_irq_cpu_intc_create(spapr, cpu, &local_err) < 0) {
if (spapr_irq_cpu_intc_create(spapr, cpu, errp) < 0) {
cpu_remove_sync(CPU(cpu));
return;
return false;
}
if (!sc->pre_3_0_migration) {
vmstate_register(NULL, cs->cpu_index, &vmstate_spapr_cpu_state,
cpu->machine_data);
}
return true;
}
static PowerPCCPU *spapr_create_vcpu(SpaprCpuCore *sc, int i, Error **errp)
@ -263,7 +263,6 @@ static PowerPCCPU *spapr_create_vcpu(SpaprCpuCore *sc, int i, Error **errp)
char *id;
CPUState *cs;
PowerPCCPU *cpu;
Error *local_err = NULL;
obj = object_new(scc->cpu_type);
@ -275,8 +274,7 @@ static PowerPCCPU *spapr_create_vcpu(SpaprCpuCore *sc, int i, Error **errp)
*/
cs->start_powered_off = true;
cs->cpu_index = cc->core_id + i;
spapr_set_vcpu_id(cpu, cs->cpu_index, &local_err);
if (local_err) {
if (!spapr_set_vcpu_id(cpu, cs->cpu_index, errp)) {
goto err;
}
@ -293,7 +291,6 @@ static PowerPCCPU *spapr_create_vcpu(SpaprCpuCore *sc, int i, Error **errp)
err:
object_unref(obj);
error_propagate(errp, local_err);
return NULL;
}
@ -316,7 +313,6 @@ static void spapr_cpu_core_realize(DeviceState *dev, Error **errp)
TYPE_SPAPR_MACHINE);
SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
CPUCore *cc = CPU_CORE(OBJECT(dev));
Error *local_err = NULL;
int i, j;
if (!spapr) {
@ -326,15 +322,14 @@ static void spapr_cpu_core_realize(DeviceState *dev, Error **errp)
sc->threads = g_new(PowerPCCPU *, cc->nr_threads);
for (i = 0; i < cc->nr_threads; i++) {
sc->threads[i] = spapr_create_vcpu(sc, i, &local_err);
if (local_err) {
sc->threads[i] = spapr_create_vcpu(sc, i, errp);
if (!sc->threads[i]) {
goto err;
}
}
for (j = 0; j < cc->nr_threads; j++) {
spapr_realize_vcpu(sc->threads[j], spapr, sc, &local_err);
if (local_err) {
if (!spapr_realize_vcpu(sc->threads[j], spapr, sc, errp)) {
goto err_unrealize;
}
}
@ -351,7 +346,6 @@ err:
spapr_delete_vcpu(sc->threads[i], sc);
}
g_free(sc->threads);
error_propagate(errp, local_err);
}
static Property spapr_cpu_core_properties[] = {

View file

@ -302,7 +302,6 @@ static void prop_get_fdt(Object *obj, Visitor *v, const char *name,
{
SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
QNull *null = NULL;
Error *err = NULL;
int fdt_offset_next, fdt_offset, fdt_depth;
void *fdt;
@ -321,6 +320,7 @@ static void prop_get_fdt(Object *obj, Visitor *v, const char *name,
const struct fdt_property *prop = NULL;
int prop_len = 0, name_len = 0;
uint32_t tag;
bool ok;
tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next);
switch (tag) {
@ -334,10 +334,9 @@ static void prop_get_fdt(Object *obj, Visitor *v, const char *name,
case FDT_END_NODE:
/* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */
g_assert(fdt_depth > 0);
visit_check_struct(v, &err);
ok = visit_check_struct(v, errp);
visit_end_struct(v, NULL);
if (err) {
error_propagate(errp, err);
if (!ok) {
return;
}
fdt_depth--;
@ -355,10 +354,9 @@ static void prop_get_fdt(Object *obj, Visitor *v, const char *name,
return;
}
}
visit_check_list(v, &err);
ok = visit_check_list(v, errp);
visit_end_list(v, NULL);
if (err) {
error_propagate(errp, err);
if (!ok) {
return;
}
break;
@ -371,13 +369,13 @@ static void prop_get_fdt(Object *obj, Visitor *v, const char *name,
} while (fdt_depth != 0);
}
void spapr_drc_attach(SpaprDrc *drc, DeviceState *d, Error **errp)
bool spapr_drc_attach(SpaprDrc *drc, DeviceState *d, Error **errp)
{
trace_spapr_drc_attach(spapr_drc_index(drc));
if (drc->dev) {
error_setg(errp, "an attached device is still awaiting release");
return;
return false;
}
g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE)
|| (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON));
@ -388,6 +386,7 @@ void spapr_drc_attach(SpaprDrc *drc, DeviceState *d, Error **errp)
object_get_typename(OBJECT(drc->dev)),
(Object **)(&drc->dev),
NULL, 0);
return true;
}
static void spapr_drc_release(SpaprDrc *drc)

View file

@ -1590,12 +1590,11 @@ static target_ulong h_signal_sys_reset(PowerPCCPU *cpu,
}
}
static uint32_t cas_check_pvr(SpaprMachineState *spapr, PowerPCCPU *cpu,
target_ulong *addr, bool *raw_mode_supported,
Error **errp)
/* Returns either a logical PVR or zero if none was found */
static uint32_t cas_check_pvr(PowerPCCPU *cpu, uint32_t max_compat,
target_ulong *addr, bool *raw_mode_supported)
{
bool explicit_match = false; /* Matched the CPU's real PVR */
uint32_t max_compat = spapr->max_compat_pvr;
uint32_t best_compat = 0;
int i;
@ -1624,14 +1623,6 @@ static uint32_t cas_check_pvr(SpaprMachineState *spapr, PowerPCCPU *cpu,
}
}
if ((best_compat == 0) && (!explicit_match || max_compat)) {
/* We couldn't find a suitable compatibility mode, and either
* the guest doesn't support "raw" mode for this CPU, or raw
* mode is disabled because a maximum compat mode is set */
error_setg(errp, "Couldn't negotiate a suitable PVR during CAS");
return 0;
}
*raw_mode_supported = explicit_match;
/* Parsing finished */
@ -1675,11 +1666,11 @@ target_ulong do_client_architecture_support(PowerPCCPU *cpu,
uint32_t cas_pvr;
SpaprOptionVector *ov1_guest, *ov5_guest;
bool guest_radix;
Error *local_err = NULL;
bool raw_mode_supported = false;
bool guest_xive;
CPUState *cs;
void *fdt;
uint32_t max_compat = spapr->max_compat_pvr;
/* CAS is supposed to be called early when only the boot vCPU is active. */
CPU_FOREACH(cs) {
@ -1692,16 +1683,22 @@ target_ulong do_client_architecture_support(PowerPCCPU *cpu,
}
}
cas_pvr = cas_check_pvr(spapr, cpu, &vec, &raw_mode_supported, &local_err);
if (local_err) {
error_report_err(local_err);
cas_pvr = cas_check_pvr(cpu, max_compat, &vec, &raw_mode_supported);
if (!cas_pvr && (!raw_mode_supported || max_compat)) {
/*
* We couldn't find a suitable compatibility mode, and either
* the guest doesn't support "raw" mode for this CPU, or "raw"
* mode is disabled because a maximum compat mode is set.
*/
error_report("Couldn't negotiate a suitable PVR during CAS");
return H_HARDWARE;
}
/* Update CPUs */
if (cpu->compat_pvr != cas_pvr) {
ppc_set_compat_all(cas_pvr, &local_err);
if (local_err) {
Error *local_err = NULL;
if (ppc_set_compat_all(cas_pvr, &local_err) < 0) {
/* We fail to set compat mode (likely because running with KVM PR),
* but maybe we can fallback to raw mode if the guest supports it.
*/
@ -1710,7 +1707,6 @@ target_ulong do_client_architecture_support(PowerPCCPU *cpu,
return H_HARDWARE;
}
error_free(local_err);
local_err = NULL;
}
}

View file

@ -19,12 +19,126 @@
/* Moved from hw/ppc/spapr_pci_nvlink2.c */
#define SPAPR_GPU_NUMA_ID (cpu_to_be32(1))
static bool spapr_numa_is_symmetrical(MachineState *ms)
{
int src, dst;
int nb_numa_nodes = ms->numa_state->num_nodes;
NodeInfo *numa_info = ms->numa_state->nodes;
for (src = 0; src < nb_numa_nodes; src++) {
for (dst = src; dst < nb_numa_nodes; dst++) {
if (numa_info[src].distance[dst] !=
numa_info[dst].distance[src]) {
return false;
}
}
}
return true;
}
/*
* This function will translate the user distances into
* what the kernel understand as possible values: 10
* (local distance), 20, 40, 80 and 160, and return the equivalent
* NUMA level for each. Current heuristic is:
* - local distance (10) returns numa_level = 0x4, meaning there is
* no rounding for local distance
* - distances between 11 and 30 inclusive -> rounded to 20,
* numa_level = 0x3
* - distances between 31 and 60 inclusive -> rounded to 40,
* numa_level = 0x2
* - distances between 61 and 120 inclusive -> rounded to 80,
* numa_level = 0x1
* - everything above 120 returns numa_level = 0 to indicate that
* there is no match. This will be calculated as disntace = 160
* by the kernel (as of v5.9)
*/
static uint8_t spapr_numa_get_numa_level(uint8_t distance)
{
if (distance == 10) {
return 0x4;
} else if (distance > 11 && distance <= 30) {
return 0x3;
} else if (distance > 31 && distance <= 60) {
return 0x2;
} else if (distance > 61 && distance <= 120) {
return 0x1;
}
return 0;
}
static void spapr_numa_define_associativity_domains(SpaprMachineState *spapr)
{
MachineState *ms = MACHINE(spapr);
NodeInfo *numa_info = ms->numa_state->nodes;
int nb_numa_nodes = ms->numa_state->num_nodes;
int src, dst, i;
for (src = 0; src < nb_numa_nodes; src++) {
for (dst = src; dst < nb_numa_nodes; dst++) {
/*
* This is how the associativity domain between A and B
* is calculated:
*
* - get the distance D between them
* - get the correspondent NUMA level 'n_level' for D
* - all associativity arrays were initialized with their own
* numa_ids, and we're calculating the distance in node_id
* ascending order, starting from node id 0 (the first node
* retrieved by numa_state). This will have a cascade effect in
* the algorithm because the associativity domains that node 0
* defines will be carried over to other nodes, and node 1
* associativities will be carried over after taking node 0
* associativities into account, and so on. This happens because
* we'll assign assoc_src as the associativity domain of dst
* as well, for all NUMA levels beyond and including n_level.
*
* The PPC kernel expects the associativity domains of node 0 to
* be always 0, and this algorithm will grant that by default.
*/
uint8_t distance = numa_info[src].distance[dst];
uint8_t n_level = spapr_numa_get_numa_level(distance);
uint32_t assoc_src;
/*
* n_level = 0 means that the distance is greater than our last
* rounded value (120). In this case there is no NUMA level match
* between src and dst and we can skip the remaining of the loop.
*
* The Linux kernel will assume that the distance between src and
* dst, in this case of no match, is 10 (local distance) doubled
* for each NUMA it didn't match. We have MAX_DISTANCE_REF_POINTS
* levels (4), so this gives us 10*2*2*2*2 = 160.
*
* This logic can be seen in the Linux kernel source code, as of
* v5.9, in arch/powerpc/mm/numa.c, function __node_distance().
*/
if (n_level == 0) {
continue;
}
/*
* We must assign all assoc_src to dst, starting from n_level
* and going up to 0x1.
*/
for (i = n_level; i > 0; i--) {
assoc_src = spapr->numa_assoc_array[src][i];
spapr->numa_assoc_array[dst][i] = assoc_src;
}
}
}
}
void spapr_numa_associativity_init(SpaprMachineState *spapr,
MachineState *machine)
{
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
int nb_numa_nodes = machine->numa_state->num_nodes;
int i, j, max_nodes_with_gpus;
bool using_legacy_numa = spapr_machine_using_legacy_numa(spapr);
/*
* For all associativity arrays: first position is the size,
@ -38,6 +152,17 @@ void spapr_numa_associativity_init(SpaprMachineState *spapr,
for (i = 0; i < nb_numa_nodes; i++) {
spapr->numa_assoc_array[i][0] = cpu_to_be32(MAX_DISTANCE_REF_POINTS);
spapr->numa_assoc_array[i][MAX_DISTANCE_REF_POINTS] = cpu_to_be32(i);
/*
* Fill all associativity domains of non-zero NUMA nodes with
* node_id. This is required because the default value (0) is
* considered a match with associativity domains of node 0.
*/
if (!using_legacy_numa && i != 0) {
for (j = 1; j < MAX_DISTANCE_REF_POINTS; j++) {
spapr->numa_assoc_array[i][j] = cpu_to_be32(i);
}
}
}
/*
@ -61,6 +186,23 @@ void spapr_numa_associativity_init(SpaprMachineState *spapr,
spapr->numa_assoc_array[i][MAX_DISTANCE_REF_POINTS] = cpu_to_be32(i);
}
/*
* Legacy NUMA guests (pseries-5.1 and older, or guests with only
* 1 NUMA node) will not benefit from anything we're going to do
* after this point.
*/
if (using_legacy_numa) {
return;
}
if (!spapr_numa_is_symmetrical(machine)) {
error_report("Asymmetrical NUMA topologies aren't supported "
"in the pSeries machine");
exit(EXIT_FAILURE);
}
spapr_numa_define_associativity_domains(spapr);
}
void spapr_numa_write_associativity_dt(SpaprMachineState *spapr, void *fdt,
@ -144,24 +286,51 @@ int spapr_numa_write_assoc_lookup_arrays(SpaprMachineState *spapr, void *fdt,
*/
void spapr_numa_write_rtas_dt(SpaprMachineState *spapr, void *fdt, int rtas)
{
MachineState *ms = MACHINE(spapr);
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
uint32_t refpoints[] = {
cpu_to_be32(0x4),
cpu_to_be32(0x4),
cpu_to_be32(0x3),
cpu_to_be32(0x2),
cpu_to_be32(0x1),
};
uint32_t nr_refpoints = ARRAY_SIZE(refpoints);
uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
uint32_t maxdomain = ms->numa_state->num_nodes + spapr->gpu_numa_id;
uint32_t maxdomains[] = {
cpu_to_be32(4),
maxdomain,
maxdomain,
maxdomain,
cpu_to_be32(spapr->gpu_numa_id),
cpu_to_be32(maxdomain),
cpu_to_be32(maxdomain),
cpu_to_be32(maxdomain),
cpu_to_be32(maxdomain)
};
if (smc->pre_5_1_assoc_refpoints) {
nr_refpoints = 2;
if (spapr_machine_using_legacy_numa(spapr)) {
uint32_t legacy_refpoints[] = {
cpu_to_be32(0x4),
cpu_to_be32(0x4),
cpu_to_be32(0x2),
};
uint32_t legacy_maxdomain = spapr->gpu_numa_id > 1 ? 1 : 0;
uint32_t legacy_maxdomains[] = {
cpu_to_be32(4),
cpu_to_be32(legacy_maxdomain),
cpu_to_be32(legacy_maxdomain),
cpu_to_be32(legacy_maxdomain),
cpu_to_be32(spapr->gpu_numa_id),
};
G_STATIC_ASSERT(sizeof(legacy_refpoints) <= sizeof(refpoints));
G_STATIC_ASSERT(sizeof(legacy_maxdomains) <= sizeof(maxdomains));
nr_refpoints = 3;
memcpy(refpoints, legacy_refpoints, sizeof(legacy_refpoints));
memcpy(maxdomains, legacy_maxdomains, sizeof(legacy_maxdomains));
/* pseries-5.0 and older reference-points array is {0x4, 0x4} */
if (smc->pre_5_1_assoc_refpoints) {
nr_refpoints = 2;
}
}
_FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",

View file

@ -33,7 +33,7 @@
#include "sysemu/sysemu.h"
#include "hw/ppc/spapr_numa.h"
void spapr_nvdimm_validate(HotplugHandler *hotplug_dev, NVDIMMDevice *nvdimm,
bool spapr_nvdimm_validate(HotplugHandler *hotplug_dev, NVDIMMDevice *nvdimm,
uint64_t size, Error **errp)
{
const MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
@ -45,7 +45,7 @@ void spapr_nvdimm_validate(HotplugHandler *hotplug_dev, NVDIMMDevice *nvdimm,
if (!mc->nvdimm_supported) {
error_setg(errp, "NVDIMM hotplug not supported for this machine");
return;
return false;
}
/*
@ -59,20 +59,20 @@ void spapr_nvdimm_validate(HotplugHandler *hotplug_dev, NVDIMMDevice *nvdimm,
*/
if (!ms->nvdimms_state->is_enabled && nvdimm_opt) {
error_setg(errp, "nvdimm device found but 'nvdimm=off' was set");
return;
return false;
}
if (object_property_get_int(OBJECT(nvdimm), NVDIMM_LABEL_SIZE_PROP,
&error_abort) == 0) {
error_setg(errp, "PAPR requires NVDIMM devices to have label-size set");
return;
return false;
}
if (size % SPAPR_MINIMUM_SCM_BLOCK_SIZE) {
error_setg(errp, "PAPR requires NVDIMM memory size (excluding label)"
" to be a multiple of %" PRIu64 "MB",
SPAPR_MINIMUM_SCM_BLOCK_SIZE / MiB);
return;
return false;
}
uuidstr = object_property_get_str(OBJECT(nvdimm), NVDIMM_UUID_PROP,
@ -82,8 +82,10 @@ void spapr_nvdimm_validate(HotplugHandler *hotplug_dev, NVDIMMDevice *nvdimm,
if (qemu_uuid_is_null(&uuid)) {
error_setg(errp, "NVDIMM device requires the uuid to be set");
return;
return false;
}
return true;
}
@ -91,14 +93,11 @@ void spapr_add_nvdimm(DeviceState *dev, uint64_t slot, Error **errp)
{
SpaprDrc *drc;
bool hotplugged = spapr_drc_hotplugged(dev);
Error *local_err = NULL;
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PMEM, slot);
g_assert(drc);
spapr_drc_attach(drc, dev, &local_err);
if (local_err) {
error_propagate(errp, local_err);
if (!spapr_drc_attach(drc, dev, errp)) {
return;
}

View file

@ -1539,7 +1539,6 @@ static void spapr_pci_plug(HotplugHandler *plug_handler,
PCIDevice *pdev = PCI_DEVICE(plugged_dev);
PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(plugged_dev);
SpaprDrc *drc = drc_from_dev(phb, pdev);
Error *local_err = NULL;
PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
uint32_t slotnr = PCI_SLOT(pdev->devfn);
@ -1578,9 +1577,7 @@ static void spapr_pci_plug(HotplugHandler *plug_handler,
return;
}
spapr_drc_attach(drc, DEVICE(pdev), &local_err);
if (local_err) {
error_propagate(errp, local_err);
if (!spapr_drc_attach(drc, DEVICE(pdev), errp)) {
return;
}

View file

@ -474,7 +474,6 @@ static void spapr_vio_busdev_realize(DeviceState *qdev, Error **errp)
SpaprVioDevice *dev = (SpaprVioDevice *)qdev;
SpaprVioDeviceClass *pc = VIO_SPAPR_DEVICE_GET_CLASS(dev);
char *id;
Error *local_err = NULL;
if (dev->reg != -1) {
/*
@ -510,16 +509,15 @@ static void spapr_vio_busdev_realize(DeviceState *qdev, Error **errp)
dev->irq = spapr_vio_reg_to_irq(dev->reg);
if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
dev->irq = spapr_irq_findone(spapr, &local_err);
if (local_err) {
error_propagate(errp, local_err);
int irq = spapr_irq_findone(spapr, errp);
if (irq < 0) {
return;
}
dev->irq = irq;
}
spapr_irq_claim(spapr, dev->irq, false, &local_err);
if (local_err) {
error_propagate(errp, local_err);
if (spapr_irq_claim(spapr, dev->irq, false, errp) < 0) {
return;
}