tests: Move benchmarks into a separate folder

Make it clear that these files are related to benchmarks by moving
them into a new folder called "bench".

Message-Id: <20210312092238.79509-1-thuth@redhat.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Thomas Huth <thuth@redhat.com>
This commit is contained in:
Thomas Huth 2021-03-12 10:22:38 +01:00
parent da668aa15b
commit 3b472e71d5
9 changed files with 36 additions and 34 deletions

View file

@ -0,0 +1,169 @@
/*
* Copyright (C) 2018, Emilio G. Cota <cota@braap.org>
*
* License: GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "qemu/thread.h"
#include "qemu/host-utils.h"
#include "qemu/processor.h"
struct thread_info {
uint64_t r;
uint64_t accesses;
} QEMU_ALIGNED(64);
struct count {
int64_t i64;
} QEMU_ALIGNED(64);
static QemuThread *threads;
static struct thread_info *th_info;
static unsigned int n_threads = 1;
static unsigned int n_ready_threads;
static struct count *counts;
static unsigned int duration = 1;
static unsigned int range = 1024;
static bool test_start;
static bool test_stop;
static const char commands_string[] =
" -d = duration in seconds\n"
" -n = number of threads\n"
" -r = range (will be rounded up to pow2)";
static void usage_complete(char *argv[])
{
fprintf(stderr, "Usage: %s [options]\n", argv[0]);
fprintf(stderr, "options:\n%s\n", commands_string);
}
/*
* From: https://en.wikipedia.org/wiki/Xorshift
* This is faster than rand_r(), and gives us a wider range (RAND_MAX is only
* guaranteed to be >= INT_MAX).
*/
static uint64_t xorshift64star(uint64_t x)
{
x ^= x >> 12; /* a */
x ^= x << 25; /* b */
x ^= x >> 27; /* c */
return x * UINT64_C(2685821657736338717);
}
static void *thread_func(void *arg)
{
struct thread_info *info = arg;
qatomic_inc(&n_ready_threads);
while (!qatomic_read(&test_start)) {
cpu_relax();
}
while (!qatomic_read(&test_stop)) {
unsigned int index;
info->r = xorshift64star(info->r);
index = info->r & (range - 1);
qatomic_read_i64(&counts[index].i64);
info->accesses++;
}
return NULL;
}
static void run_test(void)
{
unsigned int i;
while (qatomic_read(&n_ready_threads) != n_threads) {
cpu_relax();
}
qatomic_set(&test_start, true);
g_usleep(duration * G_USEC_PER_SEC);
qatomic_set(&test_stop, true);
for (i = 0; i < n_threads; i++) {
qemu_thread_join(&threads[i]);
}
}
static void create_threads(void)
{
unsigned int i;
threads = g_new(QemuThread, n_threads);
th_info = g_new(struct thread_info, n_threads);
counts = g_malloc0_n(range, sizeof(*counts));
for (i = 0; i < n_threads; i++) {
struct thread_info *info = &th_info[i];
info->r = (i + 1) ^ time(NULL);
info->accesses = 0;
qemu_thread_create(&threads[i], NULL, thread_func, info,
QEMU_THREAD_JOINABLE);
}
}
static void pr_params(void)
{
printf("Parameters:\n");
printf(" # of threads: %u\n", n_threads);
printf(" duration: %u\n", duration);
printf(" ops' range: %u\n", range);
}
static void pr_stats(void)
{
unsigned long long val = 0;
double tx;
int i;
for (i = 0; i < n_threads; i++) {
val += th_info[i].accesses;
}
tx = val / duration / 1e6;
printf("Results:\n");
printf("Duration: %u s\n", duration);
printf(" Throughput: %.2f Mops/s\n", tx);
printf(" Throughput/thread: %.2f Mops/s/thread\n", tx / n_threads);
}
static void parse_args(int argc, char *argv[])
{
int c;
for (;;) {
c = getopt(argc, argv, "hd:n:r:");
if (c < 0) {
break;
}
switch (c) {
case 'h':
usage_complete(argv);
exit(0);
case 'd':
duration = atoi(optarg);
break;
case 'n':
n_threads = atoi(optarg);
break;
case 'r':
range = pow2ceil(atoi(optarg));
break;
}
}
}
int main(int argc, char *argv[])
{
parse_args(argc, argv);
pr_params();
create_threads();
run_test();
pr_stats();
return 0;
}

View file

@ -0,0 +1,180 @@
#include "qemu/osdep.h"
#include "qemu/thread.h"
#include "qemu/host-utils.h"
#include "qemu/processor.h"
struct thread_info {
uint64_t r;
} QEMU_ALIGNED(64);
struct count {
QemuMutex lock;
unsigned long val;
} QEMU_ALIGNED(64);
static QemuThread *threads;
static struct thread_info *th_info;
static unsigned int n_threads = 1;
static unsigned int n_ready_threads;
static struct count *counts;
static unsigned int duration = 1;
static unsigned int range = 1024;
static bool use_mutex;
static bool test_start;
static bool test_stop;
static const char commands_string[] =
" -n = number of threads\n"
" -m = use mutexes instead of atomic increments\n"
" -p = enable sync profiler\n"
" -d = duration in seconds\n"
" -r = range (will be rounded up to pow2)";
static void usage_complete(char *argv[])
{
fprintf(stderr, "Usage: %s [options]\n", argv[0]);
fprintf(stderr, "options:\n%s\n", commands_string);
}
/*
* From: https://en.wikipedia.org/wiki/Xorshift
* This is faster than rand_r(), and gives us a wider range (RAND_MAX is only
* guaranteed to be >= INT_MAX).
*/
static uint64_t xorshift64star(uint64_t x)
{
x ^= x >> 12; /* a */
x ^= x << 25; /* b */
x ^= x >> 27; /* c */
return x * UINT64_C(2685821657736338717);
}
static void *thread_func(void *arg)
{
struct thread_info *info = arg;
qatomic_inc(&n_ready_threads);
while (!qatomic_read(&test_start)) {
cpu_relax();
}
while (!qatomic_read(&test_stop)) {
unsigned int index;
info->r = xorshift64star(info->r);
index = info->r & (range - 1);
if (use_mutex) {
qemu_mutex_lock(&counts[index].lock);
counts[index].val += 1;
qemu_mutex_unlock(&counts[index].lock);
} else {
qatomic_inc(&counts[index].val);
}
}
return NULL;
}
static void run_test(void)
{
unsigned int i;
while (qatomic_read(&n_ready_threads) != n_threads) {
cpu_relax();
}
qatomic_set(&test_start, true);
g_usleep(duration * G_USEC_PER_SEC);
qatomic_set(&test_stop, true);
for (i = 0; i < n_threads; i++) {
qemu_thread_join(&threads[i]);
}
}
static void create_threads(void)
{
unsigned int i;
threads = g_new(QemuThread, n_threads);
th_info = g_new(struct thread_info, n_threads);
counts = qemu_memalign(64, sizeof(*counts) * range);
memset(counts, 0, sizeof(*counts) * range);
for (i = 0; i < range; i++) {
qemu_mutex_init(&counts[i].lock);
}
for (i = 0; i < n_threads; i++) {
struct thread_info *info = &th_info[i];
info->r = (i + 1) ^ time(NULL);
qemu_thread_create(&threads[i], NULL, thread_func, info,
QEMU_THREAD_JOINABLE);
}
}
static void pr_params(void)
{
printf("Parameters:\n");
printf(" # of threads: %u\n", n_threads);
printf(" duration: %u\n", duration);
printf(" ops' range: %u\n", range);
}
static void pr_stats(void)
{
unsigned long long val = 0;
unsigned int i;
double tx;
for (i = 0; i < range; i++) {
val += counts[i].val;
}
tx = val / duration / 1e6;
printf("Results:\n");
printf("Duration: %u s\n", duration);
printf(" Throughput: %.2f Mops/s\n", tx);
printf(" Throughput/thread: %.2f Mops/s/thread\n", tx / n_threads);
}
static void parse_args(int argc, char *argv[])
{
int c;
for (;;) {
c = getopt(argc, argv, "hd:n:mpr:");
if (c < 0) {
break;
}
switch (c) {
case 'h':
usage_complete(argv);
exit(0);
case 'd':
duration = atoi(optarg);
break;
case 'n':
n_threads = atoi(optarg);
break;
case 'm':
use_mutex = true;
break;
case 'p':
qsp_enable();
break;
case 'r':
range = pow2ceil(atoi(optarg));
break;
}
}
}
int main(int argc, char *argv[])
{
parse_args(argc, argv);
pr_params();
create_threads();
run_test();
pr_stats();
return 0;
}

View file

@ -0,0 +1,208 @@
/*
* QEMU Crypto cipher speed benchmark
*
* Copyright (c) 2017 HUAWEI TECHNOLOGIES CO., LTD.
*
* Authors:
* Longpeng(Mike) <longpeng2@huawei.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or
* (at your option) any later version. See the COPYING file in the
* top-level directory.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "crypto/init.h"
#include "crypto/cipher.h"
static void test_cipher_speed(size_t chunk_size,
QCryptoCipherMode mode,
QCryptoCipherAlgorithm alg)
{
QCryptoCipher *cipher;
Error *err = NULL;
uint8_t *key = NULL, *iv = NULL;
uint8_t *plaintext = NULL, *ciphertext = NULL;
size_t nkey;
size_t niv;
const size_t total = 2 * GiB;
size_t remain;
if (!qcrypto_cipher_supports(alg, mode)) {
return;
}
nkey = qcrypto_cipher_get_key_len(alg);
niv = qcrypto_cipher_get_iv_len(alg, mode);
if (mode == QCRYPTO_CIPHER_MODE_XTS) {
nkey *= 2;
}
key = g_new0(uint8_t, nkey);
memset(key, g_test_rand_int(), nkey);
iv = g_new0(uint8_t, niv);
memset(iv, g_test_rand_int(), niv);
ciphertext = g_new0(uint8_t, chunk_size);
plaintext = g_new0(uint8_t, chunk_size);
memset(plaintext, g_test_rand_int(), chunk_size);
cipher = qcrypto_cipher_new(alg, mode,
key, nkey, &err);
g_assert(cipher != NULL);
if (mode != QCRYPTO_CIPHER_MODE_ECB)
g_assert(qcrypto_cipher_setiv(cipher,
iv, niv,
&err) == 0);
g_test_timer_start();
remain = total;
while (remain) {
g_assert(qcrypto_cipher_encrypt(cipher,
plaintext,
ciphertext,
chunk_size,
&err) == 0);
remain -= chunk_size;
}
g_test_timer_elapsed();
g_test_message("enc(%s-%s) chunk %zu bytes %.2f MB/sec ",
QCryptoCipherAlgorithm_str(alg),
QCryptoCipherMode_str(mode),
chunk_size, (double)total / MiB / g_test_timer_last());
g_test_timer_start();
remain = total;
while (remain) {
g_assert(qcrypto_cipher_decrypt(cipher,
plaintext,
ciphertext,
chunk_size,
&err) == 0);
remain -= chunk_size;
}
g_test_timer_elapsed();
g_test_message("dec(%s-%s) chunk %zu bytes %.2f MB/sec ",
QCryptoCipherAlgorithm_str(alg),
QCryptoCipherMode_str(mode),
chunk_size, (double)total / MiB / g_test_timer_last());
qcrypto_cipher_free(cipher);
g_free(plaintext);
g_free(ciphertext);
g_free(iv);
g_free(key);
}
static void test_cipher_speed_ecb_aes_128(const void *opaque)
{
size_t chunk_size = (size_t)opaque;
test_cipher_speed(chunk_size,
QCRYPTO_CIPHER_MODE_ECB,
QCRYPTO_CIPHER_ALG_AES_128);
}
static void test_cipher_speed_ecb_aes_256(const void *opaque)
{
size_t chunk_size = (size_t)opaque;
test_cipher_speed(chunk_size,
QCRYPTO_CIPHER_MODE_ECB,
QCRYPTO_CIPHER_ALG_AES_256);
}
static void test_cipher_speed_cbc_aes_128(const void *opaque)
{
size_t chunk_size = (size_t)opaque;
test_cipher_speed(chunk_size,
QCRYPTO_CIPHER_MODE_CBC,
QCRYPTO_CIPHER_ALG_AES_128);
}
static void test_cipher_speed_cbc_aes_256(const void *opaque)
{
size_t chunk_size = (size_t)opaque;
test_cipher_speed(chunk_size,
QCRYPTO_CIPHER_MODE_CBC,
QCRYPTO_CIPHER_ALG_AES_256);
}
static void test_cipher_speed_ctr_aes_128(const void *opaque)
{
size_t chunk_size = (size_t)opaque;
test_cipher_speed(chunk_size,
QCRYPTO_CIPHER_MODE_CTR,
QCRYPTO_CIPHER_ALG_AES_128);
}
static void test_cipher_speed_ctr_aes_256(const void *opaque)
{
size_t chunk_size = (size_t)opaque;
test_cipher_speed(chunk_size,
QCRYPTO_CIPHER_MODE_CTR,
QCRYPTO_CIPHER_ALG_AES_256);
}
static void test_cipher_speed_xts_aes_128(const void *opaque)
{
size_t chunk_size = (size_t)opaque;
test_cipher_speed(chunk_size,
QCRYPTO_CIPHER_MODE_XTS,
QCRYPTO_CIPHER_ALG_AES_128);
}
static void test_cipher_speed_xts_aes_256(const void *opaque)
{
size_t chunk_size = (size_t)opaque;
test_cipher_speed(chunk_size,
QCRYPTO_CIPHER_MODE_XTS,
QCRYPTO_CIPHER_ALG_AES_256);
}
int main(int argc, char **argv)
{
char *alg = NULL;
char *size = NULL;
g_test_init(&argc, &argv, NULL);
g_assert(qcrypto_init(NULL) == 0);
#define ADD_TEST(mode, cipher, keysize, chunk) \
if ((!alg || g_str_equal(alg, #mode)) && \
(!size || g_str_equal(size, #chunk))) \
g_test_add_data_func( \
"/crypto/cipher/" #mode "-" #cipher "-" #keysize "/chunk-" #chunk, \
(void *)chunk, \
test_cipher_speed_ ## mode ## _ ## cipher ## _ ## keysize)
if (argc >= 2) {
alg = argv[1];
}
if (argc >= 3) {
size = argv[2];
}
#define ADD_TESTS(chunk) \
do { \
ADD_TEST(ecb, aes, 128, chunk); \
ADD_TEST(ecb, aes, 256, chunk); \
ADD_TEST(cbc, aes, 128, chunk); \
ADD_TEST(cbc, aes, 256, chunk); \
ADD_TEST(ctr, aes, 128, chunk); \
ADD_TEST(ctr, aes, 256, chunk); \
ADD_TEST(xts, aes, 128, chunk); \
ADD_TEST(xts, aes, 256, chunk); \
} while (0)
ADD_TESTS(512);
ADD_TESTS(4096);
ADD_TESTS(16384);
ADD_TESTS(65536);
return g_test_run();
}

View file

@ -0,0 +1,116 @@
/*
* QEMU Crypto hash speed benchmark
*
* Copyright (c) 2017 HUAWEI TECHNOLOGIES CO., LTD.
*
* Authors:
* Longpeng(Mike) <longpeng2@huawei.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or
* (at your option) any later version. See the COPYING file in the
* top-level directory.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "crypto/init.h"
#include "crypto/hash.h"
typedef struct QCryptoHashOpts {
size_t chunk_size;
QCryptoHashAlgorithm alg;
} QCryptoHashOpts;
static void test_hash_speed(const void *opaque)
{
const QCryptoHashOpts *opts = opaque;
uint8_t *in = NULL, *out = NULL;
size_t out_len = 0;
const size_t total = 2 * GiB;
size_t remain;
struct iovec iov;
int ret;
in = g_new0(uint8_t, opts->chunk_size);
memset(in, g_test_rand_int(), opts->chunk_size);
iov.iov_base = (char *)in;
iov.iov_len = opts->chunk_size;
g_test_timer_start();
remain = total;
while (remain) {
ret = qcrypto_hash_bytesv(opts->alg,
&iov, 1, &out, &out_len,
NULL);
g_assert(ret == 0);
remain -= opts->chunk_size;
}
g_test_timer_elapsed();
g_test_message("hash(%s): chunk %zu bytes %.2f MB/sec",
QCryptoHashAlgorithm_str(opts->alg),
opts->chunk_size, total / g_test_timer_last());
g_free(out);
g_free(in);
}
int main(int argc, char **argv)
{
char name[64];
g_test_init(&argc, &argv, NULL);
g_assert(qcrypto_init(NULL) == 0);
#define TEST_ONE(a, c) \
QCryptoHashOpts opts ## a ## c = { \
.alg = QCRYPTO_HASH_ALG_ ## a, .chunk_size = c, \
}; \
memset(name, 0 , sizeof(name)); \
snprintf(name, sizeof(name), \
"/crypto/benchmark/hash/%s/bufsize-%d", \
QCryptoHashAlgorithm_str(QCRYPTO_HASH_ALG_ ## a), \
c); \
if (qcrypto_hash_supports(QCRYPTO_HASH_ALG_ ## a)) \
g_test_add_data_func(name, \
&opts ## a ## c, \
test_hash_speed);
TEST_ONE(MD5, 512);
TEST_ONE(MD5, 1024);
TEST_ONE(MD5, 4096);
TEST_ONE(MD5, 16384);
TEST_ONE(SHA1, 512);
TEST_ONE(SHA1, 1024);
TEST_ONE(SHA1, 4096);
TEST_ONE(SHA1, 16384);
TEST_ONE(SHA224, 512);
TEST_ONE(SHA224, 1024);
TEST_ONE(SHA224, 4096);
TEST_ONE(SHA224, 16384);
TEST_ONE(SHA384, 512);
TEST_ONE(SHA384, 1024);
TEST_ONE(SHA384, 4096);
TEST_ONE(SHA384, 16384);
TEST_ONE(SHA256, 512);
TEST_ONE(SHA256, 1024);
TEST_ONE(SHA256, 4096);
TEST_ONE(SHA256, 16384);
TEST_ONE(SHA512, 512);
TEST_ONE(SHA512, 1024);
TEST_ONE(SHA512, 4096);
TEST_ONE(SHA512, 16384);
TEST_ONE(RIPEMD160, 512);
TEST_ONE(RIPEMD160, 1024);
TEST_ONE(RIPEMD160, 4096);
TEST_ONE(RIPEMD160, 16384);
return g_test_run();
}

View file

@ -0,0 +1,81 @@
/*
* QEMU Crypto hmac speed benchmark
*
* Copyright (c) 2017 HUAWEI TECHNOLOGIES CO., LTD.
*
* Authors:
* Longpeng(Mike) <longpeng2@huawei.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or
* (at your option) any later version. See the COPYING file in the
* top-level directory.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "crypto/init.h"
#include "crypto/hmac.h"
#define KEY "monkey monkey monkey monkey"
static void test_hmac_speed(const void *opaque)
{
size_t chunk_size = (size_t)opaque;
QCryptoHmac *hmac = NULL;
uint8_t *in = NULL, *out = NULL;
size_t out_len = 0;
double total = 0.0;
struct iovec iov;
Error *err = NULL;
int ret;
if (!qcrypto_hmac_supports(QCRYPTO_HASH_ALG_SHA256)) {
return;
}
in = g_new0(uint8_t, chunk_size);
memset(in, g_test_rand_int(), chunk_size);
iov.iov_base = (char *)in;
iov.iov_len = chunk_size;
g_test_timer_start();
do {
hmac = qcrypto_hmac_new(QCRYPTO_HASH_ALG_SHA256,
(const uint8_t *)KEY, strlen(KEY), &err);
g_assert(err == NULL);
g_assert(hmac != NULL);
ret = qcrypto_hmac_bytesv(hmac, &iov, 1, &out, &out_len, &err);
g_assert(ret == 0);
g_assert(err == NULL);
qcrypto_hmac_free(hmac);
total += chunk_size;
} while (g_test_timer_elapsed() < 5.0);
total /= MiB;
g_test_message("hmac(%s): chunk %zu bytes %.2f MB/sec",
QCryptoHashAlgorithm_str(QCRYPTO_HASH_ALG_SHA256),
chunk_size, total / g_test_timer_last());
g_free(out);
g_free(in);
}
int main(int argc, char **argv)
{
size_t i;
char name[64];
g_test_init(&argc, &argv, NULL);
g_assert(qcrypto_init(NULL) == 0);
for (i = 512; i <= 64 * KiB; i *= 2) {
memset(name, 0 , sizeof(name));
snprintf(name, sizeof(name), "/crypto/hmac/speed-%zu", i);
g_test_add_data_func(name, (void *)i, test_hmac_speed);
}
return g_test_run();
}

34
tests/bench/meson.build Normal file
View file

@ -0,0 +1,34 @@
qht_bench = executable('qht-bench',
sources: 'qht-bench.c',
dependencies: [qemuutil])
executable('atomic_add-bench',
sources: files('atomic_add-bench.c'),
dependencies: [qemuutil],
build_by_default: false)
executable('atomic64-bench',
sources: files('atomic64-bench.c'),
dependencies: [qemuutil],
build_by_default: false)
benchs = {}
if have_block
benchs += {
'benchmark-crypto-hash': [crypto],
'benchmark-crypto-hmac': [crypto],
'benchmark-crypto-cipher': [crypto],
}
endif
foreach bench_name, deps: benchs
exe = executable(bench_name, bench_name + '.c',
dependencies: [qemuutil] + deps)
benchmark(bench_name, exe,
args: ['--tap', '-k'],
protocol: 'tap',
timeout: 0,
suite: ['speed'])
endforeach

523
tests/bench/qht-bench.c Normal file
View file

@ -0,0 +1,523 @@
/*
* Copyright (C) 2016, Emilio G. Cota <cota@braap.org>
*
* License: GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "qemu/processor.h"
#include "qemu/atomic.h"
#include "qemu/qht.h"
#include "qemu/rcu.h"
#include "qemu/xxhash.h"
struct thread_stats {
size_t rd;
size_t not_rd;
size_t in;
size_t not_in;
size_t rm;
size_t not_rm;
size_t rz;
size_t not_rz;
};
struct thread_info {
void (*func)(struct thread_info *);
struct thread_stats stats;
/*
* Seed is in the range [1..UINT64_MAX], because the RNG requires
* a non-zero seed. To use, subtract 1 and compare against the
* threshold with </>=. This lets threshold = 0 never match (0% hit),
* and threshold = UINT64_MAX always match (100% hit).
*/
uint64_t seed;
bool write_op; /* writes alternate between insertions and removals */
bool resize_down;
} QEMU_ALIGNED(64); /* avoid false sharing among threads */
static struct qht ht;
static QemuThread *rw_threads;
#define DEFAULT_RANGE (4096)
#define DEFAULT_QHT_N_ELEMS DEFAULT_RANGE
static unsigned int duration = 1;
static unsigned int n_rw_threads = 1;
static unsigned long lookup_range = DEFAULT_RANGE;
static unsigned long update_range = DEFAULT_RANGE;
static size_t init_range = DEFAULT_RANGE;
static size_t init_size = DEFAULT_RANGE;
static size_t n_ready_threads;
static long populate_offset;
static long *keys;
static size_t resize_min;
static size_t resize_max;
static struct thread_info *rz_info;
static unsigned long resize_delay = 1000;
static double resize_rate; /* 0.0 to 1.0 */
static unsigned int n_rz_threads = 1;
static QemuThread *rz_threads;
static bool precompute_hash;
static double update_rate; /* 0.0 to 1.0 */
static uint64_t update_threshold;
static uint64_t resize_threshold;
static size_t qht_n_elems = DEFAULT_QHT_N_ELEMS;
static int qht_mode;
static bool test_start;
static bool test_stop;
static struct thread_info *rw_info;
static const char commands_string[] =
" -d = duration, in seconds\n"
" -n = number of threads\n"
"\n"
" -o = offset at which keys start\n"
" -p = precompute hashes\n"
"\n"
" -g = set -s,-k,-K,-l,-r to the same value\n"
" -s = initial size hint\n"
" -k = initial number of keys\n"
" -K = initial range of keys (will be rounded up to pow2)\n"
" -l = lookup range of keys (will be rounded up to pow2)\n"
" -r = update range of keys (will be rounded up to pow2)\n"
"\n"
" -u = update rate (0.0 to 100.0), 50/50 split of insertions/removals\n"
"\n"
" -R = enable auto-resize\n"
" -S = resize rate (0.0 to 100.0)\n"
" -D = delay (in us) between potential resizes\n"
" -N = number of resize threads";
static void usage_complete(int argc, char *argv[])
{
fprintf(stderr, "Usage: %s [options]\n", argv[0]);
fprintf(stderr, "options:\n%s\n", commands_string);
exit(-1);
}
static bool is_equal(const void *ap, const void *bp)
{
const long *a = ap;
const long *b = bp;
return *a == *b;
}
static uint32_t h(unsigned long v)
{
return qemu_xxhash2(v);
}
static uint32_t hval(unsigned long v)
{
return v;
}
static uint32_t (*hfunc)(unsigned long v) = h;
/*
* From: https://en.wikipedia.org/wiki/Xorshift
* This is faster than rand_r(), and gives us a wider range (RAND_MAX is only
* guaranteed to be >= INT_MAX).
*/
static uint64_t xorshift64star(uint64_t x)
{
x ^= x >> 12; /* a */
x ^= x << 25; /* b */
x ^= x >> 27; /* c */
return x * UINT64_C(2685821657736338717);
}
static void do_rz(struct thread_info *info)
{
struct thread_stats *stats = &info->stats;
uint64_t r = info->seed - 1;
if (r < resize_threshold) {
size_t size = info->resize_down ? resize_min : resize_max;
bool resized;
resized = qht_resize(&ht, size);
info->resize_down = !info->resize_down;
if (resized) {
stats->rz++;
} else {
stats->not_rz++;
}
}
g_usleep(resize_delay);
}
static void do_rw(struct thread_info *info)
{
struct thread_stats *stats = &info->stats;
uint64_t r = info->seed - 1;
uint32_t hash;
long *p;
if (r >= update_threshold) {
bool read;
p = &keys[r & (lookup_range - 1)];
hash = hfunc(*p);
read = qht_lookup(&ht, p, hash);
if (read) {
stats->rd++;
} else {
stats->not_rd++;
}
} else {
p = &keys[r & (update_range - 1)];
hash = hfunc(*p);
if (info->write_op) {
bool written = false;
if (qht_lookup(&ht, p, hash) == NULL) {
written = qht_insert(&ht, p, hash, NULL);
}
if (written) {
stats->in++;
} else {
stats->not_in++;
}
} else {
bool removed = false;
if (qht_lookup(&ht, p, hash)) {
removed = qht_remove(&ht, p, hash);
}
if (removed) {
stats->rm++;
} else {
stats->not_rm++;
}
}
info->write_op = !info->write_op;
}
}
static void *thread_func(void *p)
{
struct thread_info *info = p;
rcu_register_thread();
qatomic_inc(&n_ready_threads);
while (!qatomic_read(&test_start)) {
cpu_relax();
}
rcu_read_lock();
while (!qatomic_read(&test_stop)) {
info->seed = xorshift64star(info->seed);
info->func(info);
}
rcu_read_unlock();
rcu_unregister_thread();
return NULL;
}
/* sets everything except info->func */
static void prepare_thread_info(struct thread_info *info, int i)
{
/* seed for the RNG; each thread should have a different one */
info->seed = (i + 1) ^ time(NULL);
/* the first update will be a write */
info->write_op = true;
/* the first resize will be down */
info->resize_down = true;
memset(&info->stats, 0, sizeof(info->stats));
}
static void
th_create_n(QemuThread **threads, struct thread_info **infos, const char *name,
void (*func)(struct thread_info *), int offset, int n)
{
struct thread_info *info;
QemuThread *th;
int i;
th = g_malloc(sizeof(*th) * n);
*threads = th;
info = qemu_memalign(64, sizeof(*info) * n);
*infos = info;
for (i = 0; i < n; i++) {
prepare_thread_info(&info[i], offset + i);
info[i].func = func;
qemu_thread_create(&th[i], name, thread_func, &info[i],
QEMU_THREAD_JOINABLE);
}
}
static void create_threads(void)
{
th_create_n(&rw_threads, &rw_info, "rw", do_rw, 0, n_rw_threads);
th_create_n(&rz_threads, &rz_info, "rz", do_rz, n_rw_threads, n_rz_threads);
}
static void pr_params(void)
{
printf("Parameters:\n");
printf(" duration: %d s\n", duration);
printf(" # of threads: %u\n", n_rw_threads);
printf(" initial # of keys: %zu\n", init_size);
printf(" initial size hint: %zu\n", qht_n_elems);
printf(" auto-resize: %s\n",
qht_mode & QHT_MODE_AUTO_RESIZE ? "on" : "off");
if (resize_rate) {
printf(" resize_rate: %f%%\n", resize_rate * 100.0);
printf(" resize range: %zu-%zu\n", resize_min, resize_max);
printf(" # resize threads %u\n", n_rz_threads);
}
printf(" update rate: %f%%\n", update_rate * 100.0);
printf(" offset: %ld\n", populate_offset);
printf(" initial key range: %zu\n", init_range);
printf(" lookup range: %lu\n", lookup_range);
printf(" update range: %lu\n", update_range);
}
static void do_threshold(double rate, uint64_t *threshold)
{
/*
* For 0 <= rate <= 1, scale to fit in a uint64_t.
*
* Scale by 2**64, with a special case for 1.0.
* The remainder of the possible values are scattered between 0
* and 0xfffffffffffff800 (nextafter(0x1p64, 0)).
*
* Note that we cannot simply scale by UINT64_MAX, because that
* value is not representable as an IEEE double value.
*
* If we scale by the next largest value, nextafter(0x1p64, 0),
* then the remainder of the possible values are scattered between
* 0 and 0xfffffffffffff000. Which leaves us with a gap between
* the final two inputs that is twice as large as any other.
*/
if (rate == 1.0) {
*threshold = UINT64_MAX;
} else {
*threshold = rate * 0x1p64;
}
}
static void htable_init(void)
{
unsigned long n = MAX(init_range, update_range);
uint64_t r = time(NULL);
size_t retries = 0;
size_t i;
/* avoid allocating memory later by allocating all the keys now */
keys = g_malloc(sizeof(*keys) * n);
for (i = 0; i < n; i++) {
long val = populate_offset + i;
keys[i] = precompute_hash ? h(val) : hval(val);
}
/* some sanity checks */
g_assert_cmpuint(lookup_range, <=, n);
/* compute thresholds */
do_threshold(update_rate, &update_threshold);
do_threshold(resize_rate, &resize_threshold);
if (resize_rate) {
resize_min = n / 2;
resize_max = n;
assert(resize_min < resize_max);
} else {
n_rz_threads = 0;
}
/* initialize the hash table */
qht_init(&ht, is_equal, qht_n_elems, qht_mode);
assert(init_size <= init_range);
pr_params();
fprintf(stderr, "Initialization: populating %zu items...", init_size);
for (i = 0; i < init_size; i++) {
for (;;) {
uint32_t hash;
long *p;
r = xorshift64star(r);
p = &keys[r & (init_range - 1)];
hash = hfunc(*p);
if (qht_insert(&ht, p, hash, NULL)) {
break;
}
retries++;
}
}
fprintf(stderr, " populated after %zu retries\n", retries);
}
static void add_stats(struct thread_stats *s, struct thread_info *info, int n)
{
int i;
for (i = 0; i < n; i++) {
struct thread_stats *stats = &info[i].stats;
s->rd += stats->rd;
s->not_rd += stats->not_rd;
s->in += stats->in;
s->not_in += stats->not_in;
s->rm += stats->rm;
s->not_rm += stats->not_rm;
s->rz += stats->rz;
s->not_rz += stats->not_rz;
}
}
static void pr_stats(void)
{
struct thread_stats s = {};
double tx;
add_stats(&s, rw_info, n_rw_threads);
add_stats(&s, rz_info, n_rz_threads);
printf("Results:\n");
if (resize_rate) {
printf(" Resizes: %zu (%.2f%% of %zu)\n",
s.rz, (double)s.rz / (s.rz + s.not_rz) * 100, s.rz + s.not_rz);
}
printf(" Read: %.2f M (%.2f%% of %.2fM)\n",
(double)s.rd / 1e6,
(double)s.rd / (s.rd + s.not_rd) * 100,
(double)(s.rd + s.not_rd) / 1e6);
printf(" Inserted: %.2f M (%.2f%% of %.2fM)\n",
(double)s.in / 1e6,
(double)s.in / (s.in + s.not_in) * 100,
(double)(s.in + s.not_in) / 1e6);
printf(" Removed: %.2f M (%.2f%% of %.2fM)\n",
(double)s.rm / 1e6,
(double)s.rm / (s.rm + s.not_rm) * 100,
(double)(s.rm + s.not_rm) / 1e6);
tx = (s.rd + s.not_rd + s.in + s.not_in + s.rm + s.not_rm) / 1e6 / duration;
printf(" Throughput: %.2f MT/s\n", tx);
printf(" Throughput/thread: %.2f MT/s/thread\n", tx / n_rw_threads);
}
static void run_test(void)
{
int i;
while (qatomic_read(&n_ready_threads) != n_rw_threads + n_rz_threads) {
cpu_relax();
}
qatomic_set(&test_start, true);
g_usleep(duration * G_USEC_PER_SEC);
qatomic_set(&test_stop, true);
for (i = 0; i < n_rw_threads; i++) {
qemu_thread_join(&rw_threads[i]);
}
for (i = 0; i < n_rz_threads; i++) {
qemu_thread_join(&rz_threads[i]);
}
}
static void parse_args(int argc, char *argv[])
{
int c;
for (;;) {
c = getopt(argc, argv, "d:D:g:k:K:l:hn:N:o:pr:Rs:S:u:");
if (c < 0) {
break;
}
switch (c) {
case 'd':
duration = atoi(optarg);
break;
case 'D':
resize_delay = atol(optarg);
break;
case 'g':
init_range = pow2ceil(atol(optarg));
lookup_range = pow2ceil(atol(optarg));
update_range = pow2ceil(atol(optarg));
qht_n_elems = atol(optarg);
init_size = atol(optarg);
break;
case 'h':
usage_complete(argc, argv);
exit(0);
case 'k':
init_size = atol(optarg);
break;
case 'K':
init_range = pow2ceil(atol(optarg));
break;
case 'l':
lookup_range = pow2ceil(atol(optarg));
break;
case 'n':
n_rw_threads = atoi(optarg);
break;
case 'N':
n_rz_threads = atoi(optarg);
break;
case 'o':
populate_offset = atol(optarg);
break;
case 'p':
precompute_hash = true;
hfunc = hval;
break;
case 'r':
update_range = pow2ceil(atol(optarg));
break;
case 'R':
qht_mode |= QHT_MODE_AUTO_RESIZE;
break;
case 's':
qht_n_elems = atol(optarg);
break;
case 'S':
resize_rate = atof(optarg) / 100.0;
if (resize_rate > 1.0) {
resize_rate = 1.0;
}
break;
case 'u':
update_rate = atof(optarg) / 100.0;
if (update_rate > 1.0) {
update_rate = 1.0;
}
break;
}
}
}
int main(int argc, char *argv[])
{
parse_args(argc, argv);
htable_init();
create_threads();
run_test();
pr_stats();
return 0;
}