This is the MTTCG pull-request as posted yesterday.

-----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQEcBAABAgAGBQJYsBZfAAoJEPvQ2wlanipElJ0H+QGoStSPeHrvKu7Q07v4F9zM
 Pvf05gRsaxvXl7UbwmXC4oKhvZf9rVJ6ITk0x/y0WvmK0mHCmNBWkC0nn5UFL5IH
 cdxetLz21Q+Ghpc36tZvqn2HYwRQFoEznge2LdtBDG0TyVA4jwquHU3HCG2D51zi
 BaImI6lYW1e4ejjZHw8cEInSxsj/HJZE4pPas2Tkci+uAnrJroErwBVRRcE/y/Tn
 aupl9TJFs2JdyJFNDibIm0kjB+i+jvCiLgYjbKZ/dR/+GZt73TtiBk/q9ZOFjdmT
 7YFPI3F46QbGHoZahtzh0Xt7WMj94SlQgQ9OJ3zmNMfpXrze6Yc78xo/nbQ33U0=
 =wR0/
 -----END PGP SIGNATURE-----

Merge remote-tracking branch 'remotes/stsquad/tags/pull-mttcg-240217-1' into staging

This is the MTTCG pull-request as posted yesterday.

# gpg: Signature made Fri 24 Feb 2017 11:17:51 GMT
# gpg:                using RSA key 0xFBD0DB095A9E2A44
# gpg: Good signature from "Alex Bennée (Master Work Key) <alex.bennee@linaro.org>"
# Primary key fingerprint: 6685 AE99 E751 67BC AFC8  DF35 FBD0 DB09 5A9E 2A44

* remotes/stsquad/tags/pull-mttcg-240217-1: (24 commits)
  tcg: enable MTTCG by default for ARM on x86 hosts
  hw/misc/imx6_src: defer clearing of SRC_SCR reset bits
  target-arm: ensure all cross vCPUs TLB flushes complete
  target-arm: don't generate WFE/YIELD calls for MTTCG
  target-arm/powerctl: defer cpu reset work to CPU context
  cputlb: introduce tlb_flush_*_all_cpus[_synced]
  cputlb: atomically update tlb fields used by tlb_reset_dirty
  cputlb: add tlb_flush_by_mmuidx async routines
  cputlb and arm/sparc targets: convert mmuidx flushes from varg to bitmap
  cputlb: introduce tlb_flush_* async work.
  cputlb: tweak qemu_ram_addr_from_host_nofail reporting
  cputlb: add assert_cpu_is_self checks
  tcg: handle EXCP_ATOMIC exception for system emulation
  tcg: enable thread-per-vCPU
  tcg: enable tb_lock() for SoftMMU
  tcg: remove global exit_request
  tcg: drop global lock during TCG code execution
  tcg: rename tcg_current_cpu to tcg_current_rr_cpu
  tcg: add kick timer for single-threaded vCPU emulation
  tcg: add options for enabling MTTCG
  ...

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
Peter Maydell 2017-02-25 18:43:52 +00:00
commit 28f997a82c
40 changed files with 1881 additions and 479 deletions

View file

@ -14,6 +14,7 @@
#include "internals.h"
#include "arm-powerctl.h"
#include "qemu/log.h"
#include "qemu/main-loop.h"
#include "exec/exec-all.h"
#ifndef DEBUG_ARM_POWERCTL
@ -48,11 +49,93 @@ CPUState *arm_get_cpu_by_id(uint64_t id)
return NULL;
}
struct CpuOnInfo {
uint64_t entry;
uint64_t context_id;
uint32_t target_el;
bool target_aa64;
};
static void arm_set_cpu_on_async_work(CPUState *target_cpu_state,
run_on_cpu_data data)
{
ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
struct CpuOnInfo *info = (struct CpuOnInfo *) data.host_ptr;
/* Initialize the cpu we are turning on */
cpu_reset(target_cpu_state);
target_cpu_state->halted = 0;
if (info->target_aa64) {
if ((info->target_el < 3) && arm_feature(&target_cpu->env,
ARM_FEATURE_EL3)) {
/*
* As target mode is AArch64, we need to set lower
* exception level (the requested level 2) to AArch64
*/
target_cpu->env.cp15.scr_el3 |= SCR_RW;
}
if ((info->target_el < 2) && arm_feature(&target_cpu->env,
ARM_FEATURE_EL2)) {
/*
* As target mode is AArch64, we need to set lower
* exception level (the requested level 1) to AArch64
*/
target_cpu->env.cp15.hcr_el2 |= HCR_RW;
}
target_cpu->env.pstate = aarch64_pstate_mode(info->target_el, true);
} else {
/* We are requested to boot in AArch32 mode */
static const uint32_t mode_for_el[] = { 0,
ARM_CPU_MODE_SVC,
ARM_CPU_MODE_HYP,
ARM_CPU_MODE_SVC };
cpsr_write(&target_cpu->env, mode_for_el[info->target_el], CPSR_M,
CPSRWriteRaw);
}
if (info->target_el == 3) {
/* Processor is in secure mode */
target_cpu->env.cp15.scr_el3 &= ~SCR_NS;
} else {
/* Processor is not in secure mode */
target_cpu->env.cp15.scr_el3 |= SCR_NS;
}
/* We check if the started CPU is now at the correct level */
assert(info->target_el == arm_current_el(&target_cpu->env));
if (info->target_aa64) {
target_cpu->env.xregs[0] = info->context_id;
target_cpu->env.thumb = false;
} else {
target_cpu->env.regs[0] = info->context_id;
target_cpu->env.thumb = info->entry & 1;
info->entry &= 0xfffffffe;
}
/* Start the new CPU at the requested address */
cpu_set_pc(target_cpu_state, info->entry);
g_free(info);
/* Finally set the power status */
assert(qemu_mutex_iothread_locked());
target_cpu->power_state = PSCI_ON;
}
int arm_set_cpu_on(uint64_t cpuid, uint64_t entry, uint64_t context_id,
uint32_t target_el, bool target_aa64)
{
CPUState *target_cpu_state;
ARMCPU *target_cpu;
struct CpuOnInfo *info;
assert(qemu_mutex_iothread_locked());
DPRINTF("cpu %" PRId64 " (EL %d, %s) @ 0x%" PRIx64 " with R0 = 0x%" PRIx64
"\n", cpuid, target_el, target_aa64 ? "aarch64" : "aarch32", entry,
@ -77,7 +160,7 @@ int arm_set_cpu_on(uint64_t cpuid, uint64_t entry, uint64_t context_id,
}
target_cpu = ARM_CPU(target_cpu_state);
if (!target_cpu->powered_off) {
if (target_cpu->power_state == PSCI_ON) {
qemu_log_mask(LOG_GUEST_ERROR,
"[ARM]%s: CPU %" PRId64 " is already on\n",
__func__, cpuid);
@ -109,74 +192,54 @@ int arm_set_cpu_on(uint64_t cpuid, uint64_t entry, uint64_t context_id,
return QEMU_ARM_POWERCTL_INVALID_PARAM;
}
/* Initialize the cpu we are turning on */
cpu_reset(target_cpu_state);
target_cpu->powered_off = false;
target_cpu_state->halted = 0;
if (target_aa64) {
if ((target_el < 3) && arm_feature(&target_cpu->env, ARM_FEATURE_EL3)) {
/*
* As target mode is AArch64, we need to set lower
* exception level (the requested level 2) to AArch64
*/
target_cpu->env.cp15.scr_el3 |= SCR_RW;
}
if ((target_el < 2) && arm_feature(&target_cpu->env, ARM_FEATURE_EL2)) {
/*
* As target mode is AArch64, we need to set lower
* exception level (the requested level 1) to AArch64
*/
target_cpu->env.cp15.hcr_el2 |= HCR_RW;
}
target_cpu->env.pstate = aarch64_pstate_mode(target_el, true);
} else {
/* We are requested to boot in AArch32 mode */
static uint32_t mode_for_el[] = { 0,
ARM_CPU_MODE_SVC,
ARM_CPU_MODE_HYP,
ARM_CPU_MODE_SVC };
cpsr_write(&target_cpu->env, mode_for_el[target_el], CPSR_M,
CPSRWriteRaw);
/*
* If another CPU has powered the target on we are in the state
* ON_PENDING and additional attempts to power on the CPU should
* fail (see 6.6 Implementation CPU_ON/CPU_OFF races in the PSCI
* spec)
*/
if (target_cpu->power_state == PSCI_ON_PENDING) {
qemu_log_mask(LOG_GUEST_ERROR,
"[ARM]%s: CPU %" PRId64 " is already powering on\n",
__func__, cpuid);
return QEMU_ARM_POWERCTL_ON_PENDING;
}
if (target_el == 3) {
/* Processor is in secure mode */
target_cpu->env.cp15.scr_el3 &= ~SCR_NS;
} else {
/* Processor is not in secure mode */
target_cpu->env.cp15.scr_el3 |= SCR_NS;
}
/* To avoid racing with a CPU we are just kicking off we do the
* final bit of preparation for the work in the target CPUs
* context.
*/
info = g_new(struct CpuOnInfo, 1);
info->entry = entry;
info->context_id = context_id;
info->target_el = target_el;
info->target_aa64 = target_aa64;
/* We check if the started CPU is now at the correct level */
assert(target_el == arm_current_el(&target_cpu->env));
if (target_aa64) {
target_cpu->env.xregs[0] = context_id;
target_cpu->env.thumb = false;
} else {
target_cpu->env.regs[0] = context_id;
target_cpu->env.thumb = entry & 1;
entry &= 0xfffffffe;
}
/* Start the new CPU at the requested address */
cpu_set_pc(target_cpu_state, entry);
qemu_cpu_kick(target_cpu_state);
async_run_on_cpu(target_cpu_state, arm_set_cpu_on_async_work,
RUN_ON_CPU_HOST_PTR(info));
/* We are good to go */
return QEMU_ARM_POWERCTL_RET_SUCCESS;
}
static void arm_set_cpu_off_async_work(CPUState *target_cpu_state,
run_on_cpu_data data)
{
ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
assert(qemu_mutex_iothread_locked());
target_cpu->power_state = PSCI_OFF;
target_cpu_state->halted = 1;
target_cpu_state->exception_index = EXCP_HLT;
}
int arm_set_cpu_off(uint64_t cpuid)
{
CPUState *target_cpu_state;
ARMCPU *target_cpu;
assert(qemu_mutex_iothread_locked());
DPRINTF("cpu %" PRId64 "\n", cpuid);
/* change to the cpu we are powering up */
@ -185,27 +248,34 @@ int arm_set_cpu_off(uint64_t cpuid)
return QEMU_ARM_POWERCTL_INVALID_PARAM;
}
target_cpu = ARM_CPU(target_cpu_state);
if (target_cpu->powered_off) {
if (target_cpu->power_state == PSCI_OFF) {
qemu_log_mask(LOG_GUEST_ERROR,
"[ARM]%s: CPU %" PRId64 " is already off\n",
__func__, cpuid);
return QEMU_ARM_POWERCTL_IS_OFF;
}
target_cpu->powered_off = true;
target_cpu_state->halted = 1;
target_cpu_state->exception_index = EXCP_HLT;
cpu_loop_exit(target_cpu_state);
/* notreached */
/* Queue work to run under the target vCPUs context */
async_run_on_cpu(target_cpu_state, arm_set_cpu_off_async_work,
RUN_ON_CPU_NULL);
return QEMU_ARM_POWERCTL_RET_SUCCESS;
}
static void arm_reset_cpu_async_work(CPUState *target_cpu_state,
run_on_cpu_data data)
{
/* Reset the cpu */
cpu_reset(target_cpu_state);
}
int arm_reset_cpu(uint64_t cpuid)
{
CPUState *target_cpu_state;
ARMCPU *target_cpu;
assert(qemu_mutex_iothread_locked());
DPRINTF("cpu %" PRId64 "\n", cpuid);
/* change to the cpu we are resetting */
@ -214,15 +284,17 @@ int arm_reset_cpu(uint64_t cpuid)
return QEMU_ARM_POWERCTL_INVALID_PARAM;
}
target_cpu = ARM_CPU(target_cpu_state);
if (target_cpu->powered_off) {
if (target_cpu->power_state == PSCI_OFF) {
qemu_log_mask(LOG_GUEST_ERROR,
"[ARM]%s: CPU %" PRId64 " is off\n",
__func__, cpuid);
return QEMU_ARM_POWERCTL_IS_OFF;
}
/* Reset the cpu */
cpu_reset(target_cpu_state);
/* Queue work to run under the target vCPUs context */
async_run_on_cpu(target_cpu_state, arm_reset_cpu_async_work,
RUN_ON_CPU_NULL);
return QEMU_ARM_POWERCTL_RET_SUCCESS;
}

View file

@ -17,6 +17,7 @@
#define QEMU_ARM_POWERCTL_INVALID_PARAM QEMU_PSCI_RET_INVALID_PARAMS
#define QEMU_ARM_POWERCTL_ALREADY_ON QEMU_PSCI_RET_ALREADY_ON
#define QEMU_ARM_POWERCTL_IS_OFF QEMU_PSCI_RET_DENIED
#define QEMU_ARM_POWERCTL_ON_PENDING QEMU_PSCI_RET_ON_PENDING
/*
* arm_get_cpu_by_id:
@ -43,6 +44,7 @@ CPUState *arm_get_cpu_by_id(uint64_t cpuid);
* Returns: QEMU_ARM_POWERCTL_RET_SUCCESS on success.
* QEMU_ARM_POWERCTL_INVALID_PARAM if bad parameters are provided.
* QEMU_ARM_POWERCTL_ALREADY_ON if the CPU was already started.
* QEMU_ARM_POWERCTL_ON_PENDING if the CPU is still powering up
*/
int arm_set_cpu_on(uint64_t cpuid, uint64_t entry, uint64_t context_id,
uint32_t target_el, bool target_aa64);

View file

@ -45,7 +45,7 @@ static bool arm_cpu_has_work(CPUState *cs)
{
ARMCPU *cpu = ARM_CPU(cs);
return !cpu->powered_off
return (cpu->power_state != PSCI_OFF)
&& cs->interrupt_request &
(CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
| CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
@ -132,7 +132,7 @@ static void arm_cpu_reset(CPUState *s)
env->vfp.xregs[ARM_VFP_MVFR1] = cpu->mvfr1;
env->vfp.xregs[ARM_VFP_MVFR2] = cpu->mvfr2;
cpu->powered_off = cpu->start_powered_off;
cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
s->halted = cpu->start_powered_off;
if (arm_feature(env, ARM_FEATURE_IWMMXT)) {

View file

@ -30,6 +30,9 @@
# define TARGET_LONG_BITS 32
#endif
/* ARM processors have a weak memory model */
#define TCG_GUEST_DEFAULT_MO (0)
#define CPUArchState struct CPUARMState
#include "qemu-common.h"
@ -526,6 +529,15 @@ typedef struct CPUARMState {
*/
typedef void ARMELChangeHook(ARMCPU *cpu, void *opaque);
/* These values map onto the return values for
* QEMU_PSCI_0_2_FN_AFFINITY_INFO */
typedef enum ARMPSCIState {
PSCI_OFF = 0,
PSCI_ON = 1,
PSCI_ON_PENDING = 2
} ARMPSCIState;
/**
* ARMCPU:
* @env: #CPUARMState
@ -582,8 +594,10 @@ struct ARMCPU {
/* Should CPU start in PSCI powered-off state? */
bool start_powered_off;
/* CPU currently in PSCI powered-off state */
bool powered_off;
/* Current power state, access guarded by BQL */
ARMPSCIState power_state;
/* CPU has virtualization extension */
bool has_el2;
/* CPU has security extension */

View file

@ -536,41 +536,33 @@ static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
CPUState *other_cs;
CPUState *cs = ENV_GET_CPU(env);
CPU_FOREACH(other_cs) {
tlb_flush(other_cs);
}
tlb_flush_all_cpus_synced(cs);
}
static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
CPUState *other_cs;
CPUState *cs = ENV_GET_CPU(env);
CPU_FOREACH(other_cs) {
tlb_flush(other_cs);
}
tlb_flush_all_cpus_synced(cs);
}
static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
CPUState *other_cs;
CPUState *cs = ENV_GET_CPU(env);
CPU_FOREACH(other_cs) {
tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
}
tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
}
static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
CPUState *other_cs;
CPUState *cs = ENV_GET_CPU(env);
CPU_FOREACH(other_cs) {
tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
}
tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
}
static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
@ -578,19 +570,21 @@ static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
{
CPUState *cs = ENV_GET_CPU(env);
tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
ARMMMUIdx_S2NS, -1);
tlb_flush_by_mmuidx(cs,
(1 << ARMMMUIdx_S12NSE1) |
(1 << ARMMMUIdx_S12NSE0) |
(1 << ARMMMUIdx_S2NS));
}
static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
CPUState *other_cs;
CPUState *cs = ENV_GET_CPU(env);
CPU_FOREACH(other_cs) {
tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
ARMMMUIdx_S12NSE0, ARMMMUIdx_S2NS, -1);
}
tlb_flush_by_mmuidx_all_cpus_synced(cs,
(1 << ARMMMUIdx_S12NSE1) |
(1 << ARMMMUIdx_S12NSE0) |
(1 << ARMMMUIdx_S2NS));
}
static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
@ -611,13 +605,13 @@ static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
pageaddr = sextract64(value << 12, 0, 40);
tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S2NS, -1);
tlb_flush_page_by_mmuidx(cs, pageaddr, (1 << ARMMMUIdx_S2NS));
}
static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
CPUState *other_cs;
CPUState *cs = ENV_GET_CPU(env);
uint64_t pageaddr;
if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
@ -626,9 +620,8 @@ static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
pageaddr = sextract64(value << 12, 0, 40);
CPU_FOREACH(other_cs) {
tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S2NS, -1);
}
tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
(1 << ARMMMUIdx_S2NS));
}
static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
@ -636,17 +629,15 @@ static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
{
CPUState *cs = ENV_GET_CPU(env);
tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E2, -1);
tlb_flush_by_mmuidx(cs, (1 << ARMMMUIdx_S1E2));
}
static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
CPUState *other_cs;
CPUState *cs = ENV_GET_CPU(env);
CPU_FOREACH(other_cs) {
tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E2, -1);
}
tlb_flush_by_mmuidx_all_cpus_synced(cs, (1 << ARMMMUIdx_S1E2));
}
static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
@ -655,18 +646,17 @@ static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
CPUState *cs = ENV_GET_CPU(env);
uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E2, -1);
tlb_flush_page_by_mmuidx(cs, pageaddr, (1 << ARMMMUIdx_S1E2));
}
static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
CPUState *other_cs;
CPUState *cs = ENV_GET_CPU(env);
uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
CPU_FOREACH(other_cs) {
tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E2, -1);
}
tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
(1 << ARMMMUIdx_S1E2));
}
static const ARMCPRegInfo cp_reginfo[] = {
@ -2542,8 +2532,10 @@ static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
/* Accesses to VTTBR may change the VMID so we must flush the TLB. */
if (raw_read(env, ri) != value) {
tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
ARMMMUIdx_S2NS, -1);
tlb_flush_by_mmuidx(cs,
(1 << ARMMMUIdx_S12NSE1) |
(1 << ARMMMUIdx_S12NSE0) |
(1 << ARMMMUIdx_S2NS));
raw_write(env, ri, value);
}
}
@ -2898,29 +2890,33 @@ static CPAccessResult aa64_cacheop_access(CPUARMState *env,
static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
ARMCPU *cpu = arm_env_get_cpu(env);
CPUState *cs = CPU(cpu);
CPUState *cs = ENV_GET_CPU(env);
if (arm_is_secure_below_el3(env)) {
tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
tlb_flush_by_mmuidx(cs,
(1 << ARMMMUIdx_S1SE1) |
(1 << ARMMMUIdx_S1SE0));
} else {
tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
tlb_flush_by_mmuidx(cs,
(1 << ARMMMUIdx_S12NSE1) |
(1 << ARMMMUIdx_S12NSE0));
}
}
static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
CPUState *cs = ENV_GET_CPU(env);
bool sec = arm_is_secure_below_el3(env);
CPUState *other_cs;
CPU_FOREACH(other_cs) {
if (sec) {
tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
} else {
tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
ARMMMUIdx_S12NSE0, -1);
}
if (sec) {
tlb_flush_by_mmuidx_all_cpus_synced(cs,
(1 << ARMMMUIdx_S1SE1) |
(1 << ARMMMUIdx_S1SE0));
} else {
tlb_flush_by_mmuidx_all_cpus_synced(cs,
(1 << ARMMMUIdx_S12NSE1) |
(1 << ARMMMUIdx_S12NSE0));
}
}
@ -2935,13 +2931,19 @@ static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
CPUState *cs = CPU(cpu);
if (arm_is_secure_below_el3(env)) {
tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
tlb_flush_by_mmuidx(cs,
(1 << ARMMMUIdx_S1SE1) |
(1 << ARMMMUIdx_S1SE0));
} else {
if (arm_feature(env, ARM_FEATURE_EL2)) {
tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
ARMMMUIdx_S2NS, -1);
tlb_flush_by_mmuidx(cs,
(1 << ARMMMUIdx_S12NSE1) |
(1 << ARMMMUIdx_S12NSE0) |
(1 << ARMMMUIdx_S2NS));
} else {
tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
tlb_flush_by_mmuidx(cs,
(1 << ARMMMUIdx_S12NSE1) |
(1 << ARMMMUIdx_S12NSE0));
}
}
}
@ -2952,7 +2954,7 @@ static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
ARMCPU *cpu = arm_env_get_cpu(env);
CPUState *cs = CPU(cpu);
tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E2, -1);
tlb_flush_by_mmuidx(cs, (1 << ARMMMUIdx_S1E2));
}
static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
@ -2961,7 +2963,7 @@ static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
ARMCPU *cpu = arm_env_get_cpu(env);
CPUState *cs = CPU(cpu);
tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E3, -1);
tlb_flush_by_mmuidx(cs, (1 << ARMMMUIdx_S1E3));
}
static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
@ -2971,41 +2973,40 @@ static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
* stage 2 translations, whereas most other scopes only invalidate
* stage 1 translations.
*/
CPUState *cs = ENV_GET_CPU(env);
bool sec = arm_is_secure_below_el3(env);
bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
CPUState *other_cs;
CPU_FOREACH(other_cs) {
if (sec) {
tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
} else if (has_el2) {
tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
ARMMMUIdx_S12NSE0, ARMMMUIdx_S2NS, -1);
} else {
tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
ARMMMUIdx_S12NSE0, -1);
}
if (sec) {
tlb_flush_by_mmuidx_all_cpus_synced(cs,
(1 << ARMMMUIdx_S1SE1) |
(1 << ARMMMUIdx_S1SE0));
} else if (has_el2) {
tlb_flush_by_mmuidx_all_cpus_synced(cs,
(1 << ARMMMUIdx_S12NSE1) |
(1 << ARMMMUIdx_S12NSE0) |
(1 << ARMMMUIdx_S2NS));
} else {
tlb_flush_by_mmuidx_all_cpus_synced(cs,
(1 << ARMMMUIdx_S12NSE1) |
(1 << ARMMMUIdx_S12NSE0));
}
}
static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
CPUState *other_cs;
CPUState *cs = ENV_GET_CPU(env);
CPU_FOREACH(other_cs) {
tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E2, -1);
}
tlb_flush_by_mmuidx_all_cpus_synced(cs, (1 << ARMMMUIdx_S1E2));
}
static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
CPUState *other_cs;
CPUState *cs = ENV_GET_CPU(env);
CPU_FOREACH(other_cs) {
tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E3, -1);
}
tlb_flush_by_mmuidx_all_cpus_synced(cs, (1 << ARMMMUIdx_S1E3));
}
static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
@ -3021,11 +3022,13 @@ static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t pageaddr = sextract64(value << 12, 0, 56);
if (arm_is_secure_below_el3(env)) {
tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1SE1,
ARMMMUIdx_S1SE0, -1);
tlb_flush_page_by_mmuidx(cs, pageaddr,
(1 << ARMMMUIdx_S1SE1) |
(1 << ARMMMUIdx_S1SE0));
} else {
tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S12NSE1,
ARMMMUIdx_S12NSE0, -1);
tlb_flush_page_by_mmuidx(cs, pageaddr,
(1 << ARMMMUIdx_S12NSE1) |
(1 << ARMMMUIdx_S12NSE0));
}
}
@ -3040,7 +3043,7 @@ static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
CPUState *cs = CPU(cpu);
uint64_t pageaddr = sextract64(value << 12, 0, 56);
tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E2, -1);
tlb_flush_page_by_mmuidx(cs, pageaddr, (1 << ARMMMUIdx_S1E2));
}
static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
@ -3054,47 +3057,46 @@ static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
CPUState *cs = CPU(cpu);
uint64_t pageaddr = sextract64(value << 12, 0, 56);
tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E3, -1);
tlb_flush_page_by_mmuidx(cs, pageaddr, (1 << ARMMMUIdx_S1E3));
}
static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
ARMCPU *cpu = arm_env_get_cpu(env);
CPUState *cs = CPU(cpu);
bool sec = arm_is_secure_below_el3(env);
CPUState *other_cs;
uint64_t pageaddr = sextract64(value << 12, 0, 56);
CPU_FOREACH(other_cs) {
if (sec) {
tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1SE1,
ARMMMUIdx_S1SE0, -1);
} else {
tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S12NSE1,
ARMMMUIdx_S12NSE0, -1);
}
if (sec) {
tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
(1 << ARMMMUIdx_S1SE1) |
(1 << ARMMMUIdx_S1SE0));
} else {
tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
(1 << ARMMMUIdx_S12NSE1) |
(1 << ARMMMUIdx_S12NSE0));
}
}
static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
CPUState *other_cs;
CPUState *cs = ENV_GET_CPU(env);
uint64_t pageaddr = sextract64(value << 12, 0, 56);
CPU_FOREACH(other_cs) {
tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E2, -1);
}
tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
(1 << ARMMMUIdx_S1E2));
}
static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
CPUState *other_cs;
CPUState *cs = ENV_GET_CPU(env);
uint64_t pageaddr = sextract64(value << 12, 0, 56);
CPU_FOREACH(other_cs) {
tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E3, -1);
}
tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
(1 << ARMMMUIdx_S1E3));
}
static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
@ -3116,13 +3118,13 @@ static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
pageaddr = sextract64(value << 12, 0, 48);
tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S2NS, -1);
tlb_flush_page_by_mmuidx(cs, pageaddr, (1 << ARMMMUIdx_S2NS));
}
static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
CPUState *other_cs;
CPUState *cs = ENV_GET_CPU(env);
uint64_t pageaddr;
if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
@ -3131,9 +3133,8 @@ static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
pageaddr = sextract64(value << 12, 0, 48);
CPU_FOREACH(other_cs) {
tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S2NS, -1);
}
tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
(1 << ARMMMUIdx_S2NS));
}
static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
@ -6769,6 +6770,12 @@ void arm_cpu_do_interrupt(CPUState *cs)
arm_cpu_do_interrupt_aarch32(cs);
}
/* Hooks may change global state so BQL should be held, also the
* BQL needs to be held for any modification of
* cs->interrupt_request.
*/
g_assert(qemu_mutex_iothread_locked());
arm_call_el_change_hook(cpu);
if (!kvm_enabled()) {

View file

@ -488,8 +488,8 @@ int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
{
if (cap_has_mp_state) {
struct kvm_mp_state mp_state = {
.mp_state =
cpu->powered_off ? KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
.mp_state = (cpu->power_state == PSCI_OFF) ?
KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
};
int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
if (ret) {
@ -515,7 +515,8 @@ int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
__func__, ret, strerror(-ret));
abort();
}
cpu->powered_off = (mp_state.mp_state == KVM_MP_STATE_STOPPED);
cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
PSCI_OFF : PSCI_ON;
}
return 0;

View file

@ -211,6 +211,38 @@ static const VMStateInfo vmstate_cpsr = {
.put = put_cpsr,
};
static int get_power(QEMUFile *f, void *opaque, size_t size,
VMStateField *field)
{
ARMCPU *cpu = opaque;
bool powered_off = qemu_get_byte(f);
cpu->power_state = powered_off ? PSCI_OFF : PSCI_ON;
return 0;
}
static int put_power(QEMUFile *f, void *opaque, size_t size,
VMStateField *field, QJSON *vmdesc)
{
ARMCPU *cpu = opaque;
/* Migration should never happen while we transition power states */
if (cpu->power_state == PSCI_ON ||
cpu->power_state == PSCI_OFF) {
bool powered_off = (cpu->power_state == PSCI_OFF) ? true : false;
qemu_put_byte(f, powered_off);
return 0;
} else {
return 1;
}
}
static const VMStateInfo vmstate_powered_off = {
.name = "powered_off",
.get = get_power,
.put = put_power,
};
static void cpu_pre_save(void *opaque)
{
ARMCPU *cpu = opaque;
@ -329,7 +361,14 @@ const VMStateDescription vmstate_arm_cpu = {
VMSTATE_UINT64(env.exception.vaddress, ARMCPU),
VMSTATE_TIMER_PTR(gt_timer[GTIMER_PHYS], ARMCPU),
VMSTATE_TIMER_PTR(gt_timer[GTIMER_VIRT], ARMCPU),
VMSTATE_BOOL(powered_off, ARMCPU),
{
.name = "power_state",
.version_id = 0,
.size = sizeof(bool),
.info = &vmstate_powered_off,
.flags = VMS_SINGLE,
.offset = 0,
},
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription*[]) {

View file

@ -18,6 +18,7 @@
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/main-loop.h"
#include "cpu.h"
#include "exec/helper-proto.h"
#include "internals.h"
@ -435,6 +436,13 @@ void HELPER(yield)(CPUARMState *env)
ARMCPU *cpu = arm_env_get_cpu(env);
CPUState *cs = CPU(cpu);
/* When running in MTTCG we don't generate jumps to the yield and
* WFE helpers as it won't affect the scheduling of other vCPUs.
* If we wanted to more completely model WFE/SEV so we don't busy
* spin unnecessarily we would need to do something more involved.
*/
g_assert(!parallel_cpus);
/* This is a non-trappable hint instruction that generally indicates
* that the guest is currently busy-looping. Yield control back to the
* top level loop so that a more deserving VCPU has a chance to run.
@ -487,7 +495,9 @@ void HELPER(cpsr_write_eret)(CPUARMState *env, uint32_t val)
*/
env->regs[15] &= (env->thumb ? ~1 : ~3);
qemu_mutex_lock_iothread();
arm_call_el_change_hook(arm_env_get_cpu(env));
qemu_mutex_unlock_iothread();
}
/* Access to user mode registers from privileged modes. */
@ -735,28 +745,58 @@ void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value)
{
const ARMCPRegInfo *ri = rip;
ri->writefn(env, ri, value);
if (ri->type & ARM_CP_IO) {
qemu_mutex_lock_iothread();
ri->writefn(env, ri, value);
qemu_mutex_unlock_iothread();
} else {
ri->writefn(env, ri, value);
}
}
uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip)
{
const ARMCPRegInfo *ri = rip;
uint32_t res;
return ri->readfn(env, ri);
if (ri->type & ARM_CP_IO) {
qemu_mutex_lock_iothread();
res = ri->readfn(env, ri);
qemu_mutex_unlock_iothread();
} else {
res = ri->readfn(env, ri);
}
return res;
}
void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value)
{
const ARMCPRegInfo *ri = rip;
ri->writefn(env, ri, value);
if (ri->type & ARM_CP_IO) {
qemu_mutex_lock_iothread();
ri->writefn(env, ri, value);
qemu_mutex_unlock_iothread();
} else {
ri->writefn(env, ri, value);
}
}
uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip)
{
const ARMCPRegInfo *ri = rip;
uint64_t res;
return ri->readfn(env, ri);
if (ri->type & ARM_CP_IO) {
qemu_mutex_lock_iothread();
res = ri->readfn(env, ri);
qemu_mutex_unlock_iothread();
} else {
res = ri->readfn(env, ri);
}
return res;
}
void HELPER(msr_i_pstate)(CPUARMState *env, uint32_t op, uint32_t imm)
@ -989,7 +1029,9 @@ void HELPER(exception_return)(CPUARMState *env)
cur_el, new_el, env->pc);
}
qemu_mutex_lock_iothread();
arm_call_el_change_hook(arm_env_get_cpu(env));
qemu_mutex_unlock_iothread();
return;

View file

@ -127,7 +127,9 @@ void arm_handle_psci_call(ARMCPU *cpu)
break;
}
target_cpu = ARM_CPU(target_cpu_state);
ret = target_cpu->powered_off ? 1 : 0;
g_assert(qemu_mutex_iothread_locked());
ret = target_cpu->power_state;
break;
default:
/* Everything above affinity level 0 is always on. */

View file

@ -1328,10 +1328,14 @@ static void handle_hint(DisasContext *s, uint32_t insn,
s->is_jmp = DISAS_WFI;
return;
case 1: /* YIELD */
s->is_jmp = DISAS_YIELD;
if (!parallel_cpus) {
s->is_jmp = DISAS_YIELD;
}
return;
case 2: /* WFE */
s->is_jmp = DISAS_WFE;
if (!parallel_cpus) {
s->is_jmp = DISAS_WFE;
}
return;
case 4: /* SEV */
case 5: /* SEVL */

View file

@ -4404,20 +4404,32 @@ static void gen_exception_return(DisasContext *s, TCGv_i32 pc)
gen_rfe(s, pc, load_cpu_field(spsr));
}
/*
* For WFI we will halt the vCPU until an IRQ. For WFE and YIELD we
* only call the helper when running single threaded TCG code to ensure
* the next round-robin scheduled vCPU gets a crack. In MTTCG mode we
* just skip this instruction. Currently the SEV/SEVL instructions
* which are *one* of many ways to wake the CPU from WFE are not
* implemented so we can't sleep like WFI does.
*/
static void gen_nop_hint(DisasContext *s, int val)
{
switch (val) {
case 1: /* yield */
gen_set_pc_im(s, s->pc);
s->is_jmp = DISAS_YIELD;
if (!parallel_cpus) {
gen_set_pc_im(s, s->pc);
s->is_jmp = DISAS_YIELD;
}
break;
case 3: /* wfi */
gen_set_pc_im(s, s->pc);
s->is_jmp = DISAS_WFI;
break;
case 2: /* wfe */
gen_set_pc_im(s, s->pc);
s->is_jmp = DISAS_WFE;
if (!parallel_cpus) {
gen_set_pc_im(s, s->pc);
s->is_jmp = DISAS_WFE;
}
break;
case 4: /* sev */
case 5: /* sevl */

View file

@ -18,6 +18,7 @@
*/
#include "qemu/osdep.h"
#include "qemu/main-loop.h"
#include "cpu.h"
#include "exec/helper-proto.h"
#include "exec/log.h"
@ -42,11 +43,14 @@ void helper_rsm(CPUX86State *env)
#define SMM_REVISION_ID 0x00020000
#endif
/* Called with iothread lock taken */
void cpu_smm_update(X86CPU *cpu)
{
CPUX86State *env = &cpu->env;
bool smm_enabled = (env->hflags & HF_SMM_MASK);
g_assert(qemu_mutex_iothread_locked());
if (cpu->smram) {
memory_region_set_enabled(cpu->smram, smm_enabled);
}
@ -333,7 +337,10 @@ void helper_rsm(CPUX86State *env)
}
env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
env->hflags &= ~HF_SMM_MASK;
qemu_mutex_lock_iothread();
cpu_smm_update(cpu);
qemu_mutex_unlock_iothread();
qemu_log_mask(CPU_LOG_INT, "SMM: after RSM\n");
log_cpu_state_mask(CPU_LOG_INT, CPU(cpu), CPU_DUMP_CCOP);

View file

@ -25,6 +25,7 @@
#include "exec/helper-proto.h"
#include "sysemu/kvm.h"
#include "qemu/timer.h"
#include "qemu/main-loop.h"
#include "exec/address-spaces.h"
#ifdef CONFIG_KVM
#include <linux/kvm.h>
@ -109,11 +110,13 @@ void program_interrupt(CPUS390XState *env, uint32_t code, int ilen)
/* SCLP service call */
uint32_t HELPER(servc)(CPUS390XState *env, uint64_t r1, uint64_t r2)
{
qemu_mutex_lock_iothread();
int r = sclp_service_call(env, r1, r2);
if (r < 0) {
program_interrupt(env, -r, 4);
return 0;
r = 0;
}
qemu_mutex_unlock_iothread();
return r;
}

View file

@ -1768,13 +1768,15 @@ void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
case 1:
env->dmmu.mmu_primary_context = val;
env->immu.mmu_primary_context = val;
tlb_flush_by_mmuidx(CPU(cpu), MMU_USER_IDX, MMU_KERNEL_IDX, -1);
tlb_flush_by_mmuidx(CPU(cpu),
(1 << MMU_USER_IDX) | (1 << MMU_KERNEL_IDX));
break;
case 2:
env->dmmu.mmu_secondary_context = val;
env->immu.mmu_secondary_context = val;
tlb_flush_by_mmuidx(CPU(cpu), MMU_USER_SECONDARY_IDX,
MMU_KERNEL_SECONDARY_IDX, -1);
tlb_flush_by_mmuidx(CPU(cpu),
(1 << MMU_USER_SECONDARY_IDX) |
(1 << MMU_KERNEL_SECONDARY_IDX));
break;
default:
cpu_unassigned_access(cs, addr, true, false, 1, size);