accel/tcg: Rename CPUIOTLBEntry to CPUTLBEntryFull

This structure will shortly contain more than just
data for accessing MMIO.  Rename the 'addr' member
to 'xlat_section' to more clearly indicate its purpose.

Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
This commit is contained in:
Richard Henderson 2022-08-19 14:20:37 -07:00
parent 8810ee2ac0
commit 25d3ec5831
5 changed files with 73 additions and 71 deletions

View file

@ -200,13 +200,13 @@ static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
}
g_free(fast->table);
g_free(desc->iotlb);
g_free(desc->fulltlb);
tlb_window_reset(desc, now, 0);
/* desc->n_used_entries is cleared by the caller */
fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
fast->table = g_try_new(CPUTLBEntry, new_size);
desc->iotlb = g_try_new(CPUIOTLBEntry, new_size);
desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
/*
* If the allocations fail, try smaller sizes. We just freed some
@ -215,7 +215,7 @@ static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
* allocations to fail though, so we progressively reduce the allocation
* size, aborting if we cannot even allocate the smallest TLB we support.
*/
while (fast->table == NULL || desc->iotlb == NULL) {
while (fast->table == NULL || desc->fulltlb == NULL) {
if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
error_report("%s: %s", __func__, strerror(errno));
abort();
@ -224,9 +224,9 @@ static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
g_free(fast->table);
g_free(desc->iotlb);
g_free(desc->fulltlb);
fast->table = g_try_new(CPUTLBEntry, new_size);
desc->iotlb = g_try_new(CPUIOTLBEntry, new_size);
desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
}
}
@ -258,7 +258,7 @@ static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now)
desc->n_used_entries = 0;
fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
fast->table = g_new(CPUTLBEntry, n_entries);
desc->iotlb = g_new(CPUIOTLBEntry, n_entries);
desc->fulltlb = g_new(CPUTLBEntryFull, n_entries);
tlb_mmu_flush_locked(desc, fast);
}
@ -299,7 +299,7 @@ void tlb_destroy(CPUState *cpu)
CPUTLBDescFast *fast = &env_tlb(env)->f[i];
g_free(fast->table);
g_free(desc->iotlb);
g_free(desc->fulltlb);
}
}
@ -1219,7 +1219,7 @@ void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
/* Evict the old entry into the victim tlb. */
copy_tlb_helper_locked(tv, te);
desc->viotlb[vidx] = desc->iotlb[index];
desc->vfulltlb[vidx] = desc->fulltlb[index];
tlb_n_used_entries_dec(env, mmu_idx);
}
@ -1236,8 +1236,8 @@ void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
* subtract here is that of the page base, and not the same as the
* vaddr we add back in io_readx()/io_writex()/get_page_addr_code().
*/
desc->iotlb[index].addr = iotlb - vaddr_page;
desc->iotlb[index].attrs = attrs;
desc->fulltlb[index].xlat_section = iotlb - vaddr_page;
desc->fulltlb[index].attrs = attrs;
/* Now calculate the new entry */
tn.addend = addend - vaddr_page;
@ -1327,7 +1327,7 @@ static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr,
}
}
static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
static uint64_t io_readx(CPUArchState *env, CPUTLBEntryFull *full,
int mmu_idx, target_ulong addr, uintptr_t retaddr,
MMUAccessType access_type, MemOp op)
{
@ -1339,9 +1339,9 @@ static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
bool locked = false;
MemTxResult r;
section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
section = iotlb_to_section(cpu, full->xlat_section, full->attrs);
mr = section->mr;
mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
cpu->mem_io_pc = retaddr;
if (!cpu->can_do_io) {
cpu_io_recompile(cpu, retaddr);
@ -1351,14 +1351,14 @@ static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
qemu_mutex_lock_iothread();
locked = true;
}
r = memory_region_dispatch_read(mr, mr_offset, &val, op, iotlbentry->attrs);
r = memory_region_dispatch_read(mr, mr_offset, &val, op, full->attrs);
if (r != MEMTX_OK) {
hwaddr physaddr = mr_offset +
section->offset_within_address_space -
section->offset_within_region;
cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type,
mmu_idx, iotlbentry->attrs, r, retaddr);
mmu_idx, full->attrs, r, retaddr);
}
if (locked) {
qemu_mutex_unlock_iothread();
@ -1368,8 +1368,8 @@ static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
}
/*
* Save a potentially trashed IOTLB entry for later lookup by plugin.
* This is read by tlb_plugin_lookup if the iotlb entry doesn't match
* Save a potentially trashed CPUTLBEntryFull for later lookup by plugin.
* This is read by tlb_plugin_lookup if the fulltlb entry doesn't match
* because of the side effect of io_writex changing memory layout.
*/
static void save_iotlb_data(CPUState *cs, hwaddr addr,
@ -1383,7 +1383,7 @@ static void save_iotlb_data(CPUState *cs, hwaddr addr,
#endif
}
static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
static void io_writex(CPUArchState *env, CPUTLBEntryFull *full,
int mmu_idx, uint64_t val, target_ulong addr,
uintptr_t retaddr, MemOp op)
{
@ -1394,9 +1394,9 @@ static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
bool locked = false;
MemTxResult r;
section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
section = iotlb_to_section(cpu, full->xlat_section, full->attrs);
mr = section->mr;
mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
if (!cpu->can_do_io) {
cpu_io_recompile(cpu, retaddr);
}
@ -1406,20 +1406,20 @@ static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
* The memory_region_dispatch may trigger a flush/resize
* so for plugins we save the iotlb_data just in case.
*/
save_iotlb_data(cpu, iotlbentry->addr, section, mr_offset);
save_iotlb_data(cpu, full->xlat_section, section, mr_offset);
if (!qemu_mutex_iothread_locked()) {
qemu_mutex_lock_iothread();
locked = true;
}
r = memory_region_dispatch_write(mr, mr_offset, val, op, iotlbentry->attrs);
r = memory_region_dispatch_write(mr, mr_offset, val, op, full->attrs);
if (r != MEMTX_OK) {
hwaddr physaddr = mr_offset +
section->offset_within_address_space -
section->offset_within_region;
cpu_transaction_failed(cpu, physaddr, addr, memop_size(op),
MMU_DATA_STORE, mmu_idx, iotlbentry->attrs, r,
MMU_DATA_STORE, mmu_idx, full->attrs, r,
retaddr);
}
if (locked) {
@ -1466,9 +1466,10 @@ static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
copy_tlb_helper_locked(vtlb, &tmptlb);
qemu_spin_unlock(&env_tlb(env)->c.lock);
CPUIOTLBEntry tmpio, *io = &env_tlb(env)->d[mmu_idx].iotlb[index];
CPUIOTLBEntry *vio = &env_tlb(env)->d[mmu_idx].viotlb[vidx];
tmpio = *io; *io = *vio; *vio = tmpio;
CPUTLBEntryFull *f1 = &env_tlb(env)->d[mmu_idx].fulltlb[index];
CPUTLBEntryFull *f2 = &env_tlb(env)->d[mmu_idx].vfulltlb[vidx];
CPUTLBEntryFull tmpf;
tmpf = *f1; *f1 = *f2; *f2 = tmpf;
return true;
}
}
@ -1481,9 +1482,9 @@ static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
(ADDR) & TARGET_PAGE_MASK)
static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size,
CPUIOTLBEntry *iotlbentry, uintptr_t retaddr)
CPUTLBEntryFull *full, uintptr_t retaddr)
{
ram_addr_t ram_addr = mem_vaddr + iotlbentry->addr;
ram_addr_t ram_addr = mem_vaddr + full->xlat_section;
trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
@ -1575,9 +1576,9 @@ int probe_access_flags(CPUArchState *env, target_ulong addr,
/* Handle clean RAM pages. */
if (unlikely(flags & TLB_NOTDIRTY)) {
uintptr_t index = tlb_index(env, mmu_idx, addr);
CPUIOTLBEntry *iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
CPUTLBEntryFull *full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
notdirty_write(env_cpu(env), addr, 1, iotlbentry, retaddr);
notdirty_write(env_cpu(env), addr, 1, full, retaddr);
flags &= ~TLB_NOTDIRTY;
}
@ -1602,19 +1603,19 @@ void *probe_access(CPUArchState *env, target_ulong addr, int size,
if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) {
uintptr_t index = tlb_index(env, mmu_idx, addr);
CPUIOTLBEntry *iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
CPUTLBEntryFull *full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
/* Handle watchpoints. */
if (flags & TLB_WATCHPOINT) {
int wp_access = (access_type == MMU_DATA_STORE
? BP_MEM_WRITE : BP_MEM_READ);
cpu_check_watchpoint(env_cpu(env), addr, size,
iotlbentry->attrs, wp_access, retaddr);
full->attrs, wp_access, retaddr);
}
/* Handle clean RAM pages. */
if (flags & TLB_NOTDIRTY) {
notdirty_write(env_cpu(env), addr, 1, iotlbentry, retaddr);
notdirty_write(env_cpu(env), addr, 1, full, retaddr);
}
}
@ -1671,7 +1672,7 @@ tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr,
* should have just filled the TLB. The one corner case is io_writex
* which can cause TLB flushes and potential resizing of the TLBs
* losing the information we need. In those cases we need to recover
* data from a copy of the iotlbentry. As long as this always occurs
* data from a copy of the CPUTLBEntryFull. As long as this always occurs
* from the same thread (which a mem callback will be) this is safe.
*/
@ -1686,11 +1687,12 @@ bool tlb_plugin_lookup(CPUState *cpu, target_ulong addr, int mmu_idx,
if (likely(tlb_hit(tlb_addr, addr))) {
/* We must have an iotlb entry for MMIO */
if (tlb_addr & TLB_MMIO) {
CPUIOTLBEntry *iotlbentry;
iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
CPUTLBEntryFull *full;
full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
data->is_io = true;
data->v.io.section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
data->v.io.offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
data->v.io.section =
iotlb_to_section(cpu, full->xlat_section, full->attrs);
data->v.io.offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
} else {
data->is_io = false;
data->v.ram.hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
@ -1798,7 +1800,7 @@ static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
notdirty_write(env_cpu(env), addr, size,
&env_tlb(env)->d[mmu_idx].iotlb[index], retaddr);
&env_tlb(env)->d[mmu_idx].fulltlb[index], retaddr);
}
return hostaddr;
@ -1906,7 +1908,7 @@ load_helper(CPUArchState *env, target_ulong addr, MemOpIdx oi,
/* Handle anything that isn't just a straight memory access. */
if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
CPUIOTLBEntry *iotlbentry;
CPUTLBEntryFull *full;
bool need_swap;
/* For anything that is unaligned, recurse through full_load. */
@ -1914,20 +1916,20 @@ load_helper(CPUArchState *env, target_ulong addr, MemOpIdx oi,
goto do_unaligned_access;
}
iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
/* Handle watchpoints. */
if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
/* On watchpoint hit, this will longjmp out. */
cpu_check_watchpoint(env_cpu(env), addr, size,
iotlbentry->attrs, BP_MEM_READ, retaddr);
full->attrs, BP_MEM_READ, retaddr);
}
need_swap = size > 1 && (tlb_addr & TLB_BSWAP);
/* Handle I/O access. */
if (likely(tlb_addr & TLB_MMIO)) {
return io_readx(env, iotlbentry, mmu_idx, addr, retaddr,
return io_readx(env, full, mmu_idx, addr, retaddr,
access_type, op ^ (need_swap * MO_BSWAP));
}
@ -2242,12 +2244,12 @@ store_helper_unaligned(CPUArchState *env, target_ulong addr, uint64_t val,
*/
if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
cpu_check_watchpoint(env_cpu(env), addr, size - size2,
env_tlb(env)->d[mmu_idx].iotlb[index].attrs,
env_tlb(env)->d[mmu_idx].fulltlb[index].attrs,
BP_MEM_WRITE, retaddr);
}
if (unlikely(tlb_addr2 & TLB_WATCHPOINT)) {
cpu_check_watchpoint(env_cpu(env), page2, size2,
env_tlb(env)->d[mmu_idx].iotlb[index2].attrs,
env_tlb(env)->d[mmu_idx].fulltlb[index2].attrs,
BP_MEM_WRITE, retaddr);
}
@ -2311,7 +2313,7 @@ store_helper(CPUArchState *env, target_ulong addr, uint64_t val,
/* Handle anything that isn't just a straight memory access. */
if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
CPUIOTLBEntry *iotlbentry;
CPUTLBEntryFull *full;
bool need_swap;
/* For anything that is unaligned, recurse through byte stores. */
@ -2319,20 +2321,20 @@ store_helper(CPUArchState *env, target_ulong addr, uint64_t val,
goto do_unaligned_access;
}
iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
/* Handle watchpoints. */
if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
/* On watchpoint hit, this will longjmp out. */
cpu_check_watchpoint(env_cpu(env), addr, size,
iotlbentry->attrs, BP_MEM_WRITE, retaddr);
full->attrs, BP_MEM_WRITE, retaddr);
}
need_swap = size > 1 && (tlb_addr & TLB_BSWAP);
/* Handle I/O access. */
if (tlb_addr & TLB_MMIO) {
io_writex(env, iotlbentry, mmu_idx, val, addr, retaddr,
io_writex(env, full, mmu_idx, val, addr, retaddr,
op ^ (need_swap * MO_BSWAP));
return;
}
@ -2344,7 +2346,7 @@ store_helper(CPUArchState *env, target_ulong addr, uint64_t val,
/* Handle clean RAM pages. */
if (tlb_addr & TLB_NOTDIRTY) {
notdirty_write(env_cpu(env), addr, size, iotlbentry, retaddr);
notdirty_write(env_cpu(env), addr, size, full, retaddr);
}
haddr = (void *)((uintptr_t)addr + entry->addend);