target/avr: Move cpu register accesses into system memory

Integrate the i/o 0x00-0x1f and 0x38-0x3f loopbacks into
the cpu registers with normal address space accesses.
We no longer need to trap accesses to the first page within
avr_cpu_tlb_fill but can wait until a write occurs.

Reviewed-by: Pierrick Bouvier <pierrick.bouvier@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
This commit is contained in:
Richard Henderson 2025-03-21 17:14:27 -07:00
parent a2860ff908
commit 204a7bd856
5 changed files with 138 additions and 153 deletions

View file

@ -23,6 +23,7 @@
#include "qemu/qemu-print.h"
#include "exec/exec-all.h"
#include "exec/translation-block.h"
#include "exec/address-spaces.h"
#include "cpu.h"
#include "disas/dis-asm.h"
#include "tcg/debug-assert.h"
@ -110,6 +111,8 @@ static void avr_cpu_disas_set_info(CPUState *cpu, disassemble_info *info)
static void avr_cpu_realizefn(DeviceState *dev, Error **errp)
{
CPUState *cs = CPU(dev);
CPUAVRState *env = cpu_env(cs);
AVRCPU *cpu = env_archcpu(env);
AVRCPUClass *mcc = AVR_CPU_GET_CLASS(dev);
Error *local_err = NULL;
@ -122,6 +125,19 @@ static void avr_cpu_realizefn(DeviceState *dev, Error **errp)
cpu_reset(cs);
mcc->parent_realize(dev, errp);
/*
* Two blocks in the low data space loop back into cpu registers.
*/
memory_region_init_io(&cpu->cpu_reg1, OBJECT(cpu), &avr_cpu_reg1, env,
"avr-cpu-reg1", 32);
memory_region_add_subregion(get_system_memory(),
OFFSET_DATA, &cpu->cpu_reg1);
memory_region_init_io(&cpu->cpu_reg2, OBJECT(cpu), &avr_cpu_reg2, env,
"avr-cpu-reg2", 8);
memory_region_add_subregion(get_system_memory(),
OFFSET_DATA + 0x58, &cpu->cpu_reg2);
}
static void avr_cpu_set_int(void *opaque, int irq, int level)

View file

@ -23,6 +23,7 @@
#include "cpu-qom.h"
#include "exec/cpu-defs.h"
#include "exec/memory.h"
#ifdef CONFIG_USER_ONLY
#error "AVR 8-bit does not support user mode"
@ -152,6 +153,9 @@ struct ArchCPU {
CPUAVRState env;
MemoryRegion cpu_reg1;
MemoryRegion cpu_reg2;
/* Initial value of stack pointer */
uint32_t init_sp;
};
@ -252,6 +256,9 @@ bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
MMUAccessType access_type, int mmu_idx,
bool probe, uintptr_t retaddr);
extern const MemoryRegionOps avr_cpu_reg1;
extern const MemoryRegionOps avr_cpu_reg2;
#include "exec/cpu-all.h"
#endif /* QEMU_AVR_CPU_H */

View file

@ -108,7 +108,7 @@ bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
MMUAccessType access_type, int mmu_idx,
bool probe, uintptr_t retaddr)
{
int prot, page_size = TARGET_PAGE_SIZE;
int prot;
uint32_t paddr;
address &= TARGET_PAGE_MASK;
@ -133,23 +133,9 @@ bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
/* Access to memory. */
paddr = OFFSET_DATA + address;
prot = PAGE_READ | PAGE_WRITE;
if (address < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
/*
* Access to CPU registers, exit and rebuilt this TB to use
* full access in case it touches specially handled registers
* like SREG or SP. For probing, set page_size = 1, in order
* to force tlb_fill to be called for the next access.
*/
if (probe) {
page_size = 1;
} else {
cpu_env(cs)->fullacc = 1;
cpu_loop_exit_restore(cs, retaddr);
}
}
}
tlb_set_page(cs, address, paddr, prot, mmu_idx, page_size);
tlb_set_page(cs, address, paddr, prot, mmu_idx, TARGET_PAGE_SIZE);
return true;
}
@ -203,133 +189,77 @@ void helper_wdr(CPUAVRState *env)
}
/*
* This function implements IN instruction
*
* It does the following
* a. if an IO register belongs to CPU, its value is read and returned
* b. otherwise io address is translated to mem address and physical memory
* is read.
* c. it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
*
* The first 32 bytes of the data space are mapped to the cpu regs.
* We cannot write these from normal store operations because TCG
* does not expect global temps to be modified -- a global may be
* live in a host cpu register across the store. We can however
* read these, as TCG does make sure the global temps are saved
* in case the load operation traps.
*/
target_ulong helper_inb(CPUAVRState *env, uint32_t port)
static uint64_t avr_cpu_reg1_read(void *opaque, hwaddr addr, unsigned size)
{
target_ulong data = 0;
CPUAVRState *env = opaque;
switch (port - 0x38) {
case REG_38_RAMPD:
data = 0xff & (env->rampD >> 16);
break;
case REG_38_RAMPX:
data = 0xff & (env->rampX >> 16);
break;
case REG_38_RAMPY:
data = 0xff & (env->rampY >> 16);
break;
case REG_38_RAMPZ:
data = 0xff & (env->rampZ >> 16);
break;
case REG_38_EIDN:
data = 0xff & (env->eind >> 16);
break;
case REG_38_SPL:
data = env->sp & 0x00ff;
break;
case REG_38_SPH:
data = env->sp >> 8;
break;
case REG_38_SREG:
data = cpu_get_sreg(env);
break;
default:
/* not a special register, pass to normal memory access */
data = address_space_ldub(&address_space_memory,
OFFSET_IO_REGISTERS + port,
MEMTXATTRS_UNSPECIFIED, NULL);
}
return data;
assert(addr < 32);
return env->r[addr];
}
/*
* This function implements OUT instruction
*
* It does the following
* a. if an IO register belongs to CPU, its value is written into the register
* b. otherwise io address is translated to mem address and physical memory
* is written.
* c. it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
*
* The range 0x38-0x3f of the i/o space is mapped to cpu regs.
* As above, we cannot write these from normal store operations.
*/
void helper_outb(CPUAVRState *env, uint32_t port, uint32_t data)
{
data &= 0x000000ff;
switch (port - 0x38) {
static uint64_t avr_cpu_reg2_read(void *opaque, hwaddr addr, unsigned size)
{
CPUAVRState *env = opaque;
switch (addr) {
case REG_38_RAMPD:
if (avr_feature(env, AVR_FEATURE_RAMPD)) {
env->rampD = (data & 0xff) << 16;
}
break;
return 0xff & (env->rampD >> 16);
case REG_38_RAMPX:
if (avr_feature(env, AVR_FEATURE_RAMPX)) {
env->rampX = (data & 0xff) << 16;
}
break;
return 0xff & (env->rampX >> 16);
case REG_38_RAMPY:
if (avr_feature(env, AVR_FEATURE_RAMPY)) {
env->rampY = (data & 0xff) << 16;
}
break;
return 0xff & (env->rampY >> 16);
case REG_38_RAMPZ:
if (avr_feature(env, AVR_FEATURE_RAMPZ)) {
env->rampZ = (data & 0xff) << 16;
}
break;
return 0xff & (env->rampZ >> 16);
case REG_38_EIDN:
env->eind = (data & 0xff) << 16;
break;
return 0xff & (env->eind >> 16);
case REG_38_SPL:
env->sp = (env->sp & 0xff00) | (data);
break;
return env->sp & 0x00ff;
case REG_38_SPH:
if (avr_feature(env, AVR_FEATURE_2_BYTE_SP)) {
env->sp = (env->sp & 0x00ff) | (data << 8);
}
break;
return 0xff & (env->sp >> 8);
case REG_38_SREG:
cpu_set_sreg(env, data);
break;
default:
/* not a special register, pass to normal memory access */
address_space_stb(&address_space_memory, OFFSET_IO_REGISTERS + port,
data, MEMTXATTRS_UNSPECIFIED, NULL);
return cpu_get_sreg(env);
}
g_assert_not_reached();
}
/*
* this function implements LD instruction when there is a possibility to read
* from a CPU register
*/
target_ulong helper_fullrd(CPUAVRState *env, uint32_t addr)
static void avr_cpu_trap_write(void *opaque, hwaddr addr,
uint64_t data64, unsigned size)
{
uint8_t data;
CPUAVRState *env = opaque;
CPUState *cs = env_cpu(env);
env->fullacc = false;
env->fullacc = true;
cpu_loop_exit_restore(cs, cs->mem_io_pc);
}
if (addr < NUMBER_OF_CPU_REGISTERS) {
/* CPU registers */
data = env->r[addr];
} else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
/* IO registers */
data = helper_inb(env, addr - NUMBER_OF_CPU_REGISTERS);
} else {
/* memory */
data = address_space_ldub(&address_space_memory, OFFSET_DATA + addr,
MEMTXATTRS_UNSPECIFIED, NULL);
}
return data;
}
const MemoryRegionOps avr_cpu_reg1 = {
.read = avr_cpu_reg1_read,
.write = avr_cpu_trap_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid.min_access_size = 1,
.valid.max_access_size = 1,
};
const MemoryRegionOps avr_cpu_reg2 = {
.read = avr_cpu_reg2_read,
.write = avr_cpu_trap_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid.min_access_size = 1,
.valid.max_access_size = 1,
};
/*
* this function implements ST instruction when there is a possibility to write
@ -339,19 +269,50 @@ void helper_fullwr(CPUAVRState *env, uint32_t data, uint32_t addr)
{
env->fullacc = false;
/* Following logic assumes this: */
assert(OFFSET_IO_REGISTERS == OFFSET_DATA +
NUMBER_OF_CPU_REGISTERS);
if (addr < NUMBER_OF_CPU_REGISTERS) {
switch (addr) {
case 0 ... 31:
/* CPU registers */
env->r[addr] = data;
} else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
/* IO registers */
helper_outb(env, addr - NUMBER_OF_CPU_REGISTERS, data);
} else {
/* memory */
break;
case REG_38_RAMPD + 0x38 + NUMBER_OF_CPU_REGISTERS:
if (avr_feature(env, AVR_FEATURE_RAMPD)) {
env->rampD = data << 16;
}
break;
case REG_38_RAMPX + 0x38 + NUMBER_OF_CPU_REGISTERS:
if (avr_feature(env, AVR_FEATURE_RAMPX)) {
env->rampX = data << 16;
}
break;
case REG_38_RAMPY + 0x38 + NUMBER_OF_CPU_REGISTERS:
if (avr_feature(env, AVR_FEATURE_RAMPY)) {
env->rampY = data << 16;
}
break;
case REG_38_RAMPZ + 0x38 + NUMBER_OF_CPU_REGISTERS:
if (avr_feature(env, AVR_FEATURE_RAMPZ)) {
env->rampZ = data << 16;
}
break;
case REG_38_EIDN + 0x38 + NUMBER_OF_CPU_REGISTERS:
env->eind = data << 16;
break;
case REG_38_SPL + 0x38 + NUMBER_OF_CPU_REGISTERS:
env->sp = (env->sp & 0xff00) | data;
break;
case REG_38_SPH + 0x38 + NUMBER_OF_CPU_REGISTERS:
if (avr_feature(env, AVR_FEATURE_2_BYTE_SP)) {
env->sp = (env->sp & 0x00ff) | (data << 8);
}
break;
case REG_38_SREG + 0x38 + NUMBER_OF_CPU_REGISTERS:
cpu_set_sreg(env, data);
break;
default:
address_space_stb(&address_space_memory, OFFSET_DATA + addr, data,
MEMTXATTRS_UNSPECIFIED, NULL);
break;
}
}

View file

@ -23,7 +23,4 @@ DEF_HELPER_1(debug, noreturn, env)
DEF_HELPER_1(break, noreturn, env)
DEF_HELPER_1(sleep, noreturn, env)
DEF_HELPER_1(unsupported, noreturn, env)
DEF_HELPER_3(outb, void, env, i32, i32)
DEF_HELPER_2(inb, tl, env, i32)
DEF_HELPER_3(fullwr, void, env, i32, i32)
DEF_HELPER_2(fullrd, tl, env, i32)

View file

@ -194,6 +194,9 @@ static bool avr_have_feature(DisasContext *ctx, int feature)
static bool decode_insn(DisasContext *ctx, uint16_t insn);
#include "decode-insn.c.inc"
static void gen_inb(DisasContext *ctx, TCGv data, int port);
static void gen_outb(DisasContext *ctx, TCGv data, int port);
/*
* Arithmetic Instructions
*/
@ -1293,9 +1296,8 @@ static bool trans_SBRS(DisasContext *ctx, arg_SBRS *a)
static bool trans_SBIC(DisasContext *ctx, arg_SBIC *a)
{
TCGv data = tcg_temp_new_i32();
TCGv port = tcg_constant_i32(a->reg);
gen_helper_inb(data, tcg_env, port);
gen_inb(ctx, data, a->reg);
tcg_gen_andi_tl(data, data, 1 << a->bit);
ctx->skip_cond = TCG_COND_EQ;
ctx->skip_var0 = data;
@ -1311,9 +1313,8 @@ static bool trans_SBIC(DisasContext *ctx, arg_SBIC *a)
static bool trans_SBIS(DisasContext *ctx, arg_SBIS *a)
{
TCGv data = tcg_temp_new_i32();
TCGv port = tcg_constant_i32(a->reg);
gen_helper_inb(data, tcg_env, port);
gen_inb(ctx, data, a->reg);
tcg_gen_andi_tl(data, data, 1 << a->bit);
ctx->skip_cond = TCG_COND_NE;
ctx->skip_var0 = data;
@ -1502,11 +1503,18 @@ static void gen_data_store(DisasContext *ctx, TCGv data, TCGv addr)
static void gen_data_load(DisasContext *ctx, TCGv data, TCGv addr)
{
if (ctx->base.tb->flags & TB_FLAGS_FULL_ACCESS) {
gen_helper_fullrd(data, tcg_env, addr);
} else {
tcg_gen_qemu_ld_tl(data, addr, MMU_DATA_IDX, MO_UB);
}
static void gen_inb(DisasContext *ctx, TCGv data, int port)
{
gen_data_load(ctx, data, tcg_constant_i32(port + NUMBER_OF_CPU_REGISTERS));
}
static void gen_outb(DisasContext *ctx, TCGv data, int port)
{
gen_helper_fullwr(tcg_env, data,
tcg_constant_i32(port + NUMBER_OF_CPU_REGISTERS));
}
/*
@ -2126,9 +2134,8 @@ static bool trans_SPMX(DisasContext *ctx, arg_SPMX *a)
static bool trans_IN(DisasContext *ctx, arg_IN *a)
{
TCGv Rd = cpu_r[a->rd];
TCGv port = tcg_constant_i32(a->imm);
gen_helper_inb(Rd, tcg_env, port);
gen_inb(ctx, Rd, a->imm);
return true;
}
@ -2139,9 +2146,8 @@ static bool trans_IN(DisasContext *ctx, arg_IN *a)
static bool trans_OUT(DisasContext *ctx, arg_OUT *a)
{
TCGv Rd = cpu_r[a->rd];
TCGv port = tcg_constant_i32(a->imm);
gen_helper_outb(tcg_env, port, Rd);
gen_outb(ctx, Rd, a->imm);
return true;
}
@ -2407,11 +2413,10 @@ static bool trans_SWAP(DisasContext *ctx, arg_SWAP *a)
static bool trans_SBI(DisasContext *ctx, arg_SBI *a)
{
TCGv data = tcg_temp_new_i32();
TCGv port = tcg_constant_i32(a->reg);
gen_helper_inb(data, tcg_env, port);
gen_inb(ctx, data, a->reg);
tcg_gen_ori_tl(data, data, 1 << a->bit);
gen_helper_outb(tcg_env, port, data);
gen_outb(ctx, data, a->reg);
return true;
}
@ -2422,11 +2427,10 @@ static bool trans_SBI(DisasContext *ctx, arg_SBI *a)
static bool trans_CBI(DisasContext *ctx, arg_CBI *a)
{
TCGv data = tcg_temp_new_i32();
TCGv port = tcg_constant_i32(a->reg);
gen_helper_inb(data, tcg_env, port);
gen_inb(ctx, data, a->reg);
tcg_gen_andi_tl(data, data, ~(1 << a->bit));
gen_helper_outb(tcg_env, port, data);
gen_outb(ctx, data, a->reg);
return true;
}