mirror of
https://github.com/Motorhead1991/qemu.git
synced 2025-08-06 09:13:55 -06:00
hw: move MC146818RTC to hw/timer/, configure via default-configs/
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This commit is contained in:
parent
a100107d56
commit
0ddfaf7fe4
20 changed files with 18 additions and 9 deletions
913
hw/timer/mc146818rtc.c
Normal file
913
hw/timer/mc146818rtc.c
Normal file
|
@ -0,0 +1,913 @@
|
|||
/*
|
||||
* QEMU MC146818 RTC emulation
|
||||
*
|
||||
* Copyright (c) 2003-2004 Fabrice Bellard
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
||||
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||
* THE SOFTWARE.
|
||||
*/
|
||||
#include "hw/hw.h"
|
||||
#include "qemu/timer.h"
|
||||
#include "sysemu/sysemu.h"
|
||||
#include "hw/timer/mc146818rtc.h"
|
||||
#include "qapi/visitor.h"
|
||||
|
||||
#ifdef TARGET_I386
|
||||
#include "hw/i386/apic.h"
|
||||
#endif
|
||||
|
||||
//#define DEBUG_CMOS
|
||||
//#define DEBUG_COALESCED
|
||||
|
||||
#ifdef DEBUG_CMOS
|
||||
# define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
|
||||
#else
|
||||
# define CMOS_DPRINTF(format, ...) do { } while (0)
|
||||
#endif
|
||||
|
||||
#ifdef DEBUG_COALESCED
|
||||
# define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__)
|
||||
#else
|
||||
# define DPRINTF_C(format, ...) do { } while (0)
|
||||
#endif
|
||||
|
||||
#define NSEC_PER_SEC 1000000000LL
|
||||
#define SEC_PER_MIN 60
|
||||
#define MIN_PER_HOUR 60
|
||||
#define SEC_PER_HOUR 3600
|
||||
#define HOUR_PER_DAY 24
|
||||
#define SEC_PER_DAY 86400
|
||||
|
||||
#define RTC_REINJECT_ON_ACK_COUNT 20
|
||||
#define RTC_CLOCK_RATE 32768
|
||||
#define UIP_HOLD_LENGTH (8 * NSEC_PER_SEC / 32768)
|
||||
|
||||
typedef struct RTCState {
|
||||
ISADevice dev;
|
||||
MemoryRegion io;
|
||||
uint8_t cmos_data[128];
|
||||
uint8_t cmos_index;
|
||||
int32_t base_year;
|
||||
uint64_t base_rtc;
|
||||
uint64_t last_update;
|
||||
int64_t offset;
|
||||
qemu_irq irq;
|
||||
qemu_irq sqw_irq;
|
||||
int it_shift;
|
||||
/* periodic timer */
|
||||
QEMUTimer *periodic_timer;
|
||||
int64_t next_periodic_time;
|
||||
/* update-ended timer */
|
||||
QEMUTimer *update_timer;
|
||||
uint64_t next_alarm_time;
|
||||
uint16_t irq_reinject_on_ack_count;
|
||||
uint32_t irq_coalesced;
|
||||
uint32_t period;
|
||||
QEMUTimer *coalesced_timer;
|
||||
Notifier clock_reset_notifier;
|
||||
LostTickPolicy lost_tick_policy;
|
||||
Notifier suspend_notifier;
|
||||
} RTCState;
|
||||
|
||||
static void rtc_set_time(RTCState *s);
|
||||
static void rtc_update_time(RTCState *s);
|
||||
static void rtc_set_cmos(RTCState *s, const struct tm *tm);
|
||||
static inline int rtc_from_bcd(RTCState *s, int a);
|
||||
static uint64_t get_next_alarm(RTCState *s);
|
||||
|
||||
static inline bool rtc_running(RTCState *s)
|
||||
{
|
||||
return (!(s->cmos_data[RTC_REG_B] & REG_B_SET) &&
|
||||
(s->cmos_data[RTC_REG_A] & 0x70) <= 0x20);
|
||||
}
|
||||
|
||||
static uint64_t get_guest_rtc_ns(RTCState *s)
|
||||
{
|
||||
uint64_t guest_rtc;
|
||||
uint64_t guest_clock = qemu_get_clock_ns(rtc_clock);
|
||||
|
||||
guest_rtc = s->base_rtc * NSEC_PER_SEC
|
||||
+ guest_clock - s->last_update + s->offset;
|
||||
return guest_rtc;
|
||||
}
|
||||
|
||||
#ifdef TARGET_I386
|
||||
static void rtc_coalesced_timer_update(RTCState *s)
|
||||
{
|
||||
if (s->irq_coalesced == 0) {
|
||||
qemu_del_timer(s->coalesced_timer);
|
||||
} else {
|
||||
/* divide each RTC interval to 2 - 8 smaller intervals */
|
||||
int c = MIN(s->irq_coalesced, 7) + 1;
|
||||
int64_t next_clock = qemu_get_clock_ns(rtc_clock) +
|
||||
muldiv64(s->period / c, get_ticks_per_sec(), RTC_CLOCK_RATE);
|
||||
qemu_mod_timer(s->coalesced_timer, next_clock);
|
||||
}
|
||||
}
|
||||
|
||||
static void rtc_coalesced_timer(void *opaque)
|
||||
{
|
||||
RTCState *s = opaque;
|
||||
|
||||
if (s->irq_coalesced != 0) {
|
||||
apic_reset_irq_delivered();
|
||||
s->cmos_data[RTC_REG_C] |= 0xc0;
|
||||
DPRINTF_C("cmos: injecting from timer\n");
|
||||
qemu_irq_raise(s->irq);
|
||||
if (apic_get_irq_delivered()) {
|
||||
s->irq_coalesced--;
|
||||
DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
|
||||
s->irq_coalesced);
|
||||
}
|
||||
}
|
||||
|
||||
rtc_coalesced_timer_update(s);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* handle periodic timer */
|
||||
static void periodic_timer_update(RTCState *s, int64_t current_time)
|
||||
{
|
||||
int period_code, period;
|
||||
int64_t cur_clock, next_irq_clock;
|
||||
|
||||
period_code = s->cmos_data[RTC_REG_A] & 0x0f;
|
||||
if (period_code != 0
|
||||
&& ((s->cmos_data[RTC_REG_B] & REG_B_PIE)
|
||||
|| ((s->cmos_data[RTC_REG_B] & REG_B_SQWE) && s->sqw_irq))) {
|
||||
if (period_code <= 2)
|
||||
period_code += 7;
|
||||
/* period in 32 Khz cycles */
|
||||
period = 1 << (period_code - 1);
|
||||
#ifdef TARGET_I386
|
||||
if (period != s->period) {
|
||||
s->irq_coalesced = (s->irq_coalesced * s->period) / period;
|
||||
DPRINTF_C("cmos: coalesced irqs scaled to %d\n", s->irq_coalesced);
|
||||
}
|
||||
s->period = period;
|
||||
#endif
|
||||
/* compute 32 khz clock */
|
||||
cur_clock = muldiv64(current_time, RTC_CLOCK_RATE, get_ticks_per_sec());
|
||||
next_irq_clock = (cur_clock & ~(period - 1)) + period;
|
||||
s->next_periodic_time =
|
||||
muldiv64(next_irq_clock, get_ticks_per_sec(), RTC_CLOCK_RATE) + 1;
|
||||
qemu_mod_timer(s->periodic_timer, s->next_periodic_time);
|
||||
} else {
|
||||
#ifdef TARGET_I386
|
||||
s->irq_coalesced = 0;
|
||||
#endif
|
||||
qemu_del_timer(s->periodic_timer);
|
||||
}
|
||||
}
|
||||
|
||||
static void rtc_periodic_timer(void *opaque)
|
||||
{
|
||||
RTCState *s = opaque;
|
||||
|
||||
periodic_timer_update(s, s->next_periodic_time);
|
||||
s->cmos_data[RTC_REG_C] |= REG_C_PF;
|
||||
if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
|
||||
s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
|
||||
#ifdef TARGET_I386
|
||||
if (s->lost_tick_policy == LOST_TICK_SLEW) {
|
||||
if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT)
|
||||
s->irq_reinject_on_ack_count = 0;
|
||||
apic_reset_irq_delivered();
|
||||
qemu_irq_raise(s->irq);
|
||||
if (!apic_get_irq_delivered()) {
|
||||
s->irq_coalesced++;
|
||||
rtc_coalesced_timer_update(s);
|
||||
DPRINTF_C("cmos: coalesced irqs increased to %d\n",
|
||||
s->irq_coalesced);
|
||||
}
|
||||
} else
|
||||
#endif
|
||||
qemu_irq_raise(s->irq);
|
||||
}
|
||||
if (s->cmos_data[RTC_REG_B] & REG_B_SQWE) {
|
||||
/* Not square wave at all but we don't want 2048Hz interrupts!
|
||||
Must be seen as a pulse. */
|
||||
qemu_irq_raise(s->sqw_irq);
|
||||
}
|
||||
}
|
||||
|
||||
/* handle update-ended timer */
|
||||
static void check_update_timer(RTCState *s)
|
||||
{
|
||||
uint64_t next_update_time;
|
||||
uint64_t guest_nsec;
|
||||
int next_alarm_sec;
|
||||
|
||||
/* From the data sheet: "Holding the dividers in reset prevents
|
||||
* interrupts from operating, while setting the SET bit allows"
|
||||
* them to occur. However, it will prevent an alarm interrupt
|
||||
* from occurring, because the time of day is not updated.
|
||||
*/
|
||||
if ((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) {
|
||||
qemu_del_timer(s->update_timer);
|
||||
return;
|
||||
}
|
||||
if ((s->cmos_data[RTC_REG_C] & REG_C_UF) &&
|
||||
(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
|
||||
qemu_del_timer(s->update_timer);
|
||||
return;
|
||||
}
|
||||
if ((s->cmos_data[RTC_REG_C] & REG_C_UF) &&
|
||||
(s->cmos_data[RTC_REG_C] & REG_C_AF)) {
|
||||
qemu_del_timer(s->update_timer);
|
||||
return;
|
||||
}
|
||||
|
||||
guest_nsec = get_guest_rtc_ns(s) % NSEC_PER_SEC;
|
||||
/* if UF is clear, reprogram to next second */
|
||||
next_update_time = qemu_get_clock_ns(rtc_clock)
|
||||
+ NSEC_PER_SEC - guest_nsec;
|
||||
|
||||
/* Compute time of next alarm. One second is already accounted
|
||||
* for in next_update_time.
|
||||
*/
|
||||
next_alarm_sec = get_next_alarm(s);
|
||||
s->next_alarm_time = next_update_time + (next_alarm_sec - 1) * NSEC_PER_SEC;
|
||||
|
||||
if (s->cmos_data[RTC_REG_C] & REG_C_UF) {
|
||||
/* UF is set, but AF is clear. Program the timer to target
|
||||
* the alarm time. */
|
||||
next_update_time = s->next_alarm_time;
|
||||
}
|
||||
if (next_update_time != qemu_timer_expire_time_ns(s->update_timer)) {
|
||||
qemu_mod_timer(s->update_timer, next_update_time);
|
||||
}
|
||||
}
|
||||
|
||||
static inline uint8_t convert_hour(RTCState *s, uint8_t hour)
|
||||
{
|
||||
if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
|
||||
hour %= 12;
|
||||
if (s->cmos_data[RTC_HOURS] & 0x80) {
|
||||
hour += 12;
|
||||
}
|
||||
}
|
||||
return hour;
|
||||
}
|
||||
|
||||
static uint64_t get_next_alarm(RTCState *s)
|
||||
{
|
||||
int32_t alarm_sec, alarm_min, alarm_hour, cur_hour, cur_min, cur_sec;
|
||||
int32_t hour, min, sec;
|
||||
|
||||
rtc_update_time(s);
|
||||
|
||||
alarm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]);
|
||||
alarm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]);
|
||||
alarm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]);
|
||||
alarm_hour = alarm_hour == -1 ? -1 : convert_hour(s, alarm_hour);
|
||||
|
||||
cur_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
|
||||
cur_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
|
||||
cur_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS]);
|
||||
cur_hour = convert_hour(s, cur_hour);
|
||||
|
||||
if (alarm_hour == -1) {
|
||||
alarm_hour = cur_hour;
|
||||
if (alarm_min == -1) {
|
||||
alarm_min = cur_min;
|
||||
if (alarm_sec == -1) {
|
||||
alarm_sec = cur_sec + 1;
|
||||
} else if (cur_sec > alarm_sec) {
|
||||
alarm_min++;
|
||||
}
|
||||
} else if (cur_min == alarm_min) {
|
||||
if (alarm_sec == -1) {
|
||||
alarm_sec = cur_sec + 1;
|
||||
} else {
|
||||
if (cur_sec > alarm_sec) {
|
||||
alarm_hour++;
|
||||
}
|
||||
}
|
||||
if (alarm_sec == SEC_PER_MIN) {
|
||||
/* wrap to next hour, minutes is not in don't care mode */
|
||||
alarm_sec = 0;
|
||||
alarm_hour++;
|
||||
}
|
||||
} else if (cur_min > alarm_min) {
|
||||
alarm_hour++;
|
||||
}
|
||||
} else if (cur_hour == alarm_hour) {
|
||||
if (alarm_min == -1) {
|
||||
alarm_min = cur_min;
|
||||
if (alarm_sec == -1) {
|
||||
alarm_sec = cur_sec + 1;
|
||||
} else if (cur_sec > alarm_sec) {
|
||||
alarm_min++;
|
||||
}
|
||||
|
||||
if (alarm_sec == SEC_PER_MIN) {
|
||||
alarm_sec = 0;
|
||||
alarm_min++;
|
||||
}
|
||||
/* wrap to next day, hour is not in don't care mode */
|
||||
alarm_min %= MIN_PER_HOUR;
|
||||
} else if (cur_min == alarm_min) {
|
||||
if (alarm_sec == -1) {
|
||||
alarm_sec = cur_sec + 1;
|
||||
}
|
||||
/* wrap to next day, hours+minutes not in don't care mode */
|
||||
alarm_sec %= SEC_PER_MIN;
|
||||
}
|
||||
}
|
||||
|
||||
/* values that are still don't care fire at the next min/sec */
|
||||
if (alarm_min == -1) {
|
||||
alarm_min = 0;
|
||||
}
|
||||
if (alarm_sec == -1) {
|
||||
alarm_sec = 0;
|
||||
}
|
||||
|
||||
/* keep values in range */
|
||||
if (alarm_sec == SEC_PER_MIN) {
|
||||
alarm_sec = 0;
|
||||
alarm_min++;
|
||||
}
|
||||
if (alarm_min == MIN_PER_HOUR) {
|
||||
alarm_min = 0;
|
||||
alarm_hour++;
|
||||
}
|
||||
alarm_hour %= HOUR_PER_DAY;
|
||||
|
||||
hour = alarm_hour - cur_hour;
|
||||
min = hour * MIN_PER_HOUR + alarm_min - cur_min;
|
||||
sec = min * SEC_PER_MIN + alarm_sec - cur_sec;
|
||||
return sec <= 0 ? sec + SEC_PER_DAY : sec;
|
||||
}
|
||||
|
||||
static void rtc_update_timer(void *opaque)
|
||||
{
|
||||
RTCState *s = opaque;
|
||||
int32_t irqs = REG_C_UF;
|
||||
int32_t new_irqs;
|
||||
|
||||
assert((s->cmos_data[RTC_REG_A] & 0x60) != 0x60);
|
||||
|
||||
/* UIP might have been latched, update time and clear it. */
|
||||
rtc_update_time(s);
|
||||
s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
|
||||
|
||||
if (qemu_get_clock_ns(rtc_clock) >= s->next_alarm_time) {
|
||||
irqs |= REG_C_AF;
|
||||
if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
|
||||
qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC);
|
||||
}
|
||||
}
|
||||
|
||||
new_irqs = irqs & ~s->cmos_data[RTC_REG_C];
|
||||
s->cmos_data[RTC_REG_C] |= irqs;
|
||||
if ((new_irqs & s->cmos_data[RTC_REG_B]) != 0) {
|
||||
s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
|
||||
qemu_irq_raise(s->irq);
|
||||
}
|
||||
check_update_timer(s);
|
||||
}
|
||||
|
||||
static void cmos_ioport_write(void *opaque, hwaddr addr,
|
||||
uint64_t data, unsigned size)
|
||||
{
|
||||
RTCState *s = opaque;
|
||||
|
||||
if ((addr & 1) == 0) {
|
||||
s->cmos_index = data & 0x7f;
|
||||
} else {
|
||||
CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02x\n",
|
||||
s->cmos_index, data);
|
||||
switch(s->cmos_index) {
|
||||
case RTC_SECONDS_ALARM:
|
||||
case RTC_MINUTES_ALARM:
|
||||
case RTC_HOURS_ALARM:
|
||||
s->cmos_data[s->cmos_index] = data;
|
||||
check_update_timer(s);
|
||||
break;
|
||||
case RTC_IBM_PS2_CENTURY_BYTE:
|
||||
s->cmos_index = RTC_CENTURY;
|
||||
/* fall through */
|
||||
case RTC_CENTURY:
|
||||
case RTC_SECONDS:
|
||||
case RTC_MINUTES:
|
||||
case RTC_HOURS:
|
||||
case RTC_DAY_OF_WEEK:
|
||||
case RTC_DAY_OF_MONTH:
|
||||
case RTC_MONTH:
|
||||
case RTC_YEAR:
|
||||
s->cmos_data[s->cmos_index] = data;
|
||||
/* if in set mode, do not update the time */
|
||||
if (rtc_running(s)) {
|
||||
rtc_set_time(s);
|
||||
check_update_timer(s);
|
||||
}
|
||||
break;
|
||||
case RTC_REG_A:
|
||||
if ((data & 0x60) == 0x60) {
|
||||
if (rtc_running(s)) {
|
||||
rtc_update_time(s);
|
||||
}
|
||||
/* What happens to UIP when divider reset is enabled is
|
||||
* unclear from the datasheet. Shouldn't matter much
|
||||
* though.
|
||||
*/
|
||||
s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
|
||||
} else if (((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) &&
|
||||
(data & 0x70) <= 0x20) {
|
||||
/* when the divider reset is removed, the first update cycle
|
||||
* begins one-half second later*/
|
||||
if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
|
||||
s->offset = 500000000;
|
||||
rtc_set_time(s);
|
||||
}
|
||||
s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
|
||||
}
|
||||
/* UIP bit is read only */
|
||||
s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
|
||||
(s->cmos_data[RTC_REG_A] & REG_A_UIP);
|
||||
periodic_timer_update(s, qemu_get_clock_ns(rtc_clock));
|
||||
check_update_timer(s);
|
||||
break;
|
||||
case RTC_REG_B:
|
||||
if (data & REG_B_SET) {
|
||||
/* update cmos to when the rtc was stopping */
|
||||
if (rtc_running(s)) {
|
||||
rtc_update_time(s);
|
||||
}
|
||||
/* set mode: reset UIP mode */
|
||||
s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
|
||||
data &= ~REG_B_UIE;
|
||||
} else {
|
||||
/* if disabling set mode, update the time */
|
||||
if ((s->cmos_data[RTC_REG_B] & REG_B_SET) &&
|
||||
(s->cmos_data[RTC_REG_A] & 0x70) <= 0x20) {
|
||||
s->offset = get_guest_rtc_ns(s) % NSEC_PER_SEC;
|
||||
rtc_set_time(s);
|
||||
}
|
||||
}
|
||||
/* if an interrupt flag is already set when the interrupt
|
||||
* becomes enabled, raise an interrupt immediately. */
|
||||
if (data & s->cmos_data[RTC_REG_C] & REG_C_MASK) {
|
||||
s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
|
||||
qemu_irq_raise(s->irq);
|
||||
} else {
|
||||
s->cmos_data[RTC_REG_C] &= ~REG_C_IRQF;
|
||||
qemu_irq_lower(s->irq);
|
||||
}
|
||||
s->cmos_data[RTC_REG_B] = data;
|
||||
periodic_timer_update(s, qemu_get_clock_ns(rtc_clock));
|
||||
check_update_timer(s);
|
||||
break;
|
||||
case RTC_REG_C:
|
||||
case RTC_REG_D:
|
||||
/* cannot write to them */
|
||||
break;
|
||||
default:
|
||||
s->cmos_data[s->cmos_index] = data;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static inline int rtc_to_bcd(RTCState *s, int a)
|
||||
{
|
||||
if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
|
||||
return a;
|
||||
} else {
|
||||
return ((a / 10) << 4) | (a % 10);
|
||||
}
|
||||
}
|
||||
|
||||
static inline int rtc_from_bcd(RTCState *s, int a)
|
||||
{
|
||||
if ((a & 0xc0) == 0xc0) {
|
||||
return -1;
|
||||
}
|
||||
if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
|
||||
return a;
|
||||
} else {
|
||||
return ((a >> 4) * 10) + (a & 0x0f);
|
||||
}
|
||||
}
|
||||
|
||||
static void rtc_get_time(RTCState *s, struct tm *tm)
|
||||
{
|
||||
tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
|
||||
tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
|
||||
tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
|
||||
if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
|
||||
tm->tm_hour %= 12;
|
||||
if (s->cmos_data[RTC_HOURS] & 0x80) {
|
||||
tm->tm_hour += 12;
|
||||
}
|
||||
}
|
||||
tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
|
||||
tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
|
||||
tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
|
||||
tm->tm_year =
|
||||
rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year +
|
||||
rtc_from_bcd(s, s->cmos_data[RTC_CENTURY]) * 100 - 1900;
|
||||
}
|
||||
|
||||
static void rtc_set_time(RTCState *s)
|
||||
{
|
||||
struct tm tm;
|
||||
|
||||
rtc_get_time(s, &tm);
|
||||
s->base_rtc = mktimegm(&tm);
|
||||
s->last_update = qemu_get_clock_ns(rtc_clock);
|
||||
|
||||
rtc_change_mon_event(&tm);
|
||||
}
|
||||
|
||||
static void rtc_set_cmos(RTCState *s, const struct tm *tm)
|
||||
{
|
||||
int year;
|
||||
|
||||
s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec);
|
||||
s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min);
|
||||
if (s->cmos_data[RTC_REG_B] & REG_B_24H) {
|
||||
/* 24 hour format */
|
||||
s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour);
|
||||
} else {
|
||||
/* 12 hour format */
|
||||
int h = (tm->tm_hour % 12) ? tm->tm_hour % 12 : 12;
|
||||
s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, h);
|
||||
if (tm->tm_hour >= 12)
|
||||
s->cmos_data[RTC_HOURS] |= 0x80;
|
||||
}
|
||||
s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1);
|
||||
s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday);
|
||||
s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1);
|
||||
year = tm->tm_year + 1900 - s->base_year;
|
||||
s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year % 100);
|
||||
s->cmos_data[RTC_CENTURY] = rtc_to_bcd(s, year / 100);
|
||||
}
|
||||
|
||||
static void rtc_update_time(RTCState *s)
|
||||
{
|
||||
struct tm ret;
|
||||
time_t guest_sec;
|
||||
int64_t guest_nsec;
|
||||
|
||||
guest_nsec = get_guest_rtc_ns(s);
|
||||
guest_sec = guest_nsec / NSEC_PER_SEC;
|
||||
gmtime_r(&guest_sec, &ret);
|
||||
|
||||
/* Is SET flag of Register B disabled? */
|
||||
if ((s->cmos_data[RTC_REG_B] & REG_B_SET) == 0) {
|
||||
rtc_set_cmos(s, &ret);
|
||||
}
|
||||
}
|
||||
|
||||
static int update_in_progress(RTCState *s)
|
||||
{
|
||||
int64_t guest_nsec;
|
||||
|
||||
if (!rtc_running(s)) {
|
||||
return 0;
|
||||
}
|
||||
if (qemu_timer_pending(s->update_timer)) {
|
||||
int64_t next_update_time = qemu_timer_expire_time_ns(s->update_timer);
|
||||
/* Latch UIP until the timer expires. */
|
||||
if (qemu_get_clock_ns(rtc_clock) >= (next_update_time - UIP_HOLD_LENGTH)) {
|
||||
s->cmos_data[RTC_REG_A] |= REG_A_UIP;
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
guest_nsec = get_guest_rtc_ns(s);
|
||||
/* UIP bit will be set at last 244us of every second. */
|
||||
if ((guest_nsec % NSEC_PER_SEC) >= (NSEC_PER_SEC - UIP_HOLD_LENGTH)) {
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static uint64_t cmos_ioport_read(void *opaque, hwaddr addr,
|
||||
unsigned size)
|
||||
{
|
||||
RTCState *s = opaque;
|
||||
int ret;
|
||||
if ((addr & 1) == 0) {
|
||||
return 0xff;
|
||||
} else {
|
||||
switch(s->cmos_index) {
|
||||
case RTC_IBM_PS2_CENTURY_BYTE:
|
||||
s->cmos_index = RTC_CENTURY;
|
||||
/* fall through */
|
||||
case RTC_CENTURY:
|
||||
case RTC_SECONDS:
|
||||
case RTC_MINUTES:
|
||||
case RTC_HOURS:
|
||||
case RTC_DAY_OF_WEEK:
|
||||
case RTC_DAY_OF_MONTH:
|
||||
case RTC_MONTH:
|
||||
case RTC_YEAR:
|
||||
/* if not in set mode, calibrate cmos before
|
||||
* reading*/
|
||||
if (rtc_running(s)) {
|
||||
rtc_update_time(s);
|
||||
}
|
||||
ret = s->cmos_data[s->cmos_index];
|
||||
break;
|
||||
case RTC_REG_A:
|
||||
if (update_in_progress(s)) {
|
||||
s->cmos_data[s->cmos_index] |= REG_A_UIP;
|
||||
} else {
|
||||
s->cmos_data[s->cmos_index] &= ~REG_A_UIP;
|
||||
}
|
||||
ret = s->cmos_data[s->cmos_index];
|
||||
break;
|
||||
case RTC_REG_C:
|
||||
ret = s->cmos_data[s->cmos_index];
|
||||
qemu_irq_lower(s->irq);
|
||||
s->cmos_data[RTC_REG_C] = 0x00;
|
||||
if (ret & (REG_C_UF | REG_C_AF)) {
|
||||
check_update_timer(s);
|
||||
}
|
||||
#ifdef TARGET_I386
|
||||
if(s->irq_coalesced &&
|
||||
(s->cmos_data[RTC_REG_B] & REG_B_PIE) &&
|
||||
s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) {
|
||||
s->irq_reinject_on_ack_count++;
|
||||
s->cmos_data[RTC_REG_C] |= REG_C_IRQF | REG_C_PF;
|
||||
apic_reset_irq_delivered();
|
||||
DPRINTF_C("cmos: injecting on ack\n");
|
||||
qemu_irq_raise(s->irq);
|
||||
if (apic_get_irq_delivered()) {
|
||||
s->irq_coalesced--;
|
||||
DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
|
||||
s->irq_coalesced);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
break;
|
||||
default:
|
||||
ret = s->cmos_data[s->cmos_index];
|
||||
break;
|
||||
}
|
||||
CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
|
||||
s->cmos_index, ret);
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
|
||||
void rtc_set_memory(ISADevice *dev, int addr, int val)
|
||||
{
|
||||
RTCState *s = DO_UPCAST(RTCState, dev, dev);
|
||||
if (addr >= 0 && addr <= 127)
|
||||
s->cmos_data[addr] = val;
|
||||
}
|
||||
|
||||
static void rtc_set_date_from_host(ISADevice *dev)
|
||||
{
|
||||
RTCState *s = DO_UPCAST(RTCState, dev, dev);
|
||||
struct tm tm;
|
||||
|
||||
qemu_get_timedate(&tm, 0);
|
||||
|
||||
s->base_rtc = mktimegm(&tm);
|
||||
s->last_update = qemu_get_clock_ns(rtc_clock);
|
||||
s->offset = 0;
|
||||
|
||||
/* set the CMOS date */
|
||||
rtc_set_cmos(s, &tm);
|
||||
}
|
||||
|
||||
static int rtc_post_load(void *opaque, int version_id)
|
||||
{
|
||||
RTCState *s = opaque;
|
||||
|
||||
if (version_id <= 2) {
|
||||
rtc_set_time(s);
|
||||
s->offset = 0;
|
||||
check_update_timer(s);
|
||||
}
|
||||
|
||||
#ifdef TARGET_I386
|
||||
if (version_id >= 2) {
|
||||
if (s->lost_tick_policy == LOST_TICK_SLEW) {
|
||||
rtc_coalesced_timer_update(s);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
return 0;
|
||||
}
|
||||
|
||||
static const VMStateDescription vmstate_rtc = {
|
||||
.name = "mc146818rtc",
|
||||
.version_id = 3,
|
||||
.minimum_version_id = 1,
|
||||
.minimum_version_id_old = 1,
|
||||
.post_load = rtc_post_load,
|
||||
.fields = (VMStateField []) {
|
||||
VMSTATE_BUFFER(cmos_data, RTCState),
|
||||
VMSTATE_UINT8(cmos_index, RTCState),
|
||||
VMSTATE_UNUSED(7*4),
|
||||
VMSTATE_TIMER(periodic_timer, RTCState),
|
||||
VMSTATE_INT64(next_periodic_time, RTCState),
|
||||
VMSTATE_UNUSED(3*8),
|
||||
VMSTATE_UINT32_V(irq_coalesced, RTCState, 2),
|
||||
VMSTATE_UINT32_V(period, RTCState, 2),
|
||||
VMSTATE_UINT64_V(base_rtc, RTCState, 3),
|
||||
VMSTATE_UINT64_V(last_update, RTCState, 3),
|
||||
VMSTATE_INT64_V(offset, RTCState, 3),
|
||||
VMSTATE_TIMER_V(update_timer, RTCState, 3),
|
||||
VMSTATE_UINT64_V(next_alarm_time, RTCState, 3),
|
||||
VMSTATE_END_OF_LIST()
|
||||
}
|
||||
};
|
||||
|
||||
static void rtc_notify_clock_reset(Notifier *notifier, void *data)
|
||||
{
|
||||
RTCState *s = container_of(notifier, RTCState, clock_reset_notifier);
|
||||
int64_t now = *(int64_t *)data;
|
||||
|
||||
rtc_set_date_from_host(&s->dev);
|
||||
periodic_timer_update(s, now);
|
||||
check_update_timer(s);
|
||||
#ifdef TARGET_I386
|
||||
if (s->lost_tick_policy == LOST_TICK_SLEW) {
|
||||
rtc_coalesced_timer_update(s);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
|
||||
BIOS will read it and start S3 resume at POST Entry */
|
||||
static void rtc_notify_suspend(Notifier *notifier, void *data)
|
||||
{
|
||||
RTCState *s = container_of(notifier, RTCState, suspend_notifier);
|
||||
rtc_set_memory(&s->dev, 0xF, 0xFE);
|
||||
}
|
||||
|
||||
static void rtc_reset(void *opaque)
|
||||
{
|
||||
RTCState *s = opaque;
|
||||
|
||||
s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
|
||||
s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
|
||||
check_update_timer(s);
|
||||
|
||||
qemu_irq_lower(s->irq);
|
||||
|
||||
#ifdef TARGET_I386
|
||||
if (s->lost_tick_policy == LOST_TICK_SLEW) {
|
||||
s->irq_coalesced = 0;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
static const MemoryRegionOps cmos_ops = {
|
||||
.read = cmos_ioport_read,
|
||||
.write = cmos_ioport_write,
|
||||
.impl = {
|
||||
.min_access_size = 1,
|
||||
.max_access_size = 1,
|
||||
},
|
||||
.endianness = DEVICE_LITTLE_ENDIAN,
|
||||
};
|
||||
|
||||
static void rtc_get_date(Object *obj, Visitor *v, void *opaque,
|
||||
const char *name, Error **errp)
|
||||
{
|
||||
ISADevice *isa = ISA_DEVICE(obj);
|
||||
RTCState *s = DO_UPCAST(RTCState, dev, isa);
|
||||
struct tm current_tm;
|
||||
|
||||
rtc_update_time(s);
|
||||
rtc_get_time(s, ¤t_tm);
|
||||
visit_start_struct(v, NULL, "struct tm", name, 0, errp);
|
||||
visit_type_int32(v, ¤t_tm.tm_year, "tm_year", errp);
|
||||
visit_type_int32(v, ¤t_tm.tm_mon, "tm_mon", errp);
|
||||
visit_type_int32(v, ¤t_tm.tm_mday, "tm_mday", errp);
|
||||
visit_type_int32(v, ¤t_tm.tm_hour, "tm_hour", errp);
|
||||
visit_type_int32(v, ¤t_tm.tm_min, "tm_min", errp);
|
||||
visit_type_int32(v, ¤t_tm.tm_sec, "tm_sec", errp);
|
||||
visit_end_struct(v, errp);
|
||||
}
|
||||
|
||||
static int rtc_initfn(ISADevice *dev)
|
||||
{
|
||||
RTCState *s = DO_UPCAST(RTCState, dev, dev);
|
||||
int base = 0x70;
|
||||
|
||||
s->cmos_data[RTC_REG_A] = 0x26;
|
||||
s->cmos_data[RTC_REG_B] = 0x02;
|
||||
s->cmos_data[RTC_REG_C] = 0x00;
|
||||
s->cmos_data[RTC_REG_D] = 0x80;
|
||||
|
||||
/* This is for historical reasons. The default base year qdev property
|
||||
* was set to 2000 for most machine types before the century byte was
|
||||
* implemented.
|
||||
*
|
||||
* This if statement means that the century byte will be always 0
|
||||
* (at least until 2079...) for base_year = 1980, but will be set
|
||||
* correctly for base_year = 2000.
|
||||
*/
|
||||
if (s->base_year == 2000) {
|
||||
s->base_year = 0;
|
||||
}
|
||||
|
||||
rtc_set_date_from_host(dev);
|
||||
|
||||
#ifdef TARGET_I386
|
||||
switch (s->lost_tick_policy) {
|
||||
case LOST_TICK_SLEW:
|
||||
s->coalesced_timer =
|
||||
qemu_new_timer_ns(rtc_clock, rtc_coalesced_timer, s);
|
||||
break;
|
||||
case LOST_TICK_DISCARD:
|
||||
break;
|
||||
default:
|
||||
return -EINVAL;
|
||||
}
|
||||
#endif
|
||||
|
||||
s->periodic_timer = qemu_new_timer_ns(rtc_clock, rtc_periodic_timer, s);
|
||||
s->update_timer = qemu_new_timer_ns(rtc_clock, rtc_update_timer, s);
|
||||
check_update_timer(s);
|
||||
|
||||
s->clock_reset_notifier.notify = rtc_notify_clock_reset;
|
||||
qemu_register_clock_reset_notifier(rtc_clock, &s->clock_reset_notifier);
|
||||
|
||||
s->suspend_notifier.notify = rtc_notify_suspend;
|
||||
qemu_register_suspend_notifier(&s->suspend_notifier);
|
||||
|
||||
memory_region_init_io(&s->io, &cmos_ops, s, "rtc", 2);
|
||||
isa_register_ioport(dev, &s->io, base);
|
||||
|
||||
qdev_set_legacy_instance_id(&dev->qdev, base, 3);
|
||||
qemu_register_reset(rtc_reset, s);
|
||||
|
||||
object_property_add(OBJECT(s), "date", "struct tm",
|
||||
rtc_get_date, NULL, NULL, s, NULL);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
ISADevice *rtc_init(ISABus *bus, int base_year, qemu_irq intercept_irq)
|
||||
{
|
||||
ISADevice *dev;
|
||||
RTCState *s;
|
||||
|
||||
dev = isa_create(bus, "mc146818rtc");
|
||||
s = DO_UPCAST(RTCState, dev, dev);
|
||||
qdev_prop_set_int32(&dev->qdev, "base_year", base_year);
|
||||
qdev_init_nofail(&dev->qdev);
|
||||
if (intercept_irq) {
|
||||
s->irq = intercept_irq;
|
||||
} else {
|
||||
isa_init_irq(dev, &s->irq, RTC_ISA_IRQ);
|
||||
}
|
||||
return dev;
|
||||
}
|
||||
|
||||
static Property mc146818rtc_properties[] = {
|
||||
DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980),
|
||||
DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState,
|
||||
lost_tick_policy, LOST_TICK_DISCARD),
|
||||
DEFINE_PROP_END_OF_LIST(),
|
||||
};
|
||||
|
||||
static void rtc_class_initfn(ObjectClass *klass, void *data)
|
||||
{
|
||||
DeviceClass *dc = DEVICE_CLASS(klass);
|
||||
ISADeviceClass *ic = ISA_DEVICE_CLASS(klass);
|
||||
ic->init = rtc_initfn;
|
||||
dc->no_user = 1;
|
||||
dc->vmsd = &vmstate_rtc;
|
||||
dc->props = mc146818rtc_properties;
|
||||
}
|
||||
|
||||
static const TypeInfo mc146818rtc_info = {
|
||||
.name = "mc146818rtc",
|
||||
.parent = TYPE_ISA_DEVICE,
|
||||
.instance_size = sizeof(RTCState),
|
||||
.class_init = rtc_class_initfn,
|
||||
};
|
||||
|
||||
static void mc146818rtc_register_types(void)
|
||||
{
|
||||
type_register_static(&mc146818rtc_info);
|
||||
}
|
||||
|
||||
type_init(mc146818rtc_register_types)
|
Loading…
Add table
Add a link
Reference in a new issue