aio: introduce aio_co_schedule and aio_co_wake

aio_co_wake provides the infrastructure to start a coroutine on a "home"
AioContext.  It will be used by CoMutex and CoQueue, so that coroutines
don't jump from one context to another when they go to sleep on a
mutex or waitqueue.  However, it can also be used as a more efficient
alternative to one-shot bottom halves, and saves the effort of tracking
which AioContext a coroutine is running on.

aio_co_schedule is the part of aio_co_wake that starts a coroutine
on a remove AioContext, but it is also useful to implement e.g.
bdrv_set_aio_context callbacks.

The implementation of aio_co_schedule is based on a lock-free
multiple-producer, single-consumer queue.  The multiple producers use
cmpxchg to add to a LIFO stack.  The consumer (a per-AioContext bottom
half) grabs all items added so far, inverts the list to make it FIFO,
and goes through it one item at a time until it's empty.  The data
structure was inspired by OSv, which uses it in the very code we'll
"port" to QEMU for the thread-safe CoMutex.

Most of the new code is really tests.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Fam Zheng <famz@redhat.com>
Message-id: 20170213135235.12274-3-pbonzini@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
This commit is contained in:
Paolo Bonzini 2017-02-13 14:52:19 +01:00 committed by Stefan Hajnoczi
parent c2b38b277a
commit 0c330a734b
9 changed files with 453 additions and 4 deletions

View file

@ -47,6 +47,7 @@ typedef void QEMUBHFunc(void *opaque);
typedef bool AioPollFn(void *opaque);
typedef void IOHandler(void *opaque);
struct Coroutine;
struct ThreadPool;
struct LinuxAioState;
@ -108,6 +109,9 @@ struct AioContext {
bool notified;
EventNotifier notifier;
QSLIST_HEAD(, Coroutine) scheduled_coroutines;
QEMUBH *co_schedule_bh;
/* Thread pool for performing work and receiving completion callbacks.
* Has its own locking.
*/
@ -482,6 +486,34 @@ static inline bool aio_node_check(AioContext *ctx, bool is_external)
return !is_external || !atomic_read(&ctx->external_disable_cnt);
}
/**
* aio_co_schedule:
* @ctx: the aio context
* @co: the coroutine
*
* Start a coroutine on a remote AioContext.
*
* The coroutine must not be entered by anyone else while aio_co_schedule()
* is active. In addition the coroutine must have yielded unless ctx
* is the context in which the coroutine is running (i.e. the value of
* qemu_get_current_aio_context() from the coroutine itself).
*/
void aio_co_schedule(AioContext *ctx, struct Coroutine *co);
/**
* aio_co_wake:
* @co: the coroutine
*
* Restart a coroutine on the AioContext where it was running last, thus
* preventing coroutines from jumping from one context to another when they
* go to sleep.
*
* aio_co_wake may be executed either in coroutine or non-coroutine
* context. The coroutine must not be entered by anyone else while
* aio_co_wake() is active.
*/
void aio_co_wake(struct Coroutine *co);
/**
* Return the AioContext whose event loop runs in the current thread.
*