split definitions for exec.c and translate-all.c radix trees

The exec.c and translate-all.c radix trees are quite different, and
the exec.c one in particular is not limited to the CPU---it can be
used also by devices that do DMA, and in that case the address space
is not limited to TARGET_PHYS_ADDR_SPACE_BITS bits.

We want to make exec.c's radix trees 64-bit wide.  As a first step,
stop sharing the constants between exec.c and translate-all.c.
exec.c gets P_L2_* constants, translate-all.c gets V_L2_*, for
consistency with the existing V_L1_* symbols.  Though actually
in the softmmu case translate-all.c is also indexed by physical
addresses...

This patch has no semantic change.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
This commit is contained in:
Paolo Bonzini 2013-11-07 17:14:36 +01:00 committed by Michael S. Tsirkin
parent 92b8e39c7f
commit 03f4995781
3 changed files with 39 additions and 29 deletions

View file

@ -96,12 +96,16 @@ typedef struct PageDesc {
# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
#endif
/* Size of the L2 (and L3, etc) page tables. */
#define V_L2_BITS 10
#define V_L2_SIZE (1 << V_L2_BITS)
/* The bits remaining after N lower levels of page tables. */
#define V_L1_BITS_REM \
((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
#if V_L1_BITS_REM < 4
#define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
#define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
#else
#define V_L1_BITS V_L1_BITS_REM
#endif
@ -395,18 +399,18 @@ static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
/* Level 2..N-1. */
for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
void **p = *lp;
if (p == NULL) {
if (!alloc) {
return NULL;
}
ALLOC(p, sizeof(void *) * L2_SIZE);
ALLOC(p, sizeof(void *) * V_L2_SIZE);
*lp = p;
}
lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
}
pd = *lp;
@ -414,13 +418,13 @@ static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
if (!alloc) {
return NULL;
}
ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
ALLOC(pd, sizeof(PageDesc) * V_L2_SIZE);
*lp = pd;
}
#undef ALLOC
return pd + (index & (L2_SIZE - 1));
return pd + (index & (V_L2_SIZE - 1));
}
static inline PageDesc *page_find(tb_page_addr_t index)
@ -655,14 +659,14 @@ static void page_flush_tb_1(int level, void **lp)
if (level == 0) {
PageDesc *pd = *lp;
for (i = 0; i < L2_SIZE; ++i) {
for (i = 0; i < V_L2_SIZE; ++i) {
pd[i].first_tb = NULL;
invalidate_page_bitmap(pd + i);
}
} else {
void **pp = *lp;
for (i = 0; i < L2_SIZE; ++i) {
for (i = 0; i < V_L2_SIZE; ++i) {
page_flush_tb_1(level - 1, pp + i);
}
}
@ -673,7 +677,7 @@ static void page_flush_tb(void)
int i;
for (i = 0; i < V_L1_SIZE; i++) {
page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
}
}
@ -1600,7 +1604,7 @@ static int walk_memory_regions_1(struct walk_memory_regions_data *data,
if (level == 0) {
PageDesc *pd = *lp;
for (i = 0; i < L2_SIZE; ++i) {
for (i = 0; i < V_L2_SIZE; ++i) {
int prot = pd[i].flags;
pa = base | (i << TARGET_PAGE_BITS);
@ -1614,9 +1618,9 @@ static int walk_memory_regions_1(struct walk_memory_regions_data *data,
} else {
void **pp = *lp;
for (i = 0; i < L2_SIZE; ++i) {
for (i = 0; i < V_L2_SIZE; ++i) {
pa = base | ((abi_ulong)i <<
(TARGET_PAGE_BITS + L2_BITS * level));
(TARGET_PAGE_BITS + V_L2_BITS * level));
rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
if (rc != 0) {
return rc;
@ -1639,7 +1643,7 @@ int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
for (i = 0; i < V_L1_SIZE; i++) {
int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
V_L1_SHIFT / L2_BITS - 1, l1_map + i);
V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
if (rc != 0) {
return rc;