Accelerators patches

- MAINTAINERS: Update Roman Bolshakov email address
 - HAX: Fix a memory leak
 - HAX/NVMM/WHPX/HVF: Rename per-accel state as AccelCPUState
 - KVM: Restrict specific fields from ArchCPU
 - WHPX: Re-enable cross-build gitlab-ci job on case sensitive filesystems
 - WHPX: Fix error message when setting ProcessorCount fails
 - exec/memory: Add definitions for memory listener priorities
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEE+qvnXhKRciHc/Wuy4+MsLN6twN4FAmScVtkACgkQ4+MsLN6t
 wN7p8A//RXuX9gLFT35zx+5axocU3/XBbCsQWSvzzkYoXxmC/TLxvivO66NPGMc0
 C76b1FJUoLS/u9SyJUeIeYkL0rjkzARUKcRpiJXM21WM6ou8Nkz0kuI4ouowt+4K
 i/4chTjxlN5/4PKlHHcX9ZUJ9acVj01zO1BCuj/bVsxO6WMT1kjL+kplVxxFR3aW
 tlbYtUT3v4xmp94FfE2Q9lR25z4usrGnmz2rchaadlVc43kmsNcQRx+EoUdi148n
 lkViRR90sacYPX586s2yxhPpUdtrXjJmEdX0X00urdPqljkRxekHtyTqG4CRZi+K
 hG5NztK7p37GNNXZroL0gpHyr9IX6hZ3o8rmN3IiCOGU6BgQBRUhvvG2sblwcJ1A
 SSiBK4RWtgyIGWt4U6PgVj8IAu55JuqT5xR2r34fH/zccxXlp/B13vadGs7TUK15
 oHDUT4GnKL2R29lVFTl95BzsxwaMtbB9w01CLJk8va2T/97eqtFgvJyuVC9vZb0N
 41u2RkinaQZ+hbq9TP1G21zpG0eyucEMIQ6loUd7+G3KJFjFfB4JzE2VDm0Y/OVy
 77cEEQ67wts29fMNSqqPIQCMttDrNj7JqMMknGBQS2iHPgF+B3KjwIjnRaMBt73I
 CKPITOJPmb+kvIUsK3KlONdicEG57cBxFBTZW5+P9pJXF5izrAY=
 =b9hj
 -----END PGP SIGNATURE-----

Merge tag 'accel-20230628' of https://github.com/philmd/qemu into staging

Accelerators patches

- MAINTAINERS: Update Roman Bolshakov email address
- HAX: Fix a memory leak
- HAX/NVMM/WHPX/HVF: Rename per-accel state as AccelCPUState
- KVM: Restrict specific fields from ArchCPU
- WHPX: Re-enable cross-build gitlab-ci job on case sensitive filesystems
- WHPX: Fix error message when setting ProcessorCount fails
- exec/memory: Add definitions for memory listener priorities

# -----BEGIN PGP SIGNATURE-----
#
# iQIzBAABCAAdFiEE+qvnXhKRciHc/Wuy4+MsLN6twN4FAmScVtkACgkQ4+MsLN6t
# wN7p8A//RXuX9gLFT35zx+5axocU3/XBbCsQWSvzzkYoXxmC/TLxvivO66NPGMc0
# C76b1FJUoLS/u9SyJUeIeYkL0rjkzARUKcRpiJXM21WM6ou8Nkz0kuI4ouowt+4K
# i/4chTjxlN5/4PKlHHcX9ZUJ9acVj01zO1BCuj/bVsxO6WMT1kjL+kplVxxFR3aW
# tlbYtUT3v4xmp94FfE2Q9lR25z4usrGnmz2rchaadlVc43kmsNcQRx+EoUdi148n
# lkViRR90sacYPX586s2yxhPpUdtrXjJmEdX0X00urdPqljkRxekHtyTqG4CRZi+K
# hG5NztK7p37GNNXZroL0gpHyr9IX6hZ3o8rmN3IiCOGU6BgQBRUhvvG2sblwcJ1A
# SSiBK4RWtgyIGWt4U6PgVj8IAu55JuqT5xR2r34fH/zccxXlp/B13vadGs7TUK15
# oHDUT4GnKL2R29lVFTl95BzsxwaMtbB9w01CLJk8va2T/97eqtFgvJyuVC9vZb0N
# 41u2RkinaQZ+hbq9TP1G21zpG0eyucEMIQ6loUd7+G3KJFjFfB4JzE2VDm0Y/OVy
# 77cEEQ67wts29fMNSqqPIQCMttDrNj7JqMMknGBQS2iHPgF+B3KjwIjnRaMBt73I
# CKPITOJPmb+kvIUsK3KlONdicEG57cBxFBTZW5+P9pJXF5izrAY=
# =b9hj
# -----END PGP SIGNATURE-----
# gpg: Signature made Wed 28 Jun 2023 05:50:49 PM CEST
# gpg:                using RSA key FAABE75E12917221DCFD6BB2E3E32C2CDEADC0DE
# gpg: Good signature from "Philippe Mathieu-Daudé (F4BUG) <f4bug@amsat.org>" [full]

* tag 'accel-20230628' of https://github.com/philmd/qemu: (30 commits)
  exec/memory: Add symbol for the min value of memory listener priority
  exec/memory: Add symbol for memory listener priority for device backend
  exec/memory: Add symbolic value for memory listener priority for accel
  target/i386/WHPX: Fix error message when fail to set ProcessorCount
  target/riscv: Restrict KVM-specific fields from ArchCPU
  target/ppc: Restrict KVM-specific fields from ArchCPU
  target/arm: Restrict KVM-specific fields from ArchCPU
  hw/arm/sbsa-ref: Include missing 'sysemu/kvm.h' header
  hw/intc/arm_gic: Rename 'first_cpu' argument
  hw/intc/arm_gic: Un-inline GIC*/ITS class_name() helpers
  accel/kvm: Declare kvm_direct_msi_allowed in stubs
  accel/kvm: Re-include "exec/memattrs.h" header
  accel: Rename HVF 'struct hvf_vcpu_state' -> AccelCPUState
  accel: Rename 'cpu_state' -> 'cs'
  accel: Inline WHPX get_whpx_vcpu()
  accel: Rename WHPX 'struct whpx_vcpu' -> AccelCPUState
  accel: Remove WHPX unreachable error path
  accel: Inline NVMM get_qemu_vcpu()
  accel: Rename NVMM 'struct qemu_vcpu' -> AccelCPUState
  accel: Remove NVMM unreachable error path
  ...

Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
This commit is contained in:
Richard Henderson 2023-06-29 08:12:48 +02:00
commit 017b2e7363
64 changed files with 582 additions and 559 deletions

View file

@ -76,9 +76,10 @@ Paul Burton <paulburton@kernel.org> <pburton@wavecomp.com>
Philippe Mathieu-Daudé <philmd@linaro.org> <f4bug@amsat.org> Philippe Mathieu-Daudé <philmd@linaro.org> <f4bug@amsat.org>
Philippe Mathieu-Daudé <philmd@linaro.org> <philmd@redhat.com> Philippe Mathieu-Daudé <philmd@linaro.org> <philmd@redhat.com>
Philippe Mathieu-Daudé <philmd@linaro.org> <philmd@fungible.com> Philippe Mathieu-Daudé <philmd@linaro.org> <philmd@fungible.com>
Roman Bolshakov <rbolshakov@ddn.com> <r.bolshakov@yadro.com>
Stefan Brankovic <stefan.brankovic@syrmia.com> <stefan.brankovic@rt-rk.com.com> Stefan Brankovic <stefan.brankovic@syrmia.com> <stefan.brankovic@rt-rk.com.com>
Yongbok Kim <yongbok.kim@mips.com> <yongbok.kim@imgtec.com>
Taylor Simpson <ltaylorsimpson@gmail.com> <tsimpson@quicinc.com> Taylor Simpson <ltaylorsimpson@gmail.com> <tsimpson@quicinc.com>
Yongbok Kim <yongbok.kim@mips.com> <yongbok.kim@imgtec.com>
# Also list preferred name forms where people have changed their # Also list preferred name forms where people have changed their
# git author config, or had utf8/latin1 encoding issues. # git author config, or had utf8/latin1 encoding issues.

View file

@ -498,14 +498,14 @@ F: target/arm/hvf/
X86 HVF CPUs X86 HVF CPUs
M: Cameron Esfahani <dirty@apple.com> M: Cameron Esfahani <dirty@apple.com>
M: Roman Bolshakov <r.bolshakov@yadro.com> M: Roman Bolshakov <rbolshakov@ddn.com>
W: https://wiki.qemu.org/Features/HVF W: https://wiki.qemu.org/Features/HVF
S: Maintained S: Maintained
F: target/i386/hvf/ F: target/i386/hvf/
HVF HVF
M: Cameron Esfahani <dirty@apple.com> M: Cameron Esfahani <dirty@apple.com>
M: Roman Bolshakov <r.bolshakov@yadro.com> M: Roman Bolshakov <rbolshakov@ddn.com>
W: https://wiki.qemu.org/Features/HVF W: https://wiki.qemu.org/Features/HVF
S: Maintained S: Maintained
F: accel/hvf/ F: accel/hvf/

View file

@ -304,7 +304,7 @@ static void hvf_region_del(MemoryListener *listener,
static MemoryListener hvf_memory_listener = { static MemoryListener hvf_memory_listener = {
.name = "hvf", .name = "hvf",
.priority = 10, .priority = MEMORY_LISTENER_PRIORITY_ACCEL,
.region_add = hvf_region_add, .region_add = hvf_region_add,
.region_del = hvf_region_del, .region_del = hvf_region_del,
.log_start = hvf_log_start, .log_start = hvf_log_start,
@ -372,19 +372,19 @@ type_init(hvf_type_init);
static void hvf_vcpu_destroy(CPUState *cpu) static void hvf_vcpu_destroy(CPUState *cpu)
{ {
hv_return_t ret = hv_vcpu_destroy(cpu->hvf->fd); hv_return_t ret = hv_vcpu_destroy(cpu->accel->fd);
assert_hvf_ok(ret); assert_hvf_ok(ret);
hvf_arch_vcpu_destroy(cpu); hvf_arch_vcpu_destroy(cpu);
g_free(cpu->hvf); g_free(cpu->accel);
cpu->hvf = NULL; cpu->accel = NULL;
} }
static int hvf_init_vcpu(CPUState *cpu) static int hvf_init_vcpu(CPUState *cpu)
{ {
int r; int r;
cpu->hvf = g_malloc0(sizeof(*cpu->hvf)); cpu->accel = g_new0(AccelCPUState, 1);
/* init cpu signals */ /* init cpu signals */
struct sigaction sigact; struct sigaction sigact;
@ -393,18 +393,19 @@ static int hvf_init_vcpu(CPUState *cpu)
sigact.sa_handler = dummy_signal; sigact.sa_handler = dummy_signal;
sigaction(SIG_IPI, &sigact, NULL); sigaction(SIG_IPI, &sigact, NULL);
pthread_sigmask(SIG_BLOCK, NULL, &cpu->hvf->unblock_ipi_mask); pthread_sigmask(SIG_BLOCK, NULL, &cpu->accel->unblock_ipi_mask);
sigdelset(&cpu->hvf->unblock_ipi_mask, SIG_IPI); sigdelset(&cpu->accel->unblock_ipi_mask, SIG_IPI);
#ifdef __aarch64__ #ifdef __aarch64__
r = hv_vcpu_create(&cpu->hvf->fd, (hv_vcpu_exit_t **)&cpu->hvf->exit, NULL); r = hv_vcpu_create(&cpu->accel->fd,
(hv_vcpu_exit_t **)&cpu->accel->exit, NULL);
#else #else
r = hv_vcpu_create((hv_vcpuid_t *)&cpu->hvf->fd, HV_VCPU_DEFAULT); r = hv_vcpu_create((hv_vcpuid_t *)&cpu->accel->fd, HV_VCPU_DEFAULT);
#endif #endif
cpu->vcpu_dirty = 1; cpu->vcpu_dirty = 1;
assert_hvf_ok(r); assert_hvf_ok(r);
cpu->hvf->guest_debug_enabled = false; cpu->accel->guest_debug_enabled = false;
return hvf_arch_init_vcpu(cpu); return hvf_arch_init_vcpu(cpu);
} }

View file

@ -1105,6 +1105,7 @@ static MemoryListener kvm_coalesced_pio_listener = {
.name = "kvm-coalesced-pio", .name = "kvm-coalesced-pio",
.coalesced_io_add = kvm_coalesce_pio_add, .coalesced_io_add = kvm_coalesce_pio_add,
.coalesced_io_del = kvm_coalesce_pio_del, .coalesced_io_del = kvm_coalesce_pio_del,
.priority = MEMORY_LISTENER_PRIORITY_MIN,
}; };
int kvm_check_extension(KVMState *s, unsigned int extension) int kvm_check_extension(KVMState *s, unsigned int extension)
@ -1777,7 +1778,7 @@ void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
kml->listener.commit = kvm_region_commit; kml->listener.commit = kvm_region_commit;
kml->listener.log_start = kvm_log_start; kml->listener.log_start = kvm_log_start;
kml->listener.log_stop = kvm_log_stop; kml->listener.log_stop = kvm_log_stop;
kml->listener.priority = 10; kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL;
kml->listener.name = name; kml->listener.name = name;
if (s->kvm_dirty_ring_size) { if (s->kvm_dirty_ring_size) {
@ -1802,7 +1803,7 @@ static MemoryListener kvm_io_listener = {
.name = "kvm-io", .name = "kvm-io",
.eventfd_add = kvm_io_ioeventfd_add, .eventfd_add = kvm_io_ioeventfd_add,
.eventfd_del = kvm_io_ioeventfd_del, .eventfd_del = kvm_io_ioeventfd_del,
.priority = 10, .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND,
}; };
int kvm_set_irq(KVMState *s, int irq, int level) int kvm_set_irq(KVMState *s, int irq, int level)

View file

@ -27,6 +27,7 @@ bool kvm_allowed;
bool kvm_readonly_mem_allowed; bool kvm_readonly_mem_allowed;
bool kvm_ioeventfd_any_length_allowed; bool kvm_ioeventfd_any_length_allowed;
bool kvm_msi_use_devid; bool kvm_msi_use_devid;
bool kvm_direct_msi_allowed;
void kvm_flush_coalesced_mmio_buffer(void) void kvm_flush_coalesced_mmio_buffer(void)
{ {

View file

@ -152,8 +152,4 @@ void mttcg_start_vcpu_thread(CPUState *cpu)
qemu_thread_create(cpu->thread, thread_name, mttcg_cpu_thread_fn, qemu_thread_create(cpu->thread, thread_name, mttcg_cpu_thread_fn,
cpu, QEMU_THREAD_JOINABLE); cpu, QEMU_THREAD_JOINABLE);
#ifdef _WIN32
cpu->hThread = qemu_thread_get_handle(cpu->thread);
#endif
} }

View file

@ -329,9 +329,6 @@ void rr_start_vcpu_thread(CPUState *cpu)
single_tcg_halt_cond = cpu->halt_cond; single_tcg_halt_cond = cpu->halt_cond;
single_tcg_cpu_thread = cpu->thread; single_tcg_cpu_thread = cpu->thread;
#ifdef _WIN32
cpu->hThread = qemu_thread_get_handle(cpu->thread);
#endif
} else { } else {
/* we share the thread */ /* we share the thread */
cpu->thread = single_tcg_cpu_thread; cpu->thread = single_tcg_cpu_thread;

View file

@ -558,7 +558,7 @@ When CI tasks, maintainers or yourself report a Docker test failure, follow the
below steps to debug it: below steps to debug it:
1. Locally reproduce the failure with the reported command line. E.g. run 1. Locally reproduce the failure with the reported command line. E.g. run
``make docker-test-mingw@fedora J=8``. ``make docker-test-mingw@fedora-win64-cross J=8``.
2. Add "V=1" to the command line, try again, to see the verbose output. 2. Add "V=1" to the command line, try again, to see the verbose output.
3. Further add "DEBUG=1" to the command line. This will pause in a shell prompt 3. Further add "DEBUG=1" to the command line. This will pause in a shell prompt
in the container right before testing starts. You could either manually in the container right before testing starts. You could either manually

View file

@ -23,6 +23,7 @@
#include "qemu/error-report.h" #include "qemu/error-report.h"
#include "qemu/units.h" #include "qemu/units.h"
#include "sysemu/device_tree.h" #include "sysemu/device_tree.h"
#include "sysemu/kvm.h"
#include "sysemu/numa.h" #include "sysemu/numa.h"
#include "sysemu/runstate.h" #include "sysemu/runstate.h"
#include "sysemu/sysemu.h" #include "sysemu/sysemu.h"
@ -36,6 +37,7 @@
#include "hw/ide/internal.h" #include "hw/ide/internal.h"
#include "hw/ide/ahci_internal.h" #include "hw/ide/ahci_internal.h"
#include "hw/intc/arm_gicv3_common.h" #include "hw/intc/arm_gicv3_common.h"
#include "hw/intc/arm_gicv3_its_common.h"
#include "hw/loader.h" #include "hw/loader.h"
#include "hw/pci-host/gpex.h" #include "hw/pci-host/gpex.h"
#include "hw/qdev-properties.h" #include "hw/qdev-properties.h"

View file

@ -48,12 +48,12 @@
#include "hw/pci/pci_bus.h" #include "hw/pci/pci_bus.h"
#include "hw/pci-host/gpex.h" #include "hw/pci-host/gpex.h"
#include "hw/arm/virt.h" #include "hw/arm/virt.h"
#include "hw/intc/arm_gicv3_its_common.h"
#include "hw/mem/nvdimm.h" #include "hw/mem/nvdimm.h"
#include "hw/platform-bus.h" #include "hw/platform-bus.h"
#include "sysemu/numa.h" #include "sysemu/numa.h"
#include "sysemu/reset.h" #include "sysemu/reset.h"
#include "sysemu/tpm.h" #include "sysemu/tpm.h"
#include "kvm_arm.h"
#include "migration/vmstate.h" #include "migration/vmstate.h"
#include "hw/acpi/ghes.h" #include "hw/acpi/ghes.h"
#include "hw/acpi/viot.h" #include "hw/acpi/viot.h"

View file

@ -63,6 +63,7 @@
#include "hw/arm/fdt.h" #include "hw/arm/fdt.h"
#include "hw/intc/arm_gic.h" #include "hw/intc/arm_gic.h"
#include "hw/intc/arm_gicv3_common.h" #include "hw/intc/arm_gicv3_common.h"
#include "hw/intc/arm_gicv3_its_common.h"
#include "hw/irq.h" #include "hw/irq.h"
#include "kvm_arm.h" #include "kvm_arm.h"
#include "hw/firmware/smbios.h" #include "hw/firmware/smbios.h"

View file

@ -45,7 +45,7 @@ static MemoryListener xen_memory_listener = {
.log_sync = NULL, .log_sync = NULL,
.log_global_start = NULL, .log_global_start = NULL,
.log_global_stop = NULL, .log_global_stop = NULL,
.priority = 10, .priority = MEMORY_LISTENER_PRIORITY_ACCEL,
}; };
struct XenArmState { struct XenArmState {

View file

@ -467,7 +467,7 @@ static MemoryListener xen_memory_listener = {
.log_sync = xen_log_sync, .log_sync = xen_log_sync,
.log_global_start = xen_log_global_start, .log_global_start = xen_log_global_start,
.log_global_stop = xen_log_global_stop, .log_global_stop = xen_log_global_stop,
.priority = 10, .priority = MEMORY_LISTENER_PRIORITY_ACCEL,
}; };
static void regs_to_cpu(vmware_regs_t *vmport_regs, ioreq_t *req) static void regs_to_cpu(vmware_regs_t *vmport_regs, ioreq_t *req)

View file

@ -21,10 +21,12 @@
#include "qemu/osdep.h" #include "qemu/osdep.h"
#include "qapi/error.h" #include "qapi/error.h"
#include "qemu/module.h" #include "qemu/module.h"
#include "qemu/error-report.h"
#include "gic_internal.h" #include "gic_internal.h"
#include "hw/arm/linux-boot-if.h" #include "hw/arm/linux-boot-if.h"
#include "hw/qdev-properties.h" #include "hw/qdev-properties.h"
#include "migration/vmstate.h" #include "migration/vmstate.h"
#include "sysemu/kvm.h"
static int gic_pre_save(void *opaque) static int gic_pre_save(void *opaque)
{ {
@ -233,12 +235,12 @@ static void arm_gic_common_realize(DeviceState *dev, Error **errp)
} }
} }
static inline void arm_gic_common_reset_irq_state(GICState *s, int first_cpu, static inline void arm_gic_common_reset_irq_state(GICState *s, int cidx,
int resetprio) int resetprio)
{ {
int i, j; int i, j;
for (i = first_cpu; i < first_cpu + s->num_cpu; i++) { for (i = cidx; i < cidx + s->num_cpu; i++) {
if (s->revision == REV_11MPCORE) { if (s->revision == REV_11MPCORE) {
s->priority_mask[i] = 0xf0; s->priority_mask[i] = 0xf0;
} else { } else {
@ -393,3 +395,8 @@ static void register_types(void)
} }
type_init(register_types) type_init(register_types)
const char *gic_class_name(void)
{
return kvm_irqchip_in_kernel() ? "kvm-arm-gic" : "arm_gic";
}

View file

@ -24,6 +24,7 @@
#include "qemu/osdep.h" #include "qemu/osdep.h"
#include "qapi/error.h" #include "qapi/error.h"
#include "qemu/module.h" #include "qemu/module.h"
#include "qemu/error-report.h"
#include "hw/core/cpu.h" #include "hw/core/cpu.h"
#include "hw/intc/arm_gicv3_common.h" #include "hw/intc/arm_gicv3_common.h"
#include "hw/qdev-properties.h" #include "hw/qdev-properties.h"
@ -608,3 +609,16 @@ static void register_types(void)
} }
type_init(register_types) type_init(register_types)
const char *gicv3_class_name(void)
{
if (kvm_irqchip_in_kernel()) {
return "kvm-arm-gicv3";
} else {
if (kvm_enabled()) {
error_report("Userspace GICv3 is not supported with KVM");
exit(1);
}
return "arm-gicv3";
}
}

View file

@ -24,6 +24,7 @@
#include "hw/intc/arm_gicv3_its_common.h" #include "hw/intc/arm_gicv3_its_common.h"
#include "qemu/log.h" #include "qemu/log.h"
#include "qemu/module.h" #include "qemu/module.h"
#include "sysemu/kvm.h"
static int gicv3_its_pre_save(void *opaque) static int gicv3_its_pre_save(void *opaque)
{ {
@ -158,3 +159,14 @@ static void gicv3_its_common_register_types(void)
} }
type_init(gicv3_its_common_register_types) type_init(gicv3_its_common_register_types)
const char *its_class_name(void)
{
if (kvm_irqchip_in_kernel()) {
/* KVM implementation requires this capability */
return kvm_direct_msi_enabled() ? "arm-its-kvm" : NULL;
} else {
/* Software emulation based model */
return "arm-gicv3-its";
}
}

View file

@ -765,7 +765,9 @@ static void mmubooke_create_initial_mapping(CPUPPCState *env)
tlb->mas7_3 = 0; tlb->mas7_3 = 0;
tlb->mas7_3 |= MAS3_UR | MAS3_UW | MAS3_UX | MAS3_SR | MAS3_SW | MAS3_SX; tlb->mas7_3 |= MAS3_UR | MAS3_UW | MAS3_UX | MAS3_SR | MAS3_SW | MAS3_SX;
#ifdef CONFIG_KVM
env->tlb_dirty = true; env->tlb_dirty = true;
#endif
} }
static void ppce500_cpu_reset_sec(void *opaque) static void ppce500_cpu_reset_sec(void *opaque)

View file

@ -83,7 +83,9 @@ static void mmubooke_create_initial_mapping(CPUPPCState *env,
tlb->mas2 = (va & TARGET_PAGE_MASK) | MAS2_M; tlb->mas2 = (va & TARGET_PAGE_MASK) | MAS2_M;
tlb->mas7_3 = pa & TARGET_PAGE_MASK; tlb->mas7_3 = pa & TARGET_PAGE_MASK;
tlb->mas7_3 |= MAS3_UR | MAS3_UW | MAS3_UX | MAS3_SR | MAS3_SW | MAS3_SX; tlb->mas7_3 |= MAS3_UR | MAS3_UW | MAS3_UX | MAS3_SR | MAS3_SW | MAS3_SX;
#ifdef CONFIG_KVM
env->tlb_dirty = true; env->tlb_dirty = true;
#endif
} }
static void spin_kick(CPUState *cs, run_on_cpu_data data) static void spin_kick(CPUState *cs, run_on_cpu_data data)

View file

@ -217,7 +217,7 @@ void proxy_memory_listener_configure(ProxyMemoryListener *proxy_listener,
proxy_listener->listener.commit = proxy_memory_listener_commit; proxy_listener->listener.commit = proxy_memory_listener_commit;
proxy_listener->listener.region_add = proxy_memory_listener_region_addnop; proxy_listener->listener.region_add = proxy_memory_listener_region_addnop;
proxy_listener->listener.region_nop = proxy_memory_listener_region_addnop; proxy_listener->listener.region_nop = proxy_memory_listener_region_addnop;
proxy_listener->listener.priority = 10; proxy_listener->listener.priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND;
proxy_listener->listener.name = "proxy"; proxy_listener->listener.name = "proxy";
memory_listener_register(&proxy_listener->listener, memory_listener_register(&proxy_listener->listener,

View file

@ -1444,7 +1444,7 @@ int vhost_dev_init(struct vhost_dev *hdev, void *opaque,
.log_sync = vhost_log_sync, .log_sync = vhost_log_sync,
.log_global_start = vhost_log_global_start, .log_global_start = vhost_log_global_start,
.log_global_stop = vhost_log_global_stop, .log_global_stop = vhost_log_global_stop,
.priority = 10 .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND
}; };
hdev->iommu_listener = (MemoryListener) { hdev->iommu_listener = (MemoryListener) {

View file

@ -155,7 +155,7 @@ MemoryListener xen_io_listener = {
.name = "xen-io", .name = "xen-io",
.region_add = xen_io_add, .region_add = xen_io_add,
.region_del = xen_io_del, .region_del = xen_io_del,
.priority = 10, .priority = MEMORY_LISTENER_PRIORITY_ACCEL,
}; };
DeviceListener xen_device_listener = { DeviceListener xen_device_listener = {

View file

@ -691,14 +691,14 @@ static const MemoryListener xen_pt_memory_listener = {
.name = "xen-pt-mem", .name = "xen-pt-mem",
.region_add = xen_pt_region_add, .region_add = xen_pt_region_add,
.region_del = xen_pt_region_del, .region_del = xen_pt_region_del,
.priority = 10, .priority = MEMORY_LISTENER_PRIORITY_ACCEL,
}; };
static const MemoryListener xen_pt_io_listener = { static const MemoryListener xen_pt_io_listener = {
.name = "xen-pt-io", .name = "xen-pt-io",
.region_add = xen_pt_io_region_add, .region_add = xen_pt_io_region_add,
.region_del = xen_pt_io_region_del, .region_del = xen_pt_io_region_del,
.priority = 10, .priority = MEMORY_LISTENER_PRIORITY_ACCEL,
}; };
/* destroy. */ /* destroy. */

View file

@ -811,6 +811,10 @@ struct IOMMUMemoryRegion {
#define IOMMU_NOTIFIER_FOREACH(n, mr) \ #define IOMMU_NOTIFIER_FOREACH(n, mr) \
QLIST_FOREACH((n), &(mr)->iommu_notify, node) QLIST_FOREACH((n), &(mr)->iommu_notify, node)
#define MEMORY_LISTENER_PRIORITY_MIN 0
#define MEMORY_LISTENER_PRIORITY_ACCEL 10
#define MEMORY_LISTENER_PRIORITY_DEV_BACKEND 10
/** /**
* struct MemoryListener: callbacks structure for updates to the physical memory map * struct MemoryListener: callbacks structure for updates to the physical memory map
* *

View file

@ -241,9 +241,6 @@ typedef struct SavedIOTLB {
struct KVMState; struct KVMState;
struct kvm_run; struct kvm_run;
struct hax_vcpu_state;
struct hvf_vcpu_state;
/* work queue */ /* work queue */
/* The union type allows passing of 64 bit target pointers on 32 bit /* The union type allows passing of 64 bit target pointers on 32 bit
@ -309,6 +306,7 @@ struct qemu_work_item;
* @next_cpu: Next CPU sharing TB cache. * @next_cpu: Next CPU sharing TB cache.
* @opaque: User data. * @opaque: User data.
* @mem_io_pc: Host Program Counter at which the memory was accessed. * @mem_io_pc: Host Program Counter at which the memory was accessed.
* @accel: Pointer to accelerator specific state.
* @kvm_fd: vCPU file descriptor for KVM. * @kvm_fd: vCPU file descriptor for KVM.
* @work_mutex: Lock to prevent multiple access to @work_list. * @work_mutex: Lock to prevent multiple access to @work_list.
* @work_list: List of pending asynchronous work. * @work_list: List of pending asynchronous work.
@ -338,7 +336,6 @@ struct CPUState {
struct QemuThread *thread; struct QemuThread *thread;
#ifdef _WIN32 #ifdef _WIN32
HANDLE hThread;
QemuSemaphore sem; QemuSemaphore sem;
#endif #endif
int thread_id; int thread_id;
@ -424,6 +421,7 @@ struct CPUState {
uint32_t can_do_io; uint32_t can_do_io;
int32_t exception_index; int32_t exception_index;
AccelCPUState *accel;
/* shared by kvm, hax and hvf */ /* shared by kvm, hax and hvf */
bool vcpu_dirty; bool vcpu_dirty;
@ -443,10 +441,6 @@ struct CPUState {
/* Used for user-only emulation of prctl(PR_SET_UNALIGN). */ /* Used for user-only emulation of prctl(PR_SET_UNALIGN). */
bool prctl_unalign_sigbus; bool prctl_unalign_sigbus;
struct hax_vcpu_state *hax_vcpu;
struct hvf_vcpu_state *hvf;
/* track IOMMUs whose translations we've cached in the TCG TLB */ /* track IOMMUs whose translations we've cached in the TCG TLB */
GArray *iommu_notifiers; GArray *iommu_notifiers;
}; };

View file

@ -86,4 +86,6 @@ struct ARMGICClass {
DeviceRealize parent_realize; DeviceRealize parent_realize;
}; };
const char *gic_class_name(void);
#endif #endif

View file

@ -329,4 +329,14 @@ struct ARMGICv3CommonClass {
void gicv3_init_irqs_and_mmio(GICv3State *s, qemu_irq_handler handler, void gicv3_init_irqs_and_mmio(GICv3State *s, qemu_irq_handler handler,
const MemoryRegionOps *ops); const MemoryRegionOps *ops);
/**
* gicv3_class_name
*
* Return name of GICv3 class to use depending on whether KVM acceleration is
* in use. May throw an error if the chosen implementation is not available.
*
* Returns: class name to use
*/
const char *gicv3_class_name(void);
#endif #endif

View file

@ -122,5 +122,14 @@ struct GICv3ITSCommonClass {
void (*post_load)(GICv3ITSState *s); void (*post_load)(GICv3ITSState *s);
}; };
/**
* its_class_name:
*
* Return the ITS class name to use depending on whether KVM acceleration
* and KVM CAP_SIGNAL_MSI are supported
*
* Returns: class name to use or NULL
*/
const char *its_class_name(void);
#endif #endif

View file

@ -21,6 +21,7 @@
* Incomplete struct types * Incomplete struct types
* Please keep this list in case-insensitive alphabetical order. * Please keep this list in case-insensitive alphabetical order.
*/ */
typedef struct AccelCPUState AccelCPUState;
typedef struct AccelState AccelState; typedef struct AccelState AccelState;
typedef struct AdapterInfo AdapterInfo; typedef struct AdapterInfo AdapterInfo;
typedef struct AddressSpace AddressSpace; typedef struct AddressSpace AddressSpace;

View file

@ -19,6 +19,8 @@
* *
*/ */
/* header to be included in non-HAX-specific code */
#ifndef QEMU_HAX_H #ifndef QEMU_HAX_H
#define QEMU_HAX_H #define QEMU_HAX_H

View file

@ -49,7 +49,7 @@ struct HVFState {
}; };
extern HVFState *hvf_state; extern HVFState *hvf_state;
struct hvf_vcpu_state { struct AccelCPUState {
uint64_t fd; uint64_t fd;
void *exit; void *exit;
bool vtimer_masked; bool vtimer_masked;

View file

@ -11,9 +11,12 @@
* *
*/ */
/* header to be included in non-KVM-specific code */
#ifndef QEMU_KVM_H #ifndef QEMU_KVM_H
#define QEMU_KVM_H #define QEMU_KVM_H
#include "exec/memattrs.h"
#include "qemu/accel.h" #include "qemu/accel.h"
#include "qom/object.h" #include "qom/object.h"

View file

@ -7,6 +7,8 @@
* See the COPYING file in the top-level directory. * See the COPYING file in the top-level directory.
*/ */
/* header to be included in non-NVMM-specific code */
#ifndef QEMU_NVMM_H #ifndef QEMU_NVMM_H
#define QEMU_NVMM_H #define QEMU_NVMM_H

View file

@ -5,6 +5,8 @@
* See the COPYING file in the top-level directory. * See the COPYING file in the top-level directory.
*/ */
/* header to be included in non-TCG-specific code */
#ifndef SYSEMU_TCG_H #ifndef SYSEMU_TCG_H
#define SYSEMU_TCG_H #define SYSEMU_TCG_H

View file

@ -10,6 +10,8 @@
* *
*/ */
/* header to be included in non-WHPX-specific code */
#ifndef QEMU_WHPX_H #ifndef QEMU_WHPX_H
#define QEMU_WHPX_H #define QEMU_WHPX_H

View file

@ -5,6 +5,8 @@
* See the COPYING file in the top-level directory. * See the COPYING file in the top-level directory.
*/ */
/* header to be included in non-Xen-specific code */
#ifndef SYSEMU_XEN_H #ifndef SYSEMU_XEN_H
#define SYSEMU_XEN_H #define SYSEMU_XEN_H

View file

@ -661,8 +661,8 @@ endif
if get_option('whpx').allowed() and targetos == 'windows' if get_option('whpx').allowed() and targetos == 'windows'
if get_option('whpx').enabled() and host_machine.cpu() != 'x86_64' if get_option('whpx').enabled() and host_machine.cpu() != 'x86_64'
error('WHPX requires 64-bit host') error('WHPX requires 64-bit host')
elif cc.has_header('WinHvPlatform.h', required: get_option('whpx')) and \ elif cc.has_header('winhvplatform.h', required: get_option('whpx')) and \
cc.has_header('WinHvEmulation.h', required: get_option('whpx')) cc.has_header('winhvemulation.h', required: get_option('whpx'))
accelerators += 'CONFIG_WHPX' accelerators += 'CONFIG_WHPX'
endif endif
endif endif

View file

@ -961,6 +961,7 @@ struct ArchCPU {
*/ */
uint32_t kvm_target; uint32_t kvm_target;
#ifdef CONFIG_KVM
/* KVM init features for this CPU */ /* KVM init features for this CPU */
uint32_t kvm_init_features[7]; uint32_t kvm_init_features[7];
@ -973,6 +974,7 @@ struct ArchCPU {
/* KVM steal time */ /* KVM steal time */
OnOffAuto kvm_steal_time; OnOffAuto kvm_steal_time;
#endif /* CONFIG_KVM */
/* Uniprocessor system with MP extensions */ /* Uniprocessor system with MP extensions */
bool mp_is_up; bool mp_is_up;

View file

@ -544,29 +544,29 @@ int hvf_get_registers(CPUState *cpu)
int i; int i;
for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) { for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
ret = hv_vcpu_get_reg(cpu->hvf->fd, hvf_reg_match[i].reg, &val); ret = hv_vcpu_get_reg(cpu->accel->fd, hvf_reg_match[i].reg, &val);
*(uint64_t *)((void *)env + hvf_reg_match[i].offset) = val; *(uint64_t *)((void *)env + hvf_reg_match[i].offset) = val;
assert_hvf_ok(ret); assert_hvf_ok(ret);
} }
for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) { for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
ret = hv_vcpu_get_simd_fp_reg(cpu->hvf->fd, hvf_fpreg_match[i].reg, ret = hv_vcpu_get_simd_fp_reg(cpu->accel->fd, hvf_fpreg_match[i].reg,
&fpval); &fpval);
memcpy((void *)env + hvf_fpreg_match[i].offset, &fpval, sizeof(fpval)); memcpy((void *)env + hvf_fpreg_match[i].offset, &fpval, sizeof(fpval));
assert_hvf_ok(ret); assert_hvf_ok(ret);
} }
val = 0; val = 0;
ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_FPCR, &val); ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_FPCR, &val);
assert_hvf_ok(ret); assert_hvf_ok(ret);
vfp_set_fpcr(env, val); vfp_set_fpcr(env, val);
val = 0; val = 0;
ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_FPSR, &val); ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_FPSR, &val);
assert_hvf_ok(ret); assert_hvf_ok(ret);
vfp_set_fpsr(env, val); vfp_set_fpsr(env, val);
ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_CPSR, &val); ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_CPSR, &val);
assert_hvf_ok(ret); assert_hvf_ok(ret);
pstate_write(env, val); pstate_write(env, val);
@ -575,7 +575,7 @@ int hvf_get_registers(CPUState *cpu)
continue; continue;
} }
if (cpu->hvf->guest_debug_enabled) { if (cpu->accel->guest_debug_enabled) {
/* Handle debug registers */ /* Handle debug registers */
switch (hvf_sreg_match[i].reg) { switch (hvf_sreg_match[i].reg) {
case HV_SYS_REG_DBGBVR0_EL1: case HV_SYS_REG_DBGBVR0_EL1:
@ -661,7 +661,7 @@ int hvf_get_registers(CPUState *cpu)
} }
} }
ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, hvf_sreg_match[i].reg, &val); ret = hv_vcpu_get_sys_reg(cpu->accel->fd, hvf_sreg_match[i].reg, &val);
assert_hvf_ok(ret); assert_hvf_ok(ret);
arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val; arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val;
@ -684,24 +684,24 @@ int hvf_put_registers(CPUState *cpu)
for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) { for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
val = *(uint64_t *)((void *)env + hvf_reg_match[i].offset); val = *(uint64_t *)((void *)env + hvf_reg_match[i].offset);
ret = hv_vcpu_set_reg(cpu->hvf->fd, hvf_reg_match[i].reg, val); ret = hv_vcpu_set_reg(cpu->accel->fd, hvf_reg_match[i].reg, val);
assert_hvf_ok(ret); assert_hvf_ok(ret);
} }
for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) { for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
memcpy(&fpval, (void *)env + hvf_fpreg_match[i].offset, sizeof(fpval)); memcpy(&fpval, (void *)env + hvf_fpreg_match[i].offset, sizeof(fpval));
ret = hv_vcpu_set_simd_fp_reg(cpu->hvf->fd, hvf_fpreg_match[i].reg, ret = hv_vcpu_set_simd_fp_reg(cpu->accel->fd, hvf_fpreg_match[i].reg,
fpval); fpval);
assert_hvf_ok(ret); assert_hvf_ok(ret);
} }
ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_FPCR, vfp_get_fpcr(env)); ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_FPCR, vfp_get_fpcr(env));
assert_hvf_ok(ret); assert_hvf_ok(ret);
ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_FPSR, vfp_get_fpsr(env)); ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_FPSR, vfp_get_fpsr(env));
assert_hvf_ok(ret); assert_hvf_ok(ret);
ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_CPSR, pstate_read(env)); ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_CPSR, pstate_read(env));
assert_hvf_ok(ret); assert_hvf_ok(ret);
aarch64_save_sp(env, arm_current_el(env)); aarch64_save_sp(env, arm_current_el(env));
@ -712,7 +712,7 @@ int hvf_put_registers(CPUState *cpu)
continue; continue;
} }
if (cpu->hvf->guest_debug_enabled) { if (cpu->accel->guest_debug_enabled) {
/* Handle debug registers */ /* Handle debug registers */
switch (hvf_sreg_match[i].reg) { switch (hvf_sreg_match[i].reg) {
case HV_SYS_REG_DBGBVR0_EL1: case HV_SYS_REG_DBGBVR0_EL1:
@ -789,11 +789,11 @@ int hvf_put_registers(CPUState *cpu)
} }
val = arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx]; val = arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx];
ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, hvf_sreg_match[i].reg, val); ret = hv_vcpu_set_sys_reg(cpu->accel->fd, hvf_sreg_match[i].reg, val);
assert_hvf_ok(ret); assert_hvf_ok(ret);
} }
ret = hv_vcpu_set_vtimer_offset(cpu->hvf->fd, hvf_state->vtimer_offset); ret = hv_vcpu_set_vtimer_offset(cpu->accel->fd, hvf_state->vtimer_offset);
assert_hvf_ok(ret); assert_hvf_ok(ret);
return 0; return 0;
@ -814,7 +814,7 @@ static void hvf_set_reg(CPUState *cpu, int rt, uint64_t val)
flush_cpu_state(cpu); flush_cpu_state(cpu);
if (rt < 31) { if (rt < 31) {
r = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_X0 + rt, val); r = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_X0 + rt, val);
assert_hvf_ok(r); assert_hvf_ok(r);
} }
} }
@ -827,7 +827,7 @@ static uint64_t hvf_get_reg(CPUState *cpu, int rt)
flush_cpu_state(cpu); flush_cpu_state(cpu);
if (rt < 31) { if (rt < 31) {
r = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_X0 + rt, &val); r = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_X0 + rt, &val);
assert_hvf_ok(r); assert_hvf_ok(r);
} }
@ -969,22 +969,22 @@ int hvf_arch_init_vcpu(CPUState *cpu)
assert(write_cpustate_to_list(arm_cpu, false)); assert(write_cpustate_to_list(arm_cpu, false));
/* Set CP_NO_RAW system registers on init */ /* Set CP_NO_RAW system registers on init */
ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_MIDR_EL1, ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_MIDR_EL1,
arm_cpu->midr); arm_cpu->midr);
assert_hvf_ok(ret); assert_hvf_ok(ret);
ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_MPIDR_EL1, ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_MPIDR_EL1,
arm_cpu->mp_affinity); arm_cpu->mp_affinity);
assert_hvf_ok(ret); assert_hvf_ok(ret);
ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64PFR0_EL1, &pfr); ret = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64PFR0_EL1, &pfr);
assert_hvf_ok(ret); assert_hvf_ok(ret);
pfr |= env->gicv3state ? (1 << 24) : 0; pfr |= env->gicv3state ? (1 << 24) : 0;
ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64PFR0_EL1, pfr); ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64PFR0_EL1, pfr);
assert_hvf_ok(ret); assert_hvf_ok(ret);
/* We're limited to underlying hardware caps, override internal versions */ /* We're limited to underlying hardware caps, override internal versions */
ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64MMFR0_EL1, ret = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64MMFR0_EL1,
&arm_cpu->isar.id_aa64mmfr0); &arm_cpu->isar.id_aa64mmfr0);
assert_hvf_ok(ret); assert_hvf_ok(ret);
@ -994,7 +994,7 @@ int hvf_arch_init_vcpu(CPUState *cpu)
void hvf_kick_vcpu_thread(CPUState *cpu) void hvf_kick_vcpu_thread(CPUState *cpu)
{ {
cpus_kick_thread(cpu); cpus_kick_thread(cpu);
hv_vcpus_exit(&cpu->hvf->fd, 1); hv_vcpus_exit(&cpu->accel->fd, 1);
} }
static void hvf_raise_exception(CPUState *cpu, uint32_t excp, static void hvf_raise_exception(CPUState *cpu, uint32_t excp,
@ -1678,13 +1678,13 @@ static int hvf_inject_interrupts(CPUState *cpu)
{ {
if (cpu->interrupt_request & CPU_INTERRUPT_FIQ) { if (cpu->interrupt_request & CPU_INTERRUPT_FIQ) {
trace_hvf_inject_fiq(); trace_hvf_inject_fiq();
hv_vcpu_set_pending_interrupt(cpu->hvf->fd, HV_INTERRUPT_TYPE_FIQ, hv_vcpu_set_pending_interrupt(cpu->accel->fd, HV_INTERRUPT_TYPE_FIQ,
true); true);
} }
if (cpu->interrupt_request & CPU_INTERRUPT_HARD) { if (cpu->interrupt_request & CPU_INTERRUPT_HARD) {
trace_hvf_inject_irq(); trace_hvf_inject_irq();
hv_vcpu_set_pending_interrupt(cpu->hvf->fd, HV_INTERRUPT_TYPE_IRQ, hv_vcpu_set_pending_interrupt(cpu->accel->fd, HV_INTERRUPT_TYPE_IRQ,
true); true);
} }
@ -1718,7 +1718,7 @@ static void hvf_wait_for_ipi(CPUState *cpu, struct timespec *ts)
*/ */
qatomic_set_mb(&cpu->thread_kicked, false); qatomic_set_mb(&cpu->thread_kicked, false);
qemu_mutex_unlock_iothread(); qemu_mutex_unlock_iothread();
pselect(0, 0, 0, 0, ts, &cpu->hvf->unblock_ipi_mask); pselect(0, 0, 0, 0, ts, &cpu->accel->unblock_ipi_mask);
qemu_mutex_lock_iothread(); qemu_mutex_lock_iothread();
} }
@ -1739,7 +1739,7 @@ static void hvf_wfi(CPUState *cpu)
return; return;
} }
r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl); r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
assert_hvf_ok(r); assert_hvf_ok(r);
if (!(ctl & 1) || (ctl & 2)) { if (!(ctl & 1) || (ctl & 2)) {
@ -1748,7 +1748,7 @@ static void hvf_wfi(CPUState *cpu)
return; return;
} }
r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CVAL_EL0, &cval); r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CVAL_EL0, &cval);
assert_hvf_ok(r); assert_hvf_ok(r);
ticks_to_sleep = cval - hvf_vtimer_val(); ticks_to_sleep = cval - hvf_vtimer_val();
@ -1781,12 +1781,12 @@ static void hvf_sync_vtimer(CPUState *cpu)
uint64_t ctl; uint64_t ctl;
bool irq_state; bool irq_state;
if (!cpu->hvf->vtimer_masked) { if (!cpu->accel->vtimer_masked) {
/* We will get notified on vtimer changes by hvf, nothing to do */ /* We will get notified on vtimer changes by hvf, nothing to do */
return; return;
} }
r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl); r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
assert_hvf_ok(r); assert_hvf_ok(r);
irq_state = (ctl & (TMR_CTL_ENABLE | TMR_CTL_IMASK | TMR_CTL_ISTATUS)) == irq_state = (ctl & (TMR_CTL_ENABLE | TMR_CTL_IMASK | TMR_CTL_ISTATUS)) ==
@ -1795,8 +1795,8 @@ static void hvf_sync_vtimer(CPUState *cpu)
if (!irq_state) { if (!irq_state) {
/* Timer no longer asserting, we can unmask it */ /* Timer no longer asserting, we can unmask it */
hv_vcpu_set_vtimer_mask(cpu->hvf->fd, false); hv_vcpu_set_vtimer_mask(cpu->accel->fd, false);
cpu->hvf->vtimer_masked = false; cpu->accel->vtimer_masked = false;
} }
} }
@ -1805,7 +1805,7 @@ int hvf_vcpu_exec(CPUState *cpu)
ARMCPU *arm_cpu = ARM_CPU(cpu); ARMCPU *arm_cpu = ARM_CPU(cpu);
CPUARMState *env = &arm_cpu->env; CPUARMState *env = &arm_cpu->env;
int ret; int ret;
hv_vcpu_exit_t *hvf_exit = cpu->hvf->exit; hv_vcpu_exit_t *hvf_exit = cpu->accel->exit;
hv_return_t r; hv_return_t r;
bool advance_pc = false; bool advance_pc = false;
@ -1821,7 +1821,7 @@ int hvf_vcpu_exec(CPUState *cpu)
flush_cpu_state(cpu); flush_cpu_state(cpu);
qemu_mutex_unlock_iothread(); qemu_mutex_unlock_iothread();
assert_hvf_ok(hv_vcpu_run(cpu->hvf->fd)); assert_hvf_ok(hv_vcpu_run(cpu->accel->fd));
/* handle VMEXIT */ /* handle VMEXIT */
uint64_t exit_reason = hvf_exit->reason; uint64_t exit_reason = hvf_exit->reason;
@ -1836,7 +1836,7 @@ int hvf_vcpu_exec(CPUState *cpu)
break; break;
case HV_EXIT_REASON_VTIMER_ACTIVATED: case HV_EXIT_REASON_VTIMER_ACTIVATED:
qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], 1); qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], 1);
cpu->hvf->vtimer_masked = true; cpu->accel->vtimer_masked = true;
return 0; return 0;
case HV_EXIT_REASON_CANCELED: case HV_EXIT_REASON_CANCELED:
/* we got kicked, no exit to process */ /* we got kicked, no exit to process */
@ -1990,10 +1990,10 @@ int hvf_vcpu_exec(CPUState *cpu)
flush_cpu_state(cpu); flush_cpu_state(cpu);
r = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_PC, &pc); r = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_PC, &pc);
assert_hvf_ok(r); assert_hvf_ok(r);
pc += 4; pc += 4;
r = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_PC, pc); r = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_PC, pc);
assert_hvf_ok(r); assert_hvf_ok(r);
/* Handle single-stepping over instructions which trigger a VM exit */ /* Handle single-stepping over instructions which trigger a VM exit */
@ -2113,29 +2113,29 @@ static void hvf_put_gdbstub_debug_registers(CPUState *cpu)
for (i = 0; i < cur_hw_bps; i++) { for (i = 0; i < cur_hw_bps; i++) {
HWBreakpoint *bp = get_hw_bp(i); HWBreakpoint *bp = get_hw_bp(i);
r = hv_vcpu_set_sys_reg(cpu->hvf->fd, dbgbcr_regs[i], bp->bcr); r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i], bp->bcr);
assert_hvf_ok(r); assert_hvf_ok(r);
r = hv_vcpu_set_sys_reg(cpu->hvf->fd, dbgbvr_regs[i], bp->bvr); r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i], bp->bvr);
assert_hvf_ok(r); assert_hvf_ok(r);
} }
for (i = cur_hw_bps; i < max_hw_bps; i++) { for (i = cur_hw_bps; i < max_hw_bps; i++) {
r = hv_vcpu_set_sys_reg(cpu->hvf->fd, dbgbcr_regs[i], 0); r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i], 0);
assert_hvf_ok(r); assert_hvf_ok(r);
r = hv_vcpu_set_sys_reg(cpu->hvf->fd, dbgbvr_regs[i], 0); r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i], 0);
assert_hvf_ok(r); assert_hvf_ok(r);
} }
for (i = 0; i < cur_hw_wps; i++) { for (i = 0; i < cur_hw_wps; i++) {
HWWatchpoint *wp = get_hw_wp(i); HWWatchpoint *wp = get_hw_wp(i);
r = hv_vcpu_set_sys_reg(cpu->hvf->fd, dbgwcr_regs[i], wp->wcr); r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i], wp->wcr);
assert_hvf_ok(r); assert_hvf_ok(r);
r = hv_vcpu_set_sys_reg(cpu->hvf->fd, dbgwvr_regs[i], wp->wvr); r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i], wp->wvr);
assert_hvf_ok(r); assert_hvf_ok(r);
} }
for (i = cur_hw_wps; i < max_hw_wps; i++) { for (i = cur_hw_wps; i < max_hw_wps; i++) {
r = hv_vcpu_set_sys_reg(cpu->hvf->fd, dbgwcr_regs[i], 0); r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i], 0);
assert_hvf_ok(r); assert_hvf_ok(r);
r = hv_vcpu_set_sys_reg(cpu->hvf->fd, dbgwvr_regs[i], 0); r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i], 0);
assert_hvf_ok(r); assert_hvf_ok(r);
} }
} }
@ -2152,19 +2152,19 @@ static void hvf_put_guest_debug_registers(CPUState *cpu)
int i; int i;
for (i = 0; i < max_hw_bps; i++) { for (i = 0; i < max_hw_bps; i++) {
r = hv_vcpu_set_sys_reg(cpu->hvf->fd, dbgbcr_regs[i], r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i],
env->cp15.dbgbcr[i]); env->cp15.dbgbcr[i]);
assert_hvf_ok(r); assert_hvf_ok(r);
r = hv_vcpu_set_sys_reg(cpu->hvf->fd, dbgbvr_regs[i], r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i],
env->cp15.dbgbvr[i]); env->cp15.dbgbvr[i]);
assert_hvf_ok(r); assert_hvf_ok(r);
} }
for (i = 0; i < max_hw_wps; i++) { for (i = 0; i < max_hw_wps; i++) {
r = hv_vcpu_set_sys_reg(cpu->hvf->fd, dbgwcr_regs[i], r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i],
env->cp15.dbgwcr[i]); env->cp15.dbgwcr[i]);
assert_hvf_ok(r); assert_hvf_ok(r);
r = hv_vcpu_set_sys_reg(cpu->hvf->fd, dbgwvr_regs[i], r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i],
env->cp15.dbgwvr[i]); env->cp15.dbgwvr[i]);
assert_hvf_ok(r); assert_hvf_ok(r);
} }
@ -2184,16 +2184,16 @@ static void hvf_arch_set_traps(void)
/* Check whether guest debugging is enabled for at least one vCPU; if it /* Check whether guest debugging is enabled for at least one vCPU; if it
* is, enable exiting the guest on all vCPUs */ * is, enable exiting the guest on all vCPUs */
CPU_FOREACH(cpu) { CPU_FOREACH(cpu) {
should_enable_traps |= cpu->hvf->guest_debug_enabled; should_enable_traps |= cpu->accel->guest_debug_enabled;
} }
CPU_FOREACH(cpu) { CPU_FOREACH(cpu) {
/* Set whether debug exceptions exit the guest */ /* Set whether debug exceptions exit the guest */
r = hv_vcpu_set_trap_debug_exceptions(cpu->hvf->fd, r = hv_vcpu_set_trap_debug_exceptions(cpu->accel->fd,
should_enable_traps); should_enable_traps);
assert_hvf_ok(r); assert_hvf_ok(r);
/* Set whether accesses to debug registers exit the guest */ /* Set whether accesses to debug registers exit the guest */
r = hv_vcpu_set_trap_debug_reg_accesses(cpu->hvf->fd, r = hv_vcpu_set_trap_debug_reg_accesses(cpu->accel->fd,
should_enable_traps); should_enable_traps);
assert_hvf_ok(r); assert_hvf_ok(r);
} }
@ -2205,12 +2205,12 @@ void hvf_arch_update_guest_debug(CPUState *cpu)
CPUARMState *env = &arm_cpu->env; CPUARMState *env = &arm_cpu->env;
/* Check whether guest debugging is enabled */ /* Check whether guest debugging is enabled */
cpu->hvf->guest_debug_enabled = cpu->singlestep_enabled || cpu->accel->guest_debug_enabled = cpu->singlestep_enabled ||
hvf_sw_breakpoints_active(cpu) || hvf_sw_breakpoints_active(cpu) ||
hvf_arm_hw_debug_active(cpu); hvf_arm_hw_debug_active(cpu);
/* Update debug registers */ /* Update debug registers */
if (cpu->hvf->guest_debug_enabled) { if (cpu->accel->guest_debug_enabled) {
hvf_put_gdbstub_debug_registers(cpu); hvf_put_gdbstub_debug_registers(cpu);
} else { } else {
hvf_put_guest_debug_registers(cpu); hvf_put_guest_debug_registers(cpu);

View file

@ -341,6 +341,7 @@ static MemoryListener devlistener = {
.name = "kvm-arm", .name = "kvm-arm",
.region_add = kvm_arm_devlistener_add, .region_add = kvm_arm_devlistener_add,
.region_del = kvm_arm_devlistener_del, .region_del = kvm_arm_devlistener_del,
.priority = MEMORY_LISTENER_PRIORITY_MIN,
}; };
static void kvm_arm_set_device_addr(KVMDevice *kd) static void kvm_arm_set_device_addr(KVMDevice *kd)

View file

@ -453,32 +453,6 @@ static inline uint32_t kvm_arm_sve_get_vls(CPUState *cs)
#endif #endif
static inline const char *gic_class_name(void)
{
return kvm_irqchip_in_kernel() ? "kvm-arm-gic" : "arm_gic";
}
/**
* gicv3_class_name
*
* Return name of GICv3 class to use depending on whether KVM acceleration is
* in use. May throw an error if the chosen implementation is not available.
*
* Returns: class name to use
*/
static inline const char *gicv3_class_name(void)
{
if (kvm_irqchip_in_kernel()) {
return "kvm-arm-gicv3";
} else {
if (kvm_enabled()) {
error_report("Userspace GICv3 is not supported with KVM");
exit(1);
}
return "arm-gicv3";
}
}
/** /**
* kvm_arm_handle_debug: * kvm_arm_handle_debug:
* @cs: CPUState * @cs: CPUState
@ -516,23 +490,4 @@ void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr);
*/ */
bool kvm_arm_verify_ext_dabt_pending(CPUState *cs); bool kvm_arm_verify_ext_dabt_pending(CPUState *cs);
/**
* its_class_name:
*
* Return the ITS class name to use depending on whether KVM acceleration
* and KVM CAP_SIGNAL_MSI are supported
*
* Returns: class name to use or NULL
*/
static inline const char *its_class_name(void)
{
if (kvm_irqchip_in_kernel()) {
/* KVM implementation requires this capability */
return kvm_direct_msi_enabled() ? "arm-its-kvm" : NULL;
} else {
/* Software emulation based model */
return "arm-gicv3-its";
}
}
#endif #endif

View file

@ -53,6 +53,8 @@ static void *hax_cpu_thread_fn(void *arg)
qemu_wait_io_event(cpu); qemu_wait_io_event(cpu);
} while (!cpu->unplug || cpu_can_run(cpu)); } while (!cpu->unplug || cpu_can_run(cpu));
hax_vcpu_destroy(cpu);
cpu_thread_signal_destroyed(cpu);
rcu_unregister_thread(); rcu_unregister_thread();
return NULL; return NULL;
} }
@ -69,8 +71,9 @@ static void hax_start_vcpu_thread(CPUState *cpu)
cpu->cpu_index); cpu->cpu_index);
qemu_thread_create(cpu->thread, thread_name, hax_cpu_thread_fn, qemu_thread_create(cpu->thread, thread_name, hax_cpu_thread_fn,
cpu, QEMU_THREAD_JOINABLE); cpu, QEMU_THREAD_JOINABLE);
assert(cpu->accel);
#ifdef _WIN32 #ifdef _WIN32
cpu->hThread = qemu_thread_get_handle(cpu->thread); cpu->accel->hThread = qemu_thread_get_handle(cpu->thread);
#endif #endif
} }

View file

@ -62,7 +62,7 @@ int valid_hax_tunnel_size(uint16_t size)
hax_fd hax_vcpu_get_fd(CPUArchState *env) hax_fd hax_vcpu_get_fd(CPUArchState *env)
{ {
struct hax_vcpu_state *vcpu = env_cpu(env)->hax_vcpu; AccelCPUState *vcpu = env_cpu(env)->accel;
if (!vcpu) { if (!vcpu) {
return HAX_INVALID_FD; return HAX_INVALID_FD;
} }
@ -136,7 +136,7 @@ static int hax_version_support(struct hax_state *hax)
int hax_vcpu_create(int id) int hax_vcpu_create(int id)
{ {
struct hax_vcpu_state *vcpu = NULL; AccelCPUState *vcpu = NULL;
int ret; int ret;
if (!hax_global.vm) { if (!hax_global.vm) {
@ -149,7 +149,7 @@ int hax_vcpu_create(int id)
return 0; return 0;
} }
vcpu = g_new0(struct hax_vcpu_state, 1); vcpu = g_new0(AccelCPUState, 1);
ret = hax_host_create_vcpu(hax_global.vm->fd, id); ret = hax_host_create_vcpu(hax_global.vm->fd, id);
if (ret) { if (ret) {
@ -188,7 +188,7 @@ int hax_vcpu_create(int id)
int hax_vcpu_destroy(CPUState *cpu) int hax_vcpu_destroy(CPUState *cpu)
{ {
struct hax_vcpu_state *vcpu = cpu->hax_vcpu; AccelCPUState *vcpu = cpu->accel;
if (!hax_global.vm) { if (!hax_global.vm) {
fprintf(stderr, "vcpu %x destroy failed, vm is null\n", vcpu->vcpu_id); fprintf(stderr, "vcpu %x destroy failed, vm is null\n", vcpu->vcpu_id);
@ -205,7 +205,11 @@ int hax_vcpu_destroy(CPUState *cpu)
*/ */
hax_close_fd(vcpu->fd); hax_close_fd(vcpu->fd);
hax_global.vm->vcpus[vcpu->vcpu_id] = NULL; hax_global.vm->vcpus[vcpu->vcpu_id] = NULL;
#ifdef _WIN32
CloseHandle(vcpu->hThread);
#endif
g_free(vcpu); g_free(vcpu);
cpu->accel = NULL;
return 0; return 0;
} }
@ -219,7 +223,7 @@ int hax_init_vcpu(CPUState *cpu)
exit(-1); exit(-1);
} }
cpu->hax_vcpu = hax_global.vm->vcpus[cpu->cpu_index]; cpu->accel = hax_global.vm->vcpus[cpu->cpu_index];
cpu->vcpu_dirty = true; cpu->vcpu_dirty = true;
qemu_register_reset(hax_reset_vcpu_state, cpu->env_ptr); qemu_register_reset(hax_reset_vcpu_state, cpu->env_ptr);
@ -259,7 +263,7 @@ struct hax_vm *hax_vm_create(struct hax_state *hax, int max_cpus)
} }
vm->numvcpus = max_cpus; vm->numvcpus = max_cpus;
vm->vcpus = g_new0(struct hax_vcpu_state *, vm->numvcpus); vm->vcpus = g_new0(AccelCPUState *, vm->numvcpus);
for (i = 0; i < vm->numvcpus; i++) { for (i = 0; i < vm->numvcpus; i++) {
vm->vcpus[i] = NULL; vm->vcpus[i] = NULL;
} }
@ -411,7 +415,7 @@ static int hax_handle_io(CPUArchState *env, uint32_t df, uint16_t port,
static int hax_vcpu_interrupt(CPUArchState *env) static int hax_vcpu_interrupt(CPUArchState *env)
{ {
CPUState *cpu = env_cpu(env); CPUState *cpu = env_cpu(env);
struct hax_vcpu_state *vcpu = cpu->hax_vcpu; AccelCPUState *vcpu = cpu->accel;
struct hax_tunnel *ht = vcpu->tunnel; struct hax_tunnel *ht = vcpu->tunnel;
/* /*
@ -443,7 +447,7 @@ static int hax_vcpu_interrupt(CPUArchState *env)
void hax_raise_event(CPUState *cpu) void hax_raise_event(CPUState *cpu)
{ {
struct hax_vcpu_state *vcpu = cpu->hax_vcpu; AccelCPUState *vcpu = cpu->accel;
if (!vcpu) { if (!vcpu) {
return; return;
@ -464,7 +468,7 @@ static int hax_vcpu_hax_exec(CPUArchState *env)
int ret = 0; int ret = 0;
CPUState *cpu = env_cpu(env); CPUState *cpu = env_cpu(env);
X86CPU *x86_cpu = X86_CPU(cpu); X86CPU *x86_cpu = X86_CPU(cpu);
struct hax_vcpu_state *vcpu = cpu->hax_vcpu; AccelCPUState *vcpu = cpu->accel;
struct hax_tunnel *ht = vcpu->tunnel; struct hax_tunnel *ht = vcpu->tunnel;
if (!hax_enabled()) { if (!hax_enabled()) {
@ -1110,8 +1114,8 @@ void hax_reset_vcpu_state(void *opaque)
{ {
CPUState *cpu; CPUState *cpu;
for (cpu = first_cpu; cpu != NULL; cpu = CPU_NEXT(cpu)) { for (cpu = first_cpu; cpu != NULL; cpu = CPU_NEXT(cpu)) {
cpu->hax_vcpu->tunnel->user_event_pending = 0; cpu->accel->tunnel->user_event_pending = 0;
cpu->hax_vcpu->tunnel->ready_for_interrupt_injection = 0; cpu->accel->tunnel->ready_for_interrupt_injection = 0;
} }
} }

View file

@ -25,7 +25,11 @@ typedef HANDLE hax_fd;
#endif #endif
extern struct hax_state hax_global; extern struct hax_state hax_global;
struct hax_vcpu_state {
struct AccelCPUState {
#ifdef _WIN32
HANDLE hThread;
#endif
hax_fd fd; hax_fd fd;
int vcpu_id; int vcpu_id;
struct hax_tunnel *tunnel; struct hax_tunnel *tunnel;
@ -46,7 +50,7 @@ struct hax_vm {
hax_fd fd; hax_fd fd;
int id; int id;
int numvcpus; int numvcpus;
struct hax_vcpu_state **vcpus; AccelCPUState **vcpus;
}; };
/* Functions exported to host specific mode */ /* Functions exported to host specific mode */
@ -57,7 +61,7 @@ int valid_hax_tunnel_size(uint16_t size);
int hax_mod_version(struct hax_state *hax, struct hax_module_version *version); int hax_mod_version(struct hax_state *hax, struct hax_module_version *version);
int hax_inject_interrupt(CPUArchState *env, int vector); int hax_inject_interrupt(CPUArchState *env, int vector);
struct hax_vm *hax_vm_create(struct hax_state *hax, int max_cpus); struct hax_vm *hax_vm_create(struct hax_state *hax, int max_cpus);
int hax_vcpu_run(struct hax_vcpu_state *vcpu); int hax_vcpu_run(AccelCPUState *vcpu);
int hax_vcpu_create(int id); int hax_vcpu_create(int id);
void hax_kick_vcpu_thread(CPUState *cpu); void hax_kick_vcpu_thread(CPUState *cpu);
@ -76,7 +80,7 @@ int hax_host_create_vm(struct hax_state *hax, int *vm_id);
hax_fd hax_host_open_vm(struct hax_state *hax, int vm_id); hax_fd hax_host_open_vm(struct hax_state *hax, int vm_id);
int hax_host_create_vcpu(hax_fd vm_fd, int vcpuid); int hax_host_create_vcpu(hax_fd vm_fd, int vcpuid);
hax_fd hax_host_open_vcpu(int vmid, int vcpuid); hax_fd hax_host_open_vcpu(int vmid, int vcpuid);
int hax_host_setup_vcpu_channel(struct hax_vcpu_state *vcpu); int hax_host_setup_vcpu_channel(AccelCPUState *vcpu);
hax_fd hax_mod_open(void); hax_fd hax_mod_open(void);
void hax_memory_init(void); void hax_memory_init(void);

View file

@ -291,7 +291,7 @@ static MemoryListener hax_memory_listener = {
.region_add = hax_region_add, .region_add = hax_region_add,
.region_del = hax_region_del, .region_del = hax_region_del,
.log_sync = hax_log_sync, .log_sync = hax_log_sync,
.priority = 10, .priority = MEMORY_LISTENER_PRIORITY_ACCEL,
}; };
static void hax_ram_block_added(RAMBlockNotifier *n, void *host, size_t size, static void hax_ram_block_added(RAMBlockNotifier *n, void *host, size_t size,

View file

@ -205,7 +205,7 @@ hax_fd hax_host_open_vcpu(int vmid, int vcpuid)
return fd; return fd;
} }
int hax_host_setup_vcpu_channel(struct hax_vcpu_state *vcpu) int hax_host_setup_vcpu_channel(AccelCPUState *vcpu)
{ {
int ret; int ret;
struct hax_tunnel_info info; struct hax_tunnel_info info;
@ -227,7 +227,7 @@ int hax_host_setup_vcpu_channel(struct hax_vcpu_state *vcpu)
return 0; return 0;
} }
int hax_vcpu_run(struct hax_vcpu_state *vcpu) int hax_vcpu_run(AccelCPUState *vcpu)
{ {
return ioctl(vcpu->fd, HAX_VCPU_IOCTL_RUN, NULL); return ioctl(vcpu->fd, HAX_VCPU_IOCTL_RUN, NULL);
} }

View file

@ -301,7 +301,7 @@ hax_fd hax_host_open_vcpu(int vmid, int vcpuid)
return hDeviceVCPU; return hDeviceVCPU;
} }
int hax_host_setup_vcpu_channel(struct hax_vcpu_state *vcpu) int hax_host_setup_vcpu_channel(AccelCPUState *vcpu)
{ {
hax_fd hDeviceVCPU = vcpu->fd; hax_fd hDeviceVCPU = vcpu->fd;
int ret; int ret;
@ -327,7 +327,7 @@ int hax_host_setup_vcpu_channel(struct hax_vcpu_state *vcpu)
return 0; return 0;
} }
int hax_vcpu_run(struct hax_vcpu_state *vcpu) int hax_vcpu_run(AccelCPUState *vcpu)
{ {
int ret; int ret;
HANDLE hDeviceVCPU = vcpu->fd; HANDLE hDeviceVCPU = vcpu->fd;
@ -476,7 +476,7 @@ void hax_kick_vcpu_thread(CPUState *cpu)
*/ */
cpu->exit_request = 1; cpu->exit_request = 1;
if (!qemu_cpu_is_self(cpu)) { if (!qemu_cpu_is_self(cpu)) {
if (!QueueUserAPC(dummy_apc_func, cpu->hThread, 0)) { if (!QueueUserAPC(dummy_apc_func, cpu->accel->hThread, 0)) {
fprintf(stderr, "%s: QueueUserAPC failed with error %lu\n", fprintf(stderr, "%s: QueueUserAPC failed with error %lu\n",
__func__, GetLastError()); __func__, GetLastError());
exit(1); exit(1);

View file

@ -81,11 +81,11 @@ void vmx_update_tpr(CPUState *cpu)
int tpr = cpu_get_apic_tpr(x86_cpu->apic_state) << 4; int tpr = cpu_get_apic_tpr(x86_cpu->apic_state) << 4;
int irr = apic_get_highest_priority_irr(x86_cpu->apic_state); int irr = apic_get_highest_priority_irr(x86_cpu->apic_state);
wreg(cpu->hvf->fd, HV_X86_TPR, tpr); wreg(cpu->accel->fd, HV_X86_TPR, tpr);
if (irr == -1) { if (irr == -1) {
wvmcs(cpu->hvf->fd, VMCS_TPR_THRESHOLD, 0); wvmcs(cpu->accel->fd, VMCS_TPR_THRESHOLD, 0);
} else { } else {
wvmcs(cpu->hvf->fd, VMCS_TPR_THRESHOLD, (irr > tpr) ? tpr >> 4 : wvmcs(cpu->accel->fd, VMCS_TPR_THRESHOLD, (irr > tpr) ? tpr >> 4 :
irr >> 4); irr >> 4);
} }
} }
@ -93,7 +93,7 @@ void vmx_update_tpr(CPUState *cpu)
static void update_apic_tpr(CPUState *cpu) static void update_apic_tpr(CPUState *cpu)
{ {
X86CPU *x86_cpu = X86_CPU(cpu); X86CPU *x86_cpu = X86_CPU(cpu);
int tpr = rreg(cpu->hvf->fd, HV_X86_TPR) >> 4; int tpr = rreg(cpu->accel->fd, HV_X86_TPR) >> 4;
cpu_set_apic_tpr(x86_cpu->apic_state, tpr); cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
} }
@ -256,12 +256,12 @@ int hvf_arch_init_vcpu(CPUState *cpu)
} }
/* set VMCS control fields */ /* set VMCS control fields */
wvmcs(cpu->hvf->fd, VMCS_PIN_BASED_CTLS, wvmcs(cpu->accel->fd, VMCS_PIN_BASED_CTLS,
cap2ctrl(hvf_state->hvf_caps->vmx_cap_pinbased, cap2ctrl(hvf_state->hvf_caps->vmx_cap_pinbased,
VMCS_PIN_BASED_CTLS_EXTINT | VMCS_PIN_BASED_CTLS_EXTINT |
VMCS_PIN_BASED_CTLS_NMI | VMCS_PIN_BASED_CTLS_NMI |
VMCS_PIN_BASED_CTLS_VNMI)); VMCS_PIN_BASED_CTLS_VNMI));
wvmcs(cpu->hvf->fd, VMCS_PRI_PROC_BASED_CTLS, wvmcs(cpu->accel->fd, VMCS_PRI_PROC_BASED_CTLS,
cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased, cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased,
VMCS_PRI_PROC_BASED_CTLS_HLT | VMCS_PRI_PROC_BASED_CTLS_HLT |
VMCS_PRI_PROC_BASED_CTLS_MWAIT | VMCS_PRI_PROC_BASED_CTLS_MWAIT |
@ -276,14 +276,14 @@ int hvf_arch_init_vcpu(CPUState *cpu)
reqCap |= VMCS_PRI_PROC_BASED2_CTLS_RDTSCP; reqCap |= VMCS_PRI_PROC_BASED2_CTLS_RDTSCP;
} }
wvmcs(cpu->hvf->fd, VMCS_SEC_PROC_BASED_CTLS, wvmcs(cpu->accel->fd, VMCS_SEC_PROC_BASED_CTLS,
cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased2, reqCap)); cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased2, reqCap));
wvmcs(cpu->hvf->fd, VMCS_ENTRY_CTLS, cap2ctrl(hvf_state->hvf_caps->vmx_cap_entry, wvmcs(cpu->accel->fd, VMCS_ENTRY_CTLS,
0)); cap2ctrl(hvf_state->hvf_caps->vmx_cap_entry, 0));
wvmcs(cpu->hvf->fd, VMCS_EXCEPTION_BITMAP, 0); /* Double fault */ wvmcs(cpu->accel->fd, VMCS_EXCEPTION_BITMAP, 0); /* Double fault */
wvmcs(cpu->hvf->fd, VMCS_TPR_THRESHOLD, 0); wvmcs(cpu->accel->fd, VMCS_TPR_THRESHOLD, 0);
x86cpu = X86_CPU(cpu); x86cpu = X86_CPU(cpu);
x86cpu->env.xsave_buf_len = 4096; x86cpu->env.xsave_buf_len = 4096;
@ -295,18 +295,18 @@ int hvf_arch_init_vcpu(CPUState *cpu)
*/ */
assert(hvf_get_supported_cpuid(0xd, 0, R_ECX) <= x86cpu->env.xsave_buf_len); assert(hvf_get_supported_cpuid(0xd, 0, R_ECX) <= x86cpu->env.xsave_buf_len);
hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_STAR, 1); hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_STAR, 1);
hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_LSTAR, 1); hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_LSTAR, 1);
hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_CSTAR, 1); hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_CSTAR, 1);
hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_FMASK, 1); hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_FMASK, 1);
hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_FSBASE, 1); hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_FSBASE, 1);
hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_GSBASE, 1); hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_GSBASE, 1);
hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_KERNELGSBASE, 1); hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_KERNELGSBASE, 1);
hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_TSC_AUX, 1); hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_TSC_AUX, 1);
hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_IA32_TSC, 1); hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_IA32_TSC, 1);
hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_IA32_SYSENTER_CS, 1); hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_IA32_SYSENTER_CS, 1);
hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_IA32_SYSENTER_EIP, 1); hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_IA32_SYSENTER_EIP, 1);
hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_IA32_SYSENTER_ESP, 1); hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_IA32_SYSENTER_ESP, 1);
return 0; return 0;
} }
@ -347,16 +347,16 @@ static void hvf_store_events(CPUState *cpu, uint32_t ins_len, uint64_t idtvec_in
} }
if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) { if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
env->has_error_code = true; env->has_error_code = true;
env->error_code = rvmcs(cpu->hvf->fd, VMCS_IDT_VECTORING_ERROR); env->error_code = rvmcs(cpu->accel->fd, VMCS_IDT_VECTORING_ERROR);
} }
} }
if ((rvmcs(cpu->hvf->fd, VMCS_GUEST_INTERRUPTIBILITY) & if ((rvmcs(cpu->accel->fd, VMCS_GUEST_INTERRUPTIBILITY) &
VMCS_INTERRUPTIBILITY_NMI_BLOCKING)) { VMCS_INTERRUPTIBILITY_NMI_BLOCKING)) {
env->hflags2 |= HF2_NMI_MASK; env->hflags2 |= HF2_NMI_MASK;
} else { } else {
env->hflags2 &= ~HF2_NMI_MASK; env->hflags2 &= ~HF2_NMI_MASK;
} }
if (rvmcs(cpu->hvf->fd, VMCS_GUEST_INTERRUPTIBILITY) & if (rvmcs(cpu->accel->fd, VMCS_GUEST_INTERRUPTIBILITY) &
(VMCS_INTERRUPTIBILITY_STI_BLOCKING | (VMCS_INTERRUPTIBILITY_STI_BLOCKING |
VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)) { VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)) {
env->hflags |= HF_INHIBIT_IRQ_MASK; env->hflags |= HF_INHIBIT_IRQ_MASK;
@ -435,20 +435,20 @@ int hvf_vcpu_exec(CPUState *cpu)
return EXCP_HLT; return EXCP_HLT;
} }
hv_return_t r = hv_vcpu_run(cpu->hvf->fd); hv_return_t r = hv_vcpu_run(cpu->accel->fd);
assert_hvf_ok(r); assert_hvf_ok(r);
/* handle VMEXIT */ /* handle VMEXIT */
uint64_t exit_reason = rvmcs(cpu->hvf->fd, VMCS_EXIT_REASON); uint64_t exit_reason = rvmcs(cpu->accel->fd, VMCS_EXIT_REASON);
uint64_t exit_qual = rvmcs(cpu->hvf->fd, VMCS_EXIT_QUALIFICATION); uint64_t exit_qual = rvmcs(cpu->accel->fd, VMCS_EXIT_QUALIFICATION);
uint32_t ins_len = (uint32_t)rvmcs(cpu->hvf->fd, uint32_t ins_len = (uint32_t)rvmcs(cpu->accel->fd,
VMCS_EXIT_INSTRUCTION_LENGTH); VMCS_EXIT_INSTRUCTION_LENGTH);
uint64_t idtvec_info = rvmcs(cpu->hvf->fd, VMCS_IDT_VECTORING_INFO); uint64_t idtvec_info = rvmcs(cpu->accel->fd, VMCS_IDT_VECTORING_INFO);
hvf_store_events(cpu, ins_len, idtvec_info); hvf_store_events(cpu, ins_len, idtvec_info);
rip = rreg(cpu->hvf->fd, HV_X86_RIP); rip = rreg(cpu->accel->fd, HV_X86_RIP);
env->eflags = rreg(cpu->hvf->fd, HV_X86_RFLAGS); env->eflags = rreg(cpu->accel->fd, HV_X86_RFLAGS);
qemu_mutex_lock_iothread(); qemu_mutex_lock_iothread();
@ -478,7 +478,7 @@ int hvf_vcpu_exec(CPUState *cpu)
case EXIT_REASON_EPT_FAULT: case EXIT_REASON_EPT_FAULT:
{ {
hvf_slot *slot; hvf_slot *slot;
uint64_t gpa = rvmcs(cpu->hvf->fd, VMCS_GUEST_PHYSICAL_ADDRESS); uint64_t gpa = rvmcs(cpu->accel->fd, VMCS_GUEST_PHYSICAL_ADDRESS);
if (((idtvec_info & VMCS_IDT_VEC_VALID) == 0) && if (((idtvec_info & VMCS_IDT_VEC_VALID) == 0) &&
((exit_qual & EXIT_QUAL_NMIUDTI) != 0)) { ((exit_qual & EXIT_QUAL_NMIUDTI) != 0)) {
@ -523,7 +523,7 @@ int hvf_vcpu_exec(CPUState *cpu)
store_regs(cpu); store_regs(cpu);
break; break;
} else if (!string && !in) { } else if (!string && !in) {
RAX(env) = rreg(cpu->hvf->fd, HV_X86_RAX); RAX(env) = rreg(cpu->accel->fd, HV_X86_RAX);
hvf_handle_io(env, port, &RAX(env), 1, size, 1); hvf_handle_io(env, port, &RAX(env), 1, size, 1);
macvm_set_rip(cpu, rip + ins_len); macvm_set_rip(cpu, rip + ins_len);
break; break;
@ -539,21 +539,21 @@ int hvf_vcpu_exec(CPUState *cpu)
break; break;
} }
case EXIT_REASON_CPUID: { case EXIT_REASON_CPUID: {
uint32_t rax = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RAX); uint32_t rax = (uint32_t)rreg(cpu->accel->fd, HV_X86_RAX);
uint32_t rbx = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RBX); uint32_t rbx = (uint32_t)rreg(cpu->accel->fd, HV_X86_RBX);
uint32_t rcx = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RCX); uint32_t rcx = (uint32_t)rreg(cpu->accel->fd, HV_X86_RCX);
uint32_t rdx = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RDX); uint32_t rdx = (uint32_t)rreg(cpu->accel->fd, HV_X86_RDX);
if (rax == 1) { if (rax == 1) {
/* CPUID1.ecx.OSXSAVE needs to know CR4 */ /* CPUID1.ecx.OSXSAVE needs to know CR4 */
env->cr[4] = rvmcs(cpu->hvf->fd, VMCS_GUEST_CR4); env->cr[4] = rvmcs(cpu->accel->fd, VMCS_GUEST_CR4);
} }
hvf_cpu_x86_cpuid(env, rax, rcx, &rax, &rbx, &rcx, &rdx); hvf_cpu_x86_cpuid(env, rax, rcx, &rax, &rbx, &rcx, &rdx);
wreg(cpu->hvf->fd, HV_X86_RAX, rax); wreg(cpu->accel->fd, HV_X86_RAX, rax);
wreg(cpu->hvf->fd, HV_X86_RBX, rbx); wreg(cpu->accel->fd, HV_X86_RBX, rbx);
wreg(cpu->hvf->fd, HV_X86_RCX, rcx); wreg(cpu->accel->fd, HV_X86_RCX, rcx);
wreg(cpu->hvf->fd, HV_X86_RDX, rdx); wreg(cpu->accel->fd, HV_X86_RDX, rdx);
macvm_set_rip(cpu, rip + ins_len); macvm_set_rip(cpu, rip + ins_len);
break; break;
@ -561,16 +561,16 @@ int hvf_vcpu_exec(CPUState *cpu)
case EXIT_REASON_XSETBV: { case EXIT_REASON_XSETBV: {
X86CPU *x86_cpu = X86_CPU(cpu); X86CPU *x86_cpu = X86_CPU(cpu);
CPUX86State *env = &x86_cpu->env; CPUX86State *env = &x86_cpu->env;
uint32_t eax = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RAX); uint32_t eax = (uint32_t)rreg(cpu->accel->fd, HV_X86_RAX);
uint32_t ecx = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RCX); uint32_t ecx = (uint32_t)rreg(cpu->accel->fd, HV_X86_RCX);
uint32_t edx = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RDX); uint32_t edx = (uint32_t)rreg(cpu->accel->fd, HV_X86_RDX);
if (ecx) { if (ecx) {
macvm_set_rip(cpu, rip + ins_len); macvm_set_rip(cpu, rip + ins_len);
break; break;
} }
env->xcr0 = ((uint64_t)edx << 32) | eax; env->xcr0 = ((uint64_t)edx << 32) | eax;
wreg(cpu->hvf->fd, HV_X86_XCR0, env->xcr0 | 1); wreg(cpu->accel->fd, HV_X86_XCR0, env->xcr0 | 1);
macvm_set_rip(cpu, rip + ins_len); macvm_set_rip(cpu, rip + ins_len);
break; break;
} }
@ -609,11 +609,11 @@ int hvf_vcpu_exec(CPUState *cpu)
switch (cr) { switch (cr) {
case 0x0: { case 0x0: {
macvm_set_cr0(cpu->hvf->fd, RRX(env, reg)); macvm_set_cr0(cpu->accel->fd, RRX(env, reg));
break; break;
} }
case 4: { case 4: {
macvm_set_cr4(cpu->hvf->fd, RRX(env, reg)); macvm_set_cr4(cpu->accel->fd, RRX(env, reg));
break; break;
} }
case 8: { case 8: {
@ -649,7 +649,7 @@ int hvf_vcpu_exec(CPUState *cpu)
break; break;
} }
case EXIT_REASON_TASK_SWITCH: { case EXIT_REASON_TASK_SWITCH: {
uint64_t vinfo = rvmcs(cpu->hvf->fd, VMCS_IDT_VECTORING_INFO); uint64_t vinfo = rvmcs(cpu->accel->fd, VMCS_IDT_VECTORING_INFO);
x68_segment_selector sel = {.sel = exit_qual & 0xffff}; x68_segment_selector sel = {.sel = exit_qual & 0xffff};
vmx_handle_task_switch(cpu, sel, (exit_qual >> 30) & 0x3, vmx_handle_task_switch(cpu, sel, (exit_qual >> 30) & 0x3,
vinfo & VMCS_INTR_VALID, vinfo & VECTORING_INFO_VECTOR_MASK, vinfo vinfo & VMCS_INTR_VALID, vinfo & VECTORING_INFO_VECTOR_MASK, vinfo
@ -662,8 +662,8 @@ int hvf_vcpu_exec(CPUState *cpu)
break; break;
} }
case EXIT_REASON_RDPMC: case EXIT_REASON_RDPMC:
wreg(cpu->hvf->fd, HV_X86_RAX, 0); wreg(cpu->accel->fd, HV_X86_RAX, 0);
wreg(cpu->hvf->fd, HV_X86_RDX, 0); wreg(cpu->accel->fd, HV_X86_RDX, 0);
macvm_set_rip(cpu, rip + ins_len); macvm_set_rip(cpu, rip + ins_len);
break; break;
case VMX_REASON_VMCALL: case VMX_REASON_VMCALL:

View file

@ -180,15 +180,15 @@ static inline void macvm_set_rip(CPUState *cpu, uint64_t rip)
uint64_t val; uint64_t val;
/* BUG, should take considering overlap.. */ /* BUG, should take considering overlap.. */
wreg(cpu->hvf->fd, HV_X86_RIP, rip); wreg(cpu->accel->fd, HV_X86_RIP, rip);
env->eip = rip; env->eip = rip;
/* after moving forward in rip, we need to clean INTERRUPTABILITY */ /* after moving forward in rip, we need to clean INTERRUPTABILITY */
val = rvmcs(cpu->hvf->fd, VMCS_GUEST_INTERRUPTIBILITY); val = rvmcs(cpu->accel->fd, VMCS_GUEST_INTERRUPTIBILITY);
if (val & (VMCS_INTERRUPTIBILITY_STI_BLOCKING | if (val & (VMCS_INTERRUPTIBILITY_STI_BLOCKING |
VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)) { VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)) {
env->hflags &= ~HF_INHIBIT_IRQ_MASK; env->hflags &= ~HF_INHIBIT_IRQ_MASK;
wvmcs(cpu->hvf->fd, VMCS_GUEST_INTERRUPTIBILITY, wvmcs(cpu->accel->fd, VMCS_GUEST_INTERRUPTIBILITY,
val & ~(VMCS_INTERRUPTIBILITY_STI_BLOCKING | val & ~(VMCS_INTERRUPTIBILITY_STI_BLOCKING |
VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)); VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING));
} }
@ -200,9 +200,9 @@ static inline void vmx_clear_nmi_blocking(CPUState *cpu)
CPUX86State *env = &x86_cpu->env; CPUX86State *env = &x86_cpu->env;
env->hflags2 &= ~HF2_NMI_MASK; env->hflags2 &= ~HF2_NMI_MASK;
uint32_t gi = (uint32_t) rvmcs(cpu->hvf->fd, VMCS_GUEST_INTERRUPTIBILITY); uint32_t gi = (uint32_t) rvmcs(cpu->accel->fd, VMCS_GUEST_INTERRUPTIBILITY);
gi &= ~VMCS_INTERRUPTIBILITY_NMI_BLOCKING; gi &= ~VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
wvmcs(cpu->hvf->fd, VMCS_GUEST_INTERRUPTIBILITY, gi); wvmcs(cpu->accel->fd, VMCS_GUEST_INTERRUPTIBILITY, gi);
} }
static inline void vmx_set_nmi_blocking(CPUState *cpu) static inline void vmx_set_nmi_blocking(CPUState *cpu)
@ -211,16 +211,16 @@ static inline void vmx_set_nmi_blocking(CPUState *cpu)
CPUX86State *env = &x86_cpu->env; CPUX86State *env = &x86_cpu->env;
env->hflags2 |= HF2_NMI_MASK; env->hflags2 |= HF2_NMI_MASK;
uint32_t gi = (uint32_t)rvmcs(cpu->hvf->fd, VMCS_GUEST_INTERRUPTIBILITY); uint32_t gi = (uint32_t)rvmcs(cpu->accel->fd, VMCS_GUEST_INTERRUPTIBILITY);
gi |= VMCS_INTERRUPTIBILITY_NMI_BLOCKING; gi |= VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
wvmcs(cpu->hvf->fd, VMCS_GUEST_INTERRUPTIBILITY, gi); wvmcs(cpu->accel->fd, VMCS_GUEST_INTERRUPTIBILITY, gi);
} }
static inline void vmx_set_nmi_window_exiting(CPUState *cpu) static inline void vmx_set_nmi_window_exiting(CPUState *cpu)
{ {
uint64_t val; uint64_t val;
val = rvmcs(cpu->hvf->fd, VMCS_PRI_PROC_BASED_CTLS); val = rvmcs(cpu->accel->fd, VMCS_PRI_PROC_BASED_CTLS);
wvmcs(cpu->hvf->fd, VMCS_PRI_PROC_BASED_CTLS, val | wvmcs(cpu->accel->fd, VMCS_PRI_PROC_BASED_CTLS, val |
VMCS_PRI_PROC_BASED_CTLS_NMI_WINDOW_EXITING); VMCS_PRI_PROC_BASED_CTLS_NMI_WINDOW_EXITING);
} }
@ -229,8 +229,8 @@ static inline void vmx_clear_nmi_window_exiting(CPUState *cpu)
{ {
uint64_t val; uint64_t val;
val = rvmcs(cpu->hvf->fd, VMCS_PRI_PROC_BASED_CTLS); val = rvmcs(cpu->accel->fd, VMCS_PRI_PROC_BASED_CTLS);
wvmcs(cpu->hvf->fd, VMCS_PRI_PROC_BASED_CTLS, val & wvmcs(cpu->accel->fd, VMCS_PRI_PROC_BASED_CTLS, val &
~VMCS_PRI_PROC_BASED_CTLS_NMI_WINDOW_EXITING); ~VMCS_PRI_PROC_BASED_CTLS_NMI_WINDOW_EXITING);
} }

View file

@ -61,11 +61,11 @@ bool x86_read_segment_descriptor(struct CPUState *cpu,
} }
if (GDT_SEL == sel.ti) { if (GDT_SEL == sel.ti) {
base = rvmcs(cpu->hvf->fd, VMCS_GUEST_GDTR_BASE); base = rvmcs(cpu->accel->fd, VMCS_GUEST_GDTR_BASE);
limit = rvmcs(cpu->hvf->fd, VMCS_GUEST_GDTR_LIMIT); limit = rvmcs(cpu->accel->fd, VMCS_GUEST_GDTR_LIMIT);
} else { } else {
base = rvmcs(cpu->hvf->fd, VMCS_GUEST_LDTR_BASE); base = rvmcs(cpu->accel->fd, VMCS_GUEST_LDTR_BASE);
limit = rvmcs(cpu->hvf->fd, VMCS_GUEST_LDTR_LIMIT); limit = rvmcs(cpu->accel->fd, VMCS_GUEST_LDTR_LIMIT);
} }
if (sel.index * 8 >= limit) { if (sel.index * 8 >= limit) {
@ -84,11 +84,11 @@ bool x86_write_segment_descriptor(struct CPUState *cpu,
uint32_t limit; uint32_t limit;
if (GDT_SEL == sel.ti) { if (GDT_SEL == sel.ti) {
base = rvmcs(cpu->hvf->fd, VMCS_GUEST_GDTR_BASE); base = rvmcs(cpu->accel->fd, VMCS_GUEST_GDTR_BASE);
limit = rvmcs(cpu->hvf->fd, VMCS_GUEST_GDTR_LIMIT); limit = rvmcs(cpu->accel->fd, VMCS_GUEST_GDTR_LIMIT);
} else { } else {
base = rvmcs(cpu->hvf->fd, VMCS_GUEST_LDTR_BASE); base = rvmcs(cpu->accel->fd, VMCS_GUEST_LDTR_BASE);
limit = rvmcs(cpu->hvf->fd, VMCS_GUEST_LDTR_LIMIT); limit = rvmcs(cpu->accel->fd, VMCS_GUEST_LDTR_LIMIT);
} }
if (sel.index * 8 >= limit) { if (sel.index * 8 >= limit) {
@ -102,8 +102,8 @@ bool x86_write_segment_descriptor(struct CPUState *cpu,
bool x86_read_call_gate(struct CPUState *cpu, struct x86_call_gate *idt_desc, bool x86_read_call_gate(struct CPUState *cpu, struct x86_call_gate *idt_desc,
int gate) int gate)
{ {
target_ulong base = rvmcs(cpu->hvf->fd, VMCS_GUEST_IDTR_BASE); target_ulong base = rvmcs(cpu->accel->fd, VMCS_GUEST_IDTR_BASE);
uint32_t limit = rvmcs(cpu->hvf->fd, VMCS_GUEST_IDTR_LIMIT); uint32_t limit = rvmcs(cpu->accel->fd, VMCS_GUEST_IDTR_LIMIT);
memset(idt_desc, 0, sizeof(*idt_desc)); memset(idt_desc, 0, sizeof(*idt_desc));
if (gate * 8 >= limit) { if (gate * 8 >= limit) {
@ -117,7 +117,7 @@ bool x86_read_call_gate(struct CPUState *cpu, struct x86_call_gate *idt_desc,
bool x86_is_protected(struct CPUState *cpu) bool x86_is_protected(struct CPUState *cpu)
{ {
uint64_t cr0 = rvmcs(cpu->hvf->fd, VMCS_GUEST_CR0); uint64_t cr0 = rvmcs(cpu->accel->fd, VMCS_GUEST_CR0);
return cr0 & CR0_PE_MASK; return cr0 & CR0_PE_MASK;
} }
@ -135,7 +135,7 @@ bool x86_is_v8086(struct CPUState *cpu)
bool x86_is_long_mode(struct CPUState *cpu) bool x86_is_long_mode(struct CPUState *cpu)
{ {
return rvmcs(cpu->hvf->fd, VMCS_GUEST_IA32_EFER) & MSR_EFER_LMA; return rvmcs(cpu->accel->fd, VMCS_GUEST_IA32_EFER) & MSR_EFER_LMA;
} }
bool x86_is_long64_mode(struct CPUState *cpu) bool x86_is_long64_mode(struct CPUState *cpu)
@ -148,13 +148,13 @@ bool x86_is_long64_mode(struct CPUState *cpu)
bool x86_is_paging_mode(struct CPUState *cpu) bool x86_is_paging_mode(struct CPUState *cpu)
{ {
uint64_t cr0 = rvmcs(cpu->hvf->fd, VMCS_GUEST_CR0); uint64_t cr0 = rvmcs(cpu->accel->fd, VMCS_GUEST_CR0);
return cr0 & CR0_PG_MASK; return cr0 & CR0_PG_MASK;
} }
bool x86_is_pae_enabled(struct CPUState *cpu) bool x86_is_pae_enabled(struct CPUState *cpu)
{ {
uint64_t cr4 = rvmcs(cpu->hvf->fd, VMCS_GUEST_CR4); uint64_t cr4 = rvmcs(cpu->accel->fd, VMCS_GUEST_CR4);
return cr4 & CR4_PAE_MASK; return cr4 & CR4_PAE_MASK;
} }

View file

@ -47,47 +47,47 @@ static const struct vmx_segment_field {
uint32_t vmx_read_segment_limit(CPUState *cpu, X86Seg seg) uint32_t vmx_read_segment_limit(CPUState *cpu, X86Seg seg)
{ {
return (uint32_t)rvmcs(cpu->hvf->fd, vmx_segment_fields[seg].limit); return (uint32_t)rvmcs(cpu->accel->fd, vmx_segment_fields[seg].limit);
} }
uint32_t vmx_read_segment_ar(CPUState *cpu, X86Seg seg) uint32_t vmx_read_segment_ar(CPUState *cpu, X86Seg seg)
{ {
return (uint32_t)rvmcs(cpu->hvf->fd, vmx_segment_fields[seg].ar_bytes); return (uint32_t)rvmcs(cpu->accel->fd, vmx_segment_fields[seg].ar_bytes);
} }
uint64_t vmx_read_segment_base(CPUState *cpu, X86Seg seg) uint64_t vmx_read_segment_base(CPUState *cpu, X86Seg seg)
{ {
return rvmcs(cpu->hvf->fd, vmx_segment_fields[seg].base); return rvmcs(cpu->accel->fd, vmx_segment_fields[seg].base);
} }
x68_segment_selector vmx_read_segment_selector(CPUState *cpu, X86Seg seg) x68_segment_selector vmx_read_segment_selector(CPUState *cpu, X86Seg seg)
{ {
x68_segment_selector sel; x68_segment_selector sel;
sel.sel = rvmcs(cpu->hvf->fd, vmx_segment_fields[seg].selector); sel.sel = rvmcs(cpu->accel->fd, vmx_segment_fields[seg].selector);
return sel; return sel;
} }
void vmx_write_segment_selector(struct CPUState *cpu, x68_segment_selector selector, X86Seg seg) void vmx_write_segment_selector(struct CPUState *cpu, x68_segment_selector selector, X86Seg seg)
{ {
wvmcs(cpu->hvf->fd, vmx_segment_fields[seg].selector, selector.sel); wvmcs(cpu->accel->fd, vmx_segment_fields[seg].selector, selector.sel);
} }
void vmx_read_segment_descriptor(struct CPUState *cpu, struct vmx_segment *desc, X86Seg seg) void vmx_read_segment_descriptor(struct CPUState *cpu, struct vmx_segment *desc, X86Seg seg)
{ {
desc->sel = rvmcs(cpu->hvf->fd, vmx_segment_fields[seg].selector); desc->sel = rvmcs(cpu->accel->fd, vmx_segment_fields[seg].selector);
desc->base = rvmcs(cpu->hvf->fd, vmx_segment_fields[seg].base); desc->base = rvmcs(cpu->accel->fd, vmx_segment_fields[seg].base);
desc->limit = rvmcs(cpu->hvf->fd, vmx_segment_fields[seg].limit); desc->limit = rvmcs(cpu->accel->fd, vmx_segment_fields[seg].limit);
desc->ar = rvmcs(cpu->hvf->fd, vmx_segment_fields[seg].ar_bytes); desc->ar = rvmcs(cpu->accel->fd, vmx_segment_fields[seg].ar_bytes);
} }
void vmx_write_segment_descriptor(CPUState *cpu, struct vmx_segment *desc, X86Seg seg) void vmx_write_segment_descriptor(CPUState *cpu, struct vmx_segment *desc, X86Seg seg)
{ {
const struct vmx_segment_field *sf = &vmx_segment_fields[seg]; const struct vmx_segment_field *sf = &vmx_segment_fields[seg];
wvmcs(cpu->hvf->fd, sf->base, desc->base); wvmcs(cpu->accel->fd, sf->base, desc->base);
wvmcs(cpu->hvf->fd, sf->limit, desc->limit); wvmcs(cpu->accel->fd, sf->limit, desc->limit);
wvmcs(cpu->hvf->fd, sf->selector, desc->sel); wvmcs(cpu->accel->fd, sf->selector, desc->sel);
wvmcs(cpu->hvf->fd, sf->ar_bytes, desc->ar); wvmcs(cpu->accel->fd, sf->ar_bytes, desc->ar);
} }
void x86_segment_descriptor_to_vmx(struct CPUState *cpu, x68_segment_selector selector, struct x86_segment_descriptor *desc, struct vmx_segment *vmx_desc) void x86_segment_descriptor_to_vmx(struct CPUState *cpu, x68_segment_selector selector, struct x86_segment_descriptor *desc, struct vmx_segment *vmx_desc)

View file

@ -673,7 +673,7 @@ void simulate_rdmsr(struct CPUState *cpu)
switch (msr) { switch (msr) {
case MSR_IA32_TSC: case MSR_IA32_TSC:
val = rdtscp() + rvmcs(cpu->hvf->fd, VMCS_TSC_OFFSET); val = rdtscp() + rvmcs(cpu->accel->fd, VMCS_TSC_OFFSET);
break; break;
case MSR_IA32_APICBASE: case MSR_IA32_APICBASE:
val = cpu_get_apic_base(X86_CPU(cpu)->apic_state); val = cpu_get_apic_base(X86_CPU(cpu)->apic_state);
@ -682,16 +682,16 @@ void simulate_rdmsr(struct CPUState *cpu)
val = x86_cpu->ucode_rev; val = x86_cpu->ucode_rev;
break; break;
case MSR_EFER: case MSR_EFER:
val = rvmcs(cpu->hvf->fd, VMCS_GUEST_IA32_EFER); val = rvmcs(cpu->accel->fd, VMCS_GUEST_IA32_EFER);
break; break;
case MSR_FSBASE: case MSR_FSBASE:
val = rvmcs(cpu->hvf->fd, VMCS_GUEST_FS_BASE); val = rvmcs(cpu->accel->fd, VMCS_GUEST_FS_BASE);
break; break;
case MSR_GSBASE: case MSR_GSBASE:
val = rvmcs(cpu->hvf->fd, VMCS_GUEST_GS_BASE); val = rvmcs(cpu->accel->fd, VMCS_GUEST_GS_BASE);
break; break;
case MSR_KERNELGSBASE: case MSR_KERNELGSBASE:
val = rvmcs(cpu->hvf->fd, VMCS_HOST_FS_BASE); val = rvmcs(cpu->accel->fd, VMCS_HOST_FS_BASE);
break; break;
case MSR_STAR: case MSR_STAR:
abort(); abort();
@ -779,13 +779,13 @@ void simulate_wrmsr(struct CPUState *cpu)
cpu_set_apic_base(X86_CPU(cpu)->apic_state, data); cpu_set_apic_base(X86_CPU(cpu)->apic_state, data);
break; break;
case MSR_FSBASE: case MSR_FSBASE:
wvmcs(cpu->hvf->fd, VMCS_GUEST_FS_BASE, data); wvmcs(cpu->accel->fd, VMCS_GUEST_FS_BASE, data);
break; break;
case MSR_GSBASE: case MSR_GSBASE:
wvmcs(cpu->hvf->fd, VMCS_GUEST_GS_BASE, data); wvmcs(cpu->accel->fd, VMCS_GUEST_GS_BASE, data);
break; break;
case MSR_KERNELGSBASE: case MSR_KERNELGSBASE:
wvmcs(cpu->hvf->fd, VMCS_HOST_FS_BASE, data); wvmcs(cpu->accel->fd, VMCS_HOST_FS_BASE, data);
break; break;
case MSR_STAR: case MSR_STAR:
abort(); abort();
@ -798,9 +798,9 @@ void simulate_wrmsr(struct CPUState *cpu)
break; break;
case MSR_EFER: case MSR_EFER:
/*printf("new efer %llx\n", EFER(cpu));*/ /*printf("new efer %llx\n", EFER(cpu));*/
wvmcs(cpu->hvf->fd, VMCS_GUEST_IA32_EFER, data); wvmcs(cpu->accel->fd, VMCS_GUEST_IA32_EFER, data);
if (data & MSR_EFER_NXE) { if (data & MSR_EFER_NXE) {
hv_vcpu_invalidate_tlb(cpu->hvf->fd); hv_vcpu_invalidate_tlb(cpu->accel->fd);
} }
break; break;
case MSR_MTRRphysBase(0): case MSR_MTRRphysBase(0):
@ -1424,21 +1424,21 @@ void load_regs(struct CPUState *cpu)
CPUX86State *env = &x86_cpu->env; CPUX86State *env = &x86_cpu->env;
int i = 0; int i = 0;
RRX(env, R_EAX) = rreg(cpu->hvf->fd, HV_X86_RAX); RRX(env, R_EAX) = rreg(cpu->accel->fd, HV_X86_RAX);
RRX(env, R_EBX) = rreg(cpu->hvf->fd, HV_X86_RBX); RRX(env, R_EBX) = rreg(cpu->accel->fd, HV_X86_RBX);
RRX(env, R_ECX) = rreg(cpu->hvf->fd, HV_X86_RCX); RRX(env, R_ECX) = rreg(cpu->accel->fd, HV_X86_RCX);
RRX(env, R_EDX) = rreg(cpu->hvf->fd, HV_X86_RDX); RRX(env, R_EDX) = rreg(cpu->accel->fd, HV_X86_RDX);
RRX(env, R_ESI) = rreg(cpu->hvf->fd, HV_X86_RSI); RRX(env, R_ESI) = rreg(cpu->accel->fd, HV_X86_RSI);
RRX(env, R_EDI) = rreg(cpu->hvf->fd, HV_X86_RDI); RRX(env, R_EDI) = rreg(cpu->accel->fd, HV_X86_RDI);
RRX(env, R_ESP) = rreg(cpu->hvf->fd, HV_X86_RSP); RRX(env, R_ESP) = rreg(cpu->accel->fd, HV_X86_RSP);
RRX(env, R_EBP) = rreg(cpu->hvf->fd, HV_X86_RBP); RRX(env, R_EBP) = rreg(cpu->accel->fd, HV_X86_RBP);
for (i = 8; i < 16; i++) { for (i = 8; i < 16; i++) {
RRX(env, i) = rreg(cpu->hvf->fd, HV_X86_RAX + i); RRX(env, i) = rreg(cpu->accel->fd, HV_X86_RAX + i);
} }
env->eflags = rreg(cpu->hvf->fd, HV_X86_RFLAGS); env->eflags = rreg(cpu->accel->fd, HV_X86_RFLAGS);
rflags_to_lflags(env); rflags_to_lflags(env);
env->eip = rreg(cpu->hvf->fd, HV_X86_RIP); env->eip = rreg(cpu->accel->fd, HV_X86_RIP);
} }
void store_regs(struct CPUState *cpu) void store_regs(struct CPUState *cpu)
@ -1447,20 +1447,20 @@ void store_regs(struct CPUState *cpu)
CPUX86State *env = &x86_cpu->env; CPUX86State *env = &x86_cpu->env;
int i = 0; int i = 0;
wreg(cpu->hvf->fd, HV_X86_RAX, RAX(env)); wreg(cpu->accel->fd, HV_X86_RAX, RAX(env));
wreg(cpu->hvf->fd, HV_X86_RBX, RBX(env)); wreg(cpu->accel->fd, HV_X86_RBX, RBX(env));
wreg(cpu->hvf->fd, HV_X86_RCX, RCX(env)); wreg(cpu->accel->fd, HV_X86_RCX, RCX(env));
wreg(cpu->hvf->fd, HV_X86_RDX, RDX(env)); wreg(cpu->accel->fd, HV_X86_RDX, RDX(env));
wreg(cpu->hvf->fd, HV_X86_RSI, RSI(env)); wreg(cpu->accel->fd, HV_X86_RSI, RSI(env));
wreg(cpu->hvf->fd, HV_X86_RDI, RDI(env)); wreg(cpu->accel->fd, HV_X86_RDI, RDI(env));
wreg(cpu->hvf->fd, HV_X86_RBP, RBP(env)); wreg(cpu->accel->fd, HV_X86_RBP, RBP(env));
wreg(cpu->hvf->fd, HV_X86_RSP, RSP(env)); wreg(cpu->accel->fd, HV_X86_RSP, RSP(env));
for (i = 8; i < 16; i++) { for (i = 8; i < 16; i++) {
wreg(cpu->hvf->fd, HV_X86_RAX + i, RRX(env, i)); wreg(cpu->accel->fd, HV_X86_RAX + i, RRX(env, i));
} }
lflags_to_rflags(env); lflags_to_rflags(env);
wreg(cpu->hvf->fd, HV_X86_RFLAGS, env->eflags); wreg(cpu->accel->fd, HV_X86_RFLAGS, env->eflags);
macvm_set_rip(cpu, env->eip); macvm_set_rip(cpu, env->eip);
} }

View file

@ -126,7 +126,7 @@ static bool test_pt_entry(struct CPUState *cpu, struct gpt_translation *pt,
pt->err_code |= MMU_PAGE_PT; pt->err_code |= MMU_PAGE_PT;
} }
uint32_t cr0 = rvmcs(cpu->hvf->fd, VMCS_GUEST_CR0); uint32_t cr0 = rvmcs(cpu->accel->fd, VMCS_GUEST_CR0);
/* check protection */ /* check protection */
if (cr0 & CR0_WP_MASK) { if (cr0 & CR0_WP_MASK) {
if (pt->write_access && !pte_write_access(pte)) { if (pt->write_access && !pte_write_access(pte)) {
@ -171,7 +171,7 @@ static bool walk_gpt(struct CPUState *cpu, target_ulong addr, int err_code,
{ {
int top_level, level; int top_level, level;
bool is_large = false; bool is_large = false;
target_ulong cr3 = rvmcs(cpu->hvf->fd, VMCS_GUEST_CR3); target_ulong cr3 = rvmcs(cpu->accel->fd, VMCS_GUEST_CR3);
uint64_t page_mask = pae ? PAE_PTE_PAGE_MASK : LEGACY_PTE_PAGE_MASK; uint64_t page_mask = pae ? PAE_PTE_PAGE_MASK : LEGACY_PTE_PAGE_MASK;
memset(pt, 0, sizeof(*pt)); memset(pt, 0, sizeof(*pt));

View file

@ -61,7 +61,7 @@ static void load_state_from_tss32(CPUState *cpu, struct x86_tss_segment32 *tss)
X86CPU *x86_cpu = X86_CPU(cpu); X86CPU *x86_cpu = X86_CPU(cpu);
CPUX86State *env = &x86_cpu->env; CPUX86State *env = &x86_cpu->env;
wvmcs(cpu->hvf->fd, VMCS_GUEST_CR3, tss->cr3); wvmcs(cpu->accel->fd, VMCS_GUEST_CR3, tss->cr3);
env->eip = tss->eip; env->eip = tss->eip;
env->eflags = tss->eflags | 2; env->eflags = tss->eflags | 2;
@ -110,11 +110,11 @@ static int task_switch_32(CPUState *cpu, x68_segment_selector tss_sel, x68_segme
void vmx_handle_task_switch(CPUState *cpu, x68_segment_selector tss_sel, int reason, bool gate_valid, uint8_t gate, uint64_t gate_type) void vmx_handle_task_switch(CPUState *cpu, x68_segment_selector tss_sel, int reason, bool gate_valid, uint8_t gate, uint64_t gate_type)
{ {
uint64_t rip = rreg(cpu->hvf->fd, HV_X86_RIP); uint64_t rip = rreg(cpu->accel->fd, HV_X86_RIP);
if (!gate_valid || (gate_type != VMCS_INTR_T_HWEXCEPTION && if (!gate_valid || (gate_type != VMCS_INTR_T_HWEXCEPTION &&
gate_type != VMCS_INTR_T_HWINTR && gate_type != VMCS_INTR_T_HWINTR &&
gate_type != VMCS_INTR_T_NMI)) { gate_type != VMCS_INTR_T_NMI)) {
int ins_len = rvmcs(cpu->hvf->fd, VMCS_EXIT_INSTRUCTION_LENGTH); int ins_len = rvmcs(cpu->accel->fd, VMCS_EXIT_INSTRUCTION_LENGTH);
macvm_set_rip(cpu, rip + ins_len); macvm_set_rip(cpu, rip + ins_len);
return; return;
} }
@ -173,12 +173,12 @@ void vmx_handle_task_switch(CPUState *cpu, x68_segment_selector tss_sel, int rea
//ret = task_switch_16(cpu, tss_sel, old_tss_sel, old_tss_base, &next_tss_desc); //ret = task_switch_16(cpu, tss_sel, old_tss_sel, old_tss_base, &next_tss_desc);
VM_PANIC("task_switch_16"); VM_PANIC("task_switch_16");
macvm_set_cr0(cpu->hvf->fd, rvmcs(cpu->hvf->fd, VMCS_GUEST_CR0) | macvm_set_cr0(cpu->accel->fd, rvmcs(cpu->accel->fd, VMCS_GUEST_CR0) |
CR0_TS_MASK); CR0_TS_MASK);
x86_segment_descriptor_to_vmx(cpu, tss_sel, &next_tss_desc, &vmx_seg); x86_segment_descriptor_to_vmx(cpu, tss_sel, &next_tss_desc, &vmx_seg);
vmx_write_segment_descriptor(cpu, &vmx_seg, R_TR); vmx_write_segment_descriptor(cpu, &vmx_seg, R_TR);
store_regs(cpu); store_regs(cpu);
hv_vcpu_invalidate_tlb(cpu->hvf->fd); hv_vcpu_invalidate_tlb(cpu->accel->fd);
} }

View file

@ -32,14 +32,14 @@
#include <Hypervisor/hv.h> #include <Hypervisor/hv.h>
#include <Hypervisor/hv_vmx.h> #include <Hypervisor/hv_vmx.h>
void hvf_set_segment(struct CPUState *cpu, struct vmx_segment *vmx_seg, void hvf_set_segment(CPUState *cs, struct vmx_segment *vmx_seg,
SegmentCache *qseg, bool is_tr) SegmentCache *qseg, bool is_tr)
{ {
vmx_seg->sel = qseg->selector; vmx_seg->sel = qseg->selector;
vmx_seg->base = qseg->base; vmx_seg->base = qseg->base;
vmx_seg->limit = qseg->limit; vmx_seg->limit = qseg->limit;
if (!qseg->selector && !x86_is_real(cpu) && !is_tr) { if (!qseg->selector && !x86_is_real(cs) && !is_tr) {
/* the TR register is usable after processor reset despite /* the TR register is usable after processor reset despite
* having a null selector */ * having a null selector */
vmx_seg->ar = 1 << 16; vmx_seg->ar = 1 << 16;
@ -70,279 +70,279 @@ void hvf_get_segment(SegmentCache *qseg, struct vmx_segment *vmx_seg)
(((vmx_seg->ar >> 15) & 1) << DESC_G_SHIFT); (((vmx_seg->ar >> 15) & 1) << DESC_G_SHIFT);
} }
void hvf_put_xsave(CPUState *cpu_state) void hvf_put_xsave(CPUState *cs)
{ {
void *xsave = X86_CPU(cpu_state)->env.xsave_buf; void *xsave = X86_CPU(cs)->env.xsave_buf;
uint32_t xsave_len = X86_CPU(cpu_state)->env.xsave_buf_len; uint32_t xsave_len = X86_CPU(cs)->env.xsave_buf_len;
x86_cpu_xsave_all_areas(X86_CPU(cpu_state), xsave, xsave_len); x86_cpu_xsave_all_areas(X86_CPU(cs), xsave, xsave_len);
if (hv_vcpu_write_fpstate(cpu_state->hvf->fd, xsave, xsave_len)) { if (hv_vcpu_write_fpstate(cs->accel->fd, xsave, xsave_len)) {
abort(); abort();
} }
} }
static void hvf_put_segments(CPUState *cpu_state) static void hvf_put_segments(CPUState *cs)
{ {
CPUX86State *env = &X86_CPU(cpu_state)->env; CPUX86State *env = &X86_CPU(cs)->env;
struct vmx_segment seg; struct vmx_segment seg;
wvmcs(cpu_state->hvf->fd, VMCS_GUEST_IDTR_LIMIT, env->idt.limit); wvmcs(cs->accel->fd, VMCS_GUEST_IDTR_LIMIT, env->idt.limit);
wvmcs(cpu_state->hvf->fd, VMCS_GUEST_IDTR_BASE, env->idt.base); wvmcs(cs->accel->fd, VMCS_GUEST_IDTR_BASE, env->idt.base);
wvmcs(cpu_state->hvf->fd, VMCS_GUEST_GDTR_LIMIT, env->gdt.limit); wvmcs(cs->accel->fd, VMCS_GUEST_GDTR_LIMIT, env->gdt.limit);
wvmcs(cpu_state->hvf->fd, VMCS_GUEST_GDTR_BASE, env->gdt.base); wvmcs(cs->accel->fd, VMCS_GUEST_GDTR_BASE, env->gdt.base);
/* wvmcs(cpu_state->hvf->fd, VMCS_GUEST_CR2, env->cr[2]); */ /* wvmcs(cs->accel->fd, VMCS_GUEST_CR2, env->cr[2]); */
wvmcs(cpu_state->hvf->fd, VMCS_GUEST_CR3, env->cr[3]); wvmcs(cs->accel->fd, VMCS_GUEST_CR3, env->cr[3]);
vmx_update_tpr(cpu_state); vmx_update_tpr(cs);
wvmcs(cpu_state->hvf->fd, VMCS_GUEST_IA32_EFER, env->efer); wvmcs(cs->accel->fd, VMCS_GUEST_IA32_EFER, env->efer);
macvm_set_cr4(cpu_state->hvf->fd, env->cr[4]); macvm_set_cr4(cs->accel->fd, env->cr[4]);
macvm_set_cr0(cpu_state->hvf->fd, env->cr[0]); macvm_set_cr0(cs->accel->fd, env->cr[0]);
hvf_set_segment(cpu_state, &seg, &env->segs[R_CS], false); hvf_set_segment(cs, &seg, &env->segs[R_CS], false);
vmx_write_segment_descriptor(cpu_state, &seg, R_CS); vmx_write_segment_descriptor(cs, &seg, R_CS);
hvf_set_segment(cpu_state, &seg, &env->segs[R_DS], false); hvf_set_segment(cs, &seg, &env->segs[R_DS], false);
vmx_write_segment_descriptor(cpu_state, &seg, R_DS); vmx_write_segment_descriptor(cs, &seg, R_DS);
hvf_set_segment(cpu_state, &seg, &env->segs[R_ES], false); hvf_set_segment(cs, &seg, &env->segs[R_ES], false);
vmx_write_segment_descriptor(cpu_state, &seg, R_ES); vmx_write_segment_descriptor(cs, &seg, R_ES);
hvf_set_segment(cpu_state, &seg, &env->segs[R_SS], false); hvf_set_segment(cs, &seg, &env->segs[R_SS], false);
vmx_write_segment_descriptor(cpu_state, &seg, R_SS); vmx_write_segment_descriptor(cs, &seg, R_SS);
hvf_set_segment(cpu_state, &seg, &env->segs[R_FS], false); hvf_set_segment(cs, &seg, &env->segs[R_FS], false);
vmx_write_segment_descriptor(cpu_state, &seg, R_FS); vmx_write_segment_descriptor(cs, &seg, R_FS);
hvf_set_segment(cpu_state, &seg, &env->segs[R_GS], false); hvf_set_segment(cs, &seg, &env->segs[R_GS], false);
vmx_write_segment_descriptor(cpu_state, &seg, R_GS); vmx_write_segment_descriptor(cs, &seg, R_GS);
hvf_set_segment(cpu_state, &seg, &env->tr, true); hvf_set_segment(cs, &seg, &env->tr, true);
vmx_write_segment_descriptor(cpu_state, &seg, R_TR); vmx_write_segment_descriptor(cs, &seg, R_TR);
hvf_set_segment(cpu_state, &seg, &env->ldt, false); hvf_set_segment(cs, &seg, &env->ldt, false);
vmx_write_segment_descriptor(cpu_state, &seg, R_LDTR); vmx_write_segment_descriptor(cs, &seg, R_LDTR);
} }
void hvf_put_msrs(CPUState *cpu_state) void hvf_put_msrs(CPUState *cs)
{ {
CPUX86State *env = &X86_CPU(cpu_state)->env; CPUX86State *env = &X86_CPU(cs)->env;
hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_IA32_SYSENTER_CS, hv_vcpu_write_msr(cs->accel->fd, MSR_IA32_SYSENTER_CS,
env->sysenter_cs); env->sysenter_cs);
hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_IA32_SYSENTER_ESP, hv_vcpu_write_msr(cs->accel->fd, MSR_IA32_SYSENTER_ESP,
env->sysenter_esp); env->sysenter_esp);
hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_IA32_SYSENTER_EIP, hv_vcpu_write_msr(cs->accel->fd, MSR_IA32_SYSENTER_EIP,
env->sysenter_eip); env->sysenter_eip);
hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_STAR, env->star); hv_vcpu_write_msr(cs->accel->fd, MSR_STAR, env->star);
#ifdef TARGET_X86_64 #ifdef TARGET_X86_64
hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_CSTAR, env->cstar); hv_vcpu_write_msr(cs->accel->fd, MSR_CSTAR, env->cstar);
hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_KERNELGSBASE, env->kernelgsbase); hv_vcpu_write_msr(cs->accel->fd, MSR_KERNELGSBASE, env->kernelgsbase);
hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_FMASK, env->fmask); hv_vcpu_write_msr(cs->accel->fd, MSR_FMASK, env->fmask);
hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_LSTAR, env->lstar); hv_vcpu_write_msr(cs->accel->fd, MSR_LSTAR, env->lstar);
#endif #endif
hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_GSBASE, env->segs[R_GS].base); hv_vcpu_write_msr(cs->accel->fd, MSR_GSBASE, env->segs[R_GS].base);
hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_FSBASE, env->segs[R_FS].base); hv_vcpu_write_msr(cs->accel->fd, MSR_FSBASE, env->segs[R_FS].base);
} }
void hvf_get_xsave(CPUState *cpu_state) void hvf_get_xsave(CPUState *cs)
{ {
void *xsave = X86_CPU(cpu_state)->env.xsave_buf; void *xsave = X86_CPU(cs)->env.xsave_buf;
uint32_t xsave_len = X86_CPU(cpu_state)->env.xsave_buf_len; uint32_t xsave_len = X86_CPU(cs)->env.xsave_buf_len;
if (hv_vcpu_read_fpstate(cpu_state->hvf->fd, xsave, xsave_len)) { if (hv_vcpu_read_fpstate(cs->accel->fd, xsave, xsave_len)) {
abort(); abort();
} }
x86_cpu_xrstor_all_areas(X86_CPU(cpu_state), xsave, xsave_len); x86_cpu_xrstor_all_areas(X86_CPU(cs), xsave, xsave_len);
} }
static void hvf_get_segments(CPUState *cpu_state) static void hvf_get_segments(CPUState *cs)
{ {
CPUX86State *env = &X86_CPU(cpu_state)->env; CPUX86State *env = &X86_CPU(cs)->env;
struct vmx_segment seg; struct vmx_segment seg;
env->interrupt_injected = -1; env->interrupt_injected = -1;
vmx_read_segment_descriptor(cpu_state, &seg, R_CS); vmx_read_segment_descriptor(cs, &seg, R_CS);
hvf_get_segment(&env->segs[R_CS], &seg); hvf_get_segment(&env->segs[R_CS], &seg);
vmx_read_segment_descriptor(cpu_state, &seg, R_DS); vmx_read_segment_descriptor(cs, &seg, R_DS);
hvf_get_segment(&env->segs[R_DS], &seg); hvf_get_segment(&env->segs[R_DS], &seg);
vmx_read_segment_descriptor(cpu_state, &seg, R_ES); vmx_read_segment_descriptor(cs, &seg, R_ES);
hvf_get_segment(&env->segs[R_ES], &seg); hvf_get_segment(&env->segs[R_ES], &seg);
vmx_read_segment_descriptor(cpu_state, &seg, R_FS); vmx_read_segment_descriptor(cs, &seg, R_FS);
hvf_get_segment(&env->segs[R_FS], &seg); hvf_get_segment(&env->segs[R_FS], &seg);
vmx_read_segment_descriptor(cpu_state, &seg, R_GS); vmx_read_segment_descriptor(cs, &seg, R_GS);
hvf_get_segment(&env->segs[R_GS], &seg); hvf_get_segment(&env->segs[R_GS], &seg);
vmx_read_segment_descriptor(cpu_state, &seg, R_SS); vmx_read_segment_descriptor(cs, &seg, R_SS);
hvf_get_segment(&env->segs[R_SS], &seg); hvf_get_segment(&env->segs[R_SS], &seg);
vmx_read_segment_descriptor(cpu_state, &seg, R_TR); vmx_read_segment_descriptor(cs, &seg, R_TR);
hvf_get_segment(&env->tr, &seg); hvf_get_segment(&env->tr, &seg);
vmx_read_segment_descriptor(cpu_state, &seg, R_LDTR); vmx_read_segment_descriptor(cs, &seg, R_LDTR);
hvf_get_segment(&env->ldt, &seg); hvf_get_segment(&env->ldt, &seg);
env->idt.limit = rvmcs(cpu_state->hvf->fd, VMCS_GUEST_IDTR_LIMIT); env->idt.limit = rvmcs(cs->accel->fd, VMCS_GUEST_IDTR_LIMIT);
env->idt.base = rvmcs(cpu_state->hvf->fd, VMCS_GUEST_IDTR_BASE); env->idt.base = rvmcs(cs->accel->fd, VMCS_GUEST_IDTR_BASE);
env->gdt.limit = rvmcs(cpu_state->hvf->fd, VMCS_GUEST_GDTR_LIMIT); env->gdt.limit = rvmcs(cs->accel->fd, VMCS_GUEST_GDTR_LIMIT);
env->gdt.base = rvmcs(cpu_state->hvf->fd, VMCS_GUEST_GDTR_BASE); env->gdt.base = rvmcs(cs->accel->fd, VMCS_GUEST_GDTR_BASE);
env->cr[0] = rvmcs(cpu_state->hvf->fd, VMCS_GUEST_CR0); env->cr[0] = rvmcs(cs->accel->fd, VMCS_GUEST_CR0);
env->cr[2] = 0; env->cr[2] = 0;
env->cr[3] = rvmcs(cpu_state->hvf->fd, VMCS_GUEST_CR3); env->cr[3] = rvmcs(cs->accel->fd, VMCS_GUEST_CR3);
env->cr[4] = rvmcs(cpu_state->hvf->fd, VMCS_GUEST_CR4); env->cr[4] = rvmcs(cs->accel->fd, VMCS_GUEST_CR4);
env->efer = rvmcs(cpu_state->hvf->fd, VMCS_GUEST_IA32_EFER); env->efer = rvmcs(cs->accel->fd, VMCS_GUEST_IA32_EFER);
} }
void hvf_get_msrs(CPUState *cpu_state) void hvf_get_msrs(CPUState *cs)
{ {
CPUX86State *env = &X86_CPU(cpu_state)->env; CPUX86State *env = &X86_CPU(cs)->env;
uint64_t tmp; uint64_t tmp;
hv_vcpu_read_msr(cpu_state->hvf->fd, MSR_IA32_SYSENTER_CS, &tmp); hv_vcpu_read_msr(cs->accel->fd, MSR_IA32_SYSENTER_CS, &tmp);
env->sysenter_cs = tmp; env->sysenter_cs = tmp;
hv_vcpu_read_msr(cpu_state->hvf->fd, MSR_IA32_SYSENTER_ESP, &tmp); hv_vcpu_read_msr(cs->accel->fd, MSR_IA32_SYSENTER_ESP, &tmp);
env->sysenter_esp = tmp; env->sysenter_esp = tmp;
hv_vcpu_read_msr(cpu_state->hvf->fd, MSR_IA32_SYSENTER_EIP, &tmp); hv_vcpu_read_msr(cs->accel->fd, MSR_IA32_SYSENTER_EIP, &tmp);
env->sysenter_eip = tmp; env->sysenter_eip = tmp;
hv_vcpu_read_msr(cpu_state->hvf->fd, MSR_STAR, &env->star); hv_vcpu_read_msr(cs->accel->fd, MSR_STAR, &env->star);
#ifdef TARGET_X86_64 #ifdef TARGET_X86_64
hv_vcpu_read_msr(cpu_state->hvf->fd, MSR_CSTAR, &env->cstar); hv_vcpu_read_msr(cs->accel->fd, MSR_CSTAR, &env->cstar);
hv_vcpu_read_msr(cpu_state->hvf->fd, MSR_KERNELGSBASE, &env->kernelgsbase); hv_vcpu_read_msr(cs->accel->fd, MSR_KERNELGSBASE, &env->kernelgsbase);
hv_vcpu_read_msr(cpu_state->hvf->fd, MSR_FMASK, &env->fmask); hv_vcpu_read_msr(cs->accel->fd, MSR_FMASK, &env->fmask);
hv_vcpu_read_msr(cpu_state->hvf->fd, MSR_LSTAR, &env->lstar); hv_vcpu_read_msr(cs->accel->fd, MSR_LSTAR, &env->lstar);
#endif #endif
hv_vcpu_read_msr(cpu_state->hvf->fd, MSR_IA32_APICBASE, &tmp); hv_vcpu_read_msr(cs->accel->fd, MSR_IA32_APICBASE, &tmp);
env->tsc = rdtscp() + rvmcs(cpu_state->hvf->fd, VMCS_TSC_OFFSET); env->tsc = rdtscp() + rvmcs(cs->accel->fd, VMCS_TSC_OFFSET);
} }
int hvf_put_registers(CPUState *cpu_state) int hvf_put_registers(CPUState *cs)
{ {
X86CPU *x86cpu = X86_CPU(cpu_state); X86CPU *x86cpu = X86_CPU(cs);
CPUX86State *env = &x86cpu->env; CPUX86State *env = &x86cpu->env;
wreg(cpu_state->hvf->fd, HV_X86_RAX, env->regs[R_EAX]); wreg(cs->accel->fd, HV_X86_RAX, env->regs[R_EAX]);
wreg(cpu_state->hvf->fd, HV_X86_RBX, env->regs[R_EBX]); wreg(cs->accel->fd, HV_X86_RBX, env->regs[R_EBX]);
wreg(cpu_state->hvf->fd, HV_X86_RCX, env->regs[R_ECX]); wreg(cs->accel->fd, HV_X86_RCX, env->regs[R_ECX]);
wreg(cpu_state->hvf->fd, HV_X86_RDX, env->regs[R_EDX]); wreg(cs->accel->fd, HV_X86_RDX, env->regs[R_EDX]);
wreg(cpu_state->hvf->fd, HV_X86_RBP, env->regs[R_EBP]); wreg(cs->accel->fd, HV_X86_RBP, env->regs[R_EBP]);
wreg(cpu_state->hvf->fd, HV_X86_RSP, env->regs[R_ESP]); wreg(cs->accel->fd, HV_X86_RSP, env->regs[R_ESP]);
wreg(cpu_state->hvf->fd, HV_X86_RSI, env->regs[R_ESI]); wreg(cs->accel->fd, HV_X86_RSI, env->regs[R_ESI]);
wreg(cpu_state->hvf->fd, HV_X86_RDI, env->regs[R_EDI]); wreg(cs->accel->fd, HV_X86_RDI, env->regs[R_EDI]);
wreg(cpu_state->hvf->fd, HV_X86_R8, env->regs[8]); wreg(cs->accel->fd, HV_X86_R8, env->regs[8]);
wreg(cpu_state->hvf->fd, HV_X86_R9, env->regs[9]); wreg(cs->accel->fd, HV_X86_R9, env->regs[9]);
wreg(cpu_state->hvf->fd, HV_X86_R10, env->regs[10]); wreg(cs->accel->fd, HV_X86_R10, env->regs[10]);
wreg(cpu_state->hvf->fd, HV_X86_R11, env->regs[11]); wreg(cs->accel->fd, HV_X86_R11, env->regs[11]);
wreg(cpu_state->hvf->fd, HV_X86_R12, env->regs[12]); wreg(cs->accel->fd, HV_X86_R12, env->regs[12]);
wreg(cpu_state->hvf->fd, HV_X86_R13, env->regs[13]); wreg(cs->accel->fd, HV_X86_R13, env->regs[13]);
wreg(cpu_state->hvf->fd, HV_X86_R14, env->regs[14]); wreg(cs->accel->fd, HV_X86_R14, env->regs[14]);
wreg(cpu_state->hvf->fd, HV_X86_R15, env->regs[15]); wreg(cs->accel->fd, HV_X86_R15, env->regs[15]);
wreg(cpu_state->hvf->fd, HV_X86_RFLAGS, env->eflags); wreg(cs->accel->fd, HV_X86_RFLAGS, env->eflags);
wreg(cpu_state->hvf->fd, HV_X86_RIP, env->eip); wreg(cs->accel->fd, HV_X86_RIP, env->eip);
wreg(cpu_state->hvf->fd, HV_X86_XCR0, env->xcr0); wreg(cs->accel->fd, HV_X86_XCR0, env->xcr0);
hvf_put_xsave(cpu_state); hvf_put_xsave(cs);
hvf_put_segments(cpu_state); hvf_put_segments(cs);
hvf_put_msrs(cpu_state); hvf_put_msrs(cs);
wreg(cpu_state->hvf->fd, HV_X86_DR0, env->dr[0]); wreg(cs->accel->fd, HV_X86_DR0, env->dr[0]);
wreg(cpu_state->hvf->fd, HV_X86_DR1, env->dr[1]); wreg(cs->accel->fd, HV_X86_DR1, env->dr[1]);
wreg(cpu_state->hvf->fd, HV_X86_DR2, env->dr[2]); wreg(cs->accel->fd, HV_X86_DR2, env->dr[2]);
wreg(cpu_state->hvf->fd, HV_X86_DR3, env->dr[3]); wreg(cs->accel->fd, HV_X86_DR3, env->dr[3]);
wreg(cpu_state->hvf->fd, HV_X86_DR4, env->dr[4]); wreg(cs->accel->fd, HV_X86_DR4, env->dr[4]);
wreg(cpu_state->hvf->fd, HV_X86_DR5, env->dr[5]); wreg(cs->accel->fd, HV_X86_DR5, env->dr[5]);
wreg(cpu_state->hvf->fd, HV_X86_DR6, env->dr[6]); wreg(cs->accel->fd, HV_X86_DR6, env->dr[6]);
wreg(cpu_state->hvf->fd, HV_X86_DR7, env->dr[7]); wreg(cs->accel->fd, HV_X86_DR7, env->dr[7]);
return 0; return 0;
} }
int hvf_get_registers(CPUState *cpu_state) int hvf_get_registers(CPUState *cs)
{ {
X86CPU *x86cpu = X86_CPU(cpu_state); X86CPU *x86cpu = X86_CPU(cs);
CPUX86State *env = &x86cpu->env; CPUX86State *env = &x86cpu->env;
env->regs[R_EAX] = rreg(cpu_state->hvf->fd, HV_X86_RAX); env->regs[R_EAX] = rreg(cs->accel->fd, HV_X86_RAX);
env->regs[R_EBX] = rreg(cpu_state->hvf->fd, HV_X86_RBX); env->regs[R_EBX] = rreg(cs->accel->fd, HV_X86_RBX);
env->regs[R_ECX] = rreg(cpu_state->hvf->fd, HV_X86_RCX); env->regs[R_ECX] = rreg(cs->accel->fd, HV_X86_RCX);
env->regs[R_EDX] = rreg(cpu_state->hvf->fd, HV_X86_RDX); env->regs[R_EDX] = rreg(cs->accel->fd, HV_X86_RDX);
env->regs[R_EBP] = rreg(cpu_state->hvf->fd, HV_X86_RBP); env->regs[R_EBP] = rreg(cs->accel->fd, HV_X86_RBP);
env->regs[R_ESP] = rreg(cpu_state->hvf->fd, HV_X86_RSP); env->regs[R_ESP] = rreg(cs->accel->fd, HV_X86_RSP);
env->regs[R_ESI] = rreg(cpu_state->hvf->fd, HV_X86_RSI); env->regs[R_ESI] = rreg(cs->accel->fd, HV_X86_RSI);
env->regs[R_EDI] = rreg(cpu_state->hvf->fd, HV_X86_RDI); env->regs[R_EDI] = rreg(cs->accel->fd, HV_X86_RDI);
env->regs[8] = rreg(cpu_state->hvf->fd, HV_X86_R8); env->regs[8] = rreg(cs->accel->fd, HV_X86_R8);
env->regs[9] = rreg(cpu_state->hvf->fd, HV_X86_R9); env->regs[9] = rreg(cs->accel->fd, HV_X86_R9);
env->regs[10] = rreg(cpu_state->hvf->fd, HV_X86_R10); env->regs[10] = rreg(cs->accel->fd, HV_X86_R10);
env->regs[11] = rreg(cpu_state->hvf->fd, HV_X86_R11); env->regs[11] = rreg(cs->accel->fd, HV_X86_R11);
env->regs[12] = rreg(cpu_state->hvf->fd, HV_X86_R12); env->regs[12] = rreg(cs->accel->fd, HV_X86_R12);
env->regs[13] = rreg(cpu_state->hvf->fd, HV_X86_R13); env->regs[13] = rreg(cs->accel->fd, HV_X86_R13);
env->regs[14] = rreg(cpu_state->hvf->fd, HV_X86_R14); env->regs[14] = rreg(cs->accel->fd, HV_X86_R14);
env->regs[15] = rreg(cpu_state->hvf->fd, HV_X86_R15); env->regs[15] = rreg(cs->accel->fd, HV_X86_R15);
env->eflags = rreg(cpu_state->hvf->fd, HV_X86_RFLAGS); env->eflags = rreg(cs->accel->fd, HV_X86_RFLAGS);
env->eip = rreg(cpu_state->hvf->fd, HV_X86_RIP); env->eip = rreg(cs->accel->fd, HV_X86_RIP);
hvf_get_xsave(cpu_state); hvf_get_xsave(cs);
env->xcr0 = rreg(cpu_state->hvf->fd, HV_X86_XCR0); env->xcr0 = rreg(cs->accel->fd, HV_X86_XCR0);
hvf_get_segments(cpu_state); hvf_get_segments(cs);
hvf_get_msrs(cpu_state); hvf_get_msrs(cs);
env->dr[0] = rreg(cpu_state->hvf->fd, HV_X86_DR0); env->dr[0] = rreg(cs->accel->fd, HV_X86_DR0);
env->dr[1] = rreg(cpu_state->hvf->fd, HV_X86_DR1); env->dr[1] = rreg(cs->accel->fd, HV_X86_DR1);
env->dr[2] = rreg(cpu_state->hvf->fd, HV_X86_DR2); env->dr[2] = rreg(cs->accel->fd, HV_X86_DR2);
env->dr[3] = rreg(cpu_state->hvf->fd, HV_X86_DR3); env->dr[3] = rreg(cs->accel->fd, HV_X86_DR3);
env->dr[4] = rreg(cpu_state->hvf->fd, HV_X86_DR4); env->dr[4] = rreg(cs->accel->fd, HV_X86_DR4);
env->dr[5] = rreg(cpu_state->hvf->fd, HV_X86_DR5); env->dr[5] = rreg(cs->accel->fd, HV_X86_DR5);
env->dr[6] = rreg(cpu_state->hvf->fd, HV_X86_DR6); env->dr[6] = rreg(cs->accel->fd, HV_X86_DR6);
env->dr[7] = rreg(cpu_state->hvf->fd, HV_X86_DR7); env->dr[7] = rreg(cs->accel->fd, HV_X86_DR7);
x86_update_hflags(env); x86_update_hflags(env);
return 0; return 0;
} }
static void vmx_set_int_window_exiting(CPUState *cpu) static void vmx_set_int_window_exiting(CPUState *cs)
{ {
uint64_t val; uint64_t val;
val = rvmcs(cpu->hvf->fd, VMCS_PRI_PROC_BASED_CTLS); val = rvmcs(cs->accel->fd, VMCS_PRI_PROC_BASED_CTLS);
wvmcs(cpu->hvf->fd, VMCS_PRI_PROC_BASED_CTLS, val | wvmcs(cs->accel->fd, VMCS_PRI_PROC_BASED_CTLS, val |
VMCS_PRI_PROC_BASED_CTLS_INT_WINDOW_EXITING); VMCS_PRI_PROC_BASED_CTLS_INT_WINDOW_EXITING);
} }
void vmx_clear_int_window_exiting(CPUState *cpu) void vmx_clear_int_window_exiting(CPUState *cs)
{ {
uint64_t val; uint64_t val;
val = rvmcs(cpu->hvf->fd, VMCS_PRI_PROC_BASED_CTLS); val = rvmcs(cs->accel->fd, VMCS_PRI_PROC_BASED_CTLS);
wvmcs(cpu->hvf->fd, VMCS_PRI_PROC_BASED_CTLS, val & wvmcs(cs->accel->fd, VMCS_PRI_PROC_BASED_CTLS, val &
~VMCS_PRI_PROC_BASED_CTLS_INT_WINDOW_EXITING); ~VMCS_PRI_PROC_BASED_CTLS_INT_WINDOW_EXITING);
} }
bool hvf_inject_interrupts(CPUState *cpu_state) bool hvf_inject_interrupts(CPUState *cs)
{ {
X86CPU *x86cpu = X86_CPU(cpu_state); X86CPU *x86cpu = X86_CPU(cs);
CPUX86State *env = &x86cpu->env; CPUX86State *env = &x86cpu->env;
uint8_t vector; uint8_t vector;
@ -372,89 +372,89 @@ bool hvf_inject_interrupts(CPUState *cpu_state)
uint64_t info = 0; uint64_t info = 0;
if (have_event) { if (have_event) {
info = vector | intr_type | VMCS_INTR_VALID; info = vector | intr_type | VMCS_INTR_VALID;
uint64_t reason = rvmcs(cpu_state->hvf->fd, VMCS_EXIT_REASON); uint64_t reason = rvmcs(cs->accel->fd, VMCS_EXIT_REASON);
if (env->nmi_injected && reason != EXIT_REASON_TASK_SWITCH) { if (env->nmi_injected && reason != EXIT_REASON_TASK_SWITCH) {
vmx_clear_nmi_blocking(cpu_state); vmx_clear_nmi_blocking(cs);
} }
if (!(env->hflags2 & HF2_NMI_MASK) || intr_type != VMCS_INTR_T_NMI) { if (!(env->hflags2 & HF2_NMI_MASK) || intr_type != VMCS_INTR_T_NMI) {
info &= ~(1 << 12); /* clear undefined bit */ info &= ~(1 << 12); /* clear undefined bit */
if (intr_type == VMCS_INTR_T_SWINTR || if (intr_type == VMCS_INTR_T_SWINTR ||
intr_type == VMCS_INTR_T_SWEXCEPTION) { intr_type == VMCS_INTR_T_SWEXCEPTION) {
wvmcs(cpu_state->hvf->fd, VMCS_ENTRY_INST_LENGTH, env->ins_len); wvmcs(cs->accel->fd, VMCS_ENTRY_INST_LENGTH, env->ins_len);
} }
if (env->has_error_code) { if (env->has_error_code) {
wvmcs(cpu_state->hvf->fd, VMCS_ENTRY_EXCEPTION_ERROR, wvmcs(cs->accel->fd, VMCS_ENTRY_EXCEPTION_ERROR,
env->error_code); env->error_code);
/* Indicate that VMCS_ENTRY_EXCEPTION_ERROR is valid */ /* Indicate that VMCS_ENTRY_EXCEPTION_ERROR is valid */
info |= VMCS_INTR_DEL_ERRCODE; info |= VMCS_INTR_DEL_ERRCODE;
} }
/*printf("reinject %lx err %d\n", info, err);*/ /*printf("reinject %lx err %d\n", info, err);*/
wvmcs(cpu_state->hvf->fd, VMCS_ENTRY_INTR_INFO, info); wvmcs(cs->accel->fd, VMCS_ENTRY_INTR_INFO, info);
}; };
} }
if (cpu_state->interrupt_request & CPU_INTERRUPT_NMI) { if (cs->interrupt_request & CPU_INTERRUPT_NMI) {
if (!(env->hflags2 & HF2_NMI_MASK) && !(info & VMCS_INTR_VALID)) { if (!(env->hflags2 & HF2_NMI_MASK) && !(info & VMCS_INTR_VALID)) {
cpu_state->interrupt_request &= ~CPU_INTERRUPT_NMI; cs->interrupt_request &= ~CPU_INTERRUPT_NMI;
info = VMCS_INTR_VALID | VMCS_INTR_T_NMI | EXCP02_NMI; info = VMCS_INTR_VALID | VMCS_INTR_T_NMI | EXCP02_NMI;
wvmcs(cpu_state->hvf->fd, VMCS_ENTRY_INTR_INFO, info); wvmcs(cs->accel->fd, VMCS_ENTRY_INTR_INFO, info);
} else { } else {
vmx_set_nmi_window_exiting(cpu_state); vmx_set_nmi_window_exiting(cs);
} }
} }
if (!(env->hflags & HF_INHIBIT_IRQ_MASK) && if (!(env->hflags & HF_INHIBIT_IRQ_MASK) &&
(cpu_state->interrupt_request & CPU_INTERRUPT_HARD) && (cs->interrupt_request & CPU_INTERRUPT_HARD) &&
(env->eflags & IF_MASK) && !(info & VMCS_INTR_VALID)) { (env->eflags & IF_MASK) && !(info & VMCS_INTR_VALID)) {
int line = cpu_get_pic_interrupt(&x86cpu->env); int line = cpu_get_pic_interrupt(&x86cpu->env);
cpu_state->interrupt_request &= ~CPU_INTERRUPT_HARD; cs->interrupt_request &= ~CPU_INTERRUPT_HARD;
if (line >= 0) { if (line >= 0) {
wvmcs(cpu_state->hvf->fd, VMCS_ENTRY_INTR_INFO, line | wvmcs(cs->accel->fd, VMCS_ENTRY_INTR_INFO, line |
VMCS_INTR_VALID | VMCS_INTR_T_HWINTR); VMCS_INTR_VALID | VMCS_INTR_T_HWINTR);
} }
} }
if (cpu_state->interrupt_request & CPU_INTERRUPT_HARD) { if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
vmx_set_int_window_exiting(cpu_state); vmx_set_int_window_exiting(cs);
} }
return (cpu_state->interrupt_request return (cs->interrupt_request
& (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)); & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR));
} }
int hvf_process_events(CPUState *cpu_state) int hvf_process_events(CPUState *cs)
{ {
X86CPU *cpu = X86_CPU(cpu_state); X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env; CPUX86State *env = &cpu->env;
if (!cpu_state->vcpu_dirty) { if (!cs->vcpu_dirty) {
/* light weight sync for CPU_INTERRUPT_HARD and IF_MASK */ /* light weight sync for CPU_INTERRUPT_HARD and IF_MASK */
env->eflags = rreg(cpu_state->hvf->fd, HV_X86_RFLAGS); env->eflags = rreg(cs->accel->fd, HV_X86_RFLAGS);
} }
if (cpu_state->interrupt_request & CPU_INTERRUPT_INIT) { if (cs->interrupt_request & CPU_INTERRUPT_INIT) {
cpu_synchronize_state(cpu_state); cpu_synchronize_state(cs);
do_cpu_init(cpu); do_cpu_init(cpu);
} }
if (cpu_state->interrupt_request & CPU_INTERRUPT_POLL) { if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
cpu_state->interrupt_request &= ~CPU_INTERRUPT_POLL; cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
apic_poll_irq(cpu->apic_state); apic_poll_irq(cpu->apic_state);
} }
if (((cpu_state->interrupt_request & CPU_INTERRUPT_HARD) && if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
(env->eflags & IF_MASK)) || (env->eflags & IF_MASK)) ||
(cpu_state->interrupt_request & CPU_INTERRUPT_NMI)) { (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
cpu_state->halted = 0; cs->halted = 0;
} }
if (cpu_state->interrupt_request & CPU_INTERRUPT_SIPI) { if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
cpu_synchronize_state(cpu_state); cpu_synchronize_state(cs);
do_cpu_sipi(cpu); do_cpu_sipi(cpu);
} }
if (cpu_state->interrupt_request & CPU_INTERRUPT_TPR) { if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
cpu_state->interrupt_request &= ~CPU_INTERRUPT_TPR; cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
cpu_synchronize_state(cpu_state); cpu_synchronize_state(cs);
apic_handle_tpr_access_report(cpu->apic_state, env->eip, apic_handle_tpr_access_report(cpu->apic_state, env->eip,
env->tpr_access_type); env->tpr_access_type);
} }
return cpu_state->halted; return cs->halted;
} }

View file

@ -20,15 +20,15 @@
#include "cpu.h" #include "cpu.h"
#include "x86_descr.h" #include "x86_descr.h"
int hvf_process_events(CPUState *); int hvf_process_events(CPUState *cs);
bool hvf_inject_interrupts(CPUState *); bool hvf_inject_interrupts(CPUState *cs);
void hvf_set_segment(struct CPUState *cpu, struct vmx_segment *vmx_seg, void hvf_set_segment(CPUState *cs, struct vmx_segment *vmx_seg,
SegmentCache *qseg, bool is_tr); SegmentCache *qseg, bool is_tr);
void hvf_get_segment(SegmentCache *qseg, struct vmx_segment *vmx_seg); void hvf_get_segment(SegmentCache *qseg, struct vmx_segment *vmx_seg);
void hvf_put_xsave(CPUState *cpu_state); void hvf_put_xsave(CPUState *cs);
void hvf_put_msrs(CPUState *cpu_state); void hvf_put_msrs(CPUState *cs);
void hvf_get_xsave(CPUState *cpu_state); void hvf_get_xsave(CPUState *cs);
void hvf_get_msrs(CPUState *cpu_state); void hvf_get_msrs(CPUState *cs);
void vmx_clear_int_window_exiting(CPUState *cpu); void vmx_clear_int_window_exiting(CPUState *cs);
void vmx_update_tpr(CPUState *cpu); void vmx_update_tpr(CPUState *cs);
#endif #endif

View file

@ -26,7 +26,7 @@
#include <nvmm.h> #include <nvmm.h>
struct qemu_vcpu { struct AccelCPUState {
struct nvmm_vcpu vcpu; struct nvmm_vcpu vcpu;
uint8_t tpr; uint8_t tpr;
bool stop; bool stop;
@ -49,12 +49,6 @@ struct qemu_machine {
static bool nvmm_allowed; static bool nvmm_allowed;
static struct qemu_machine qemu_mach; static struct qemu_machine qemu_mach;
static struct qemu_vcpu *
get_qemu_vcpu(CPUState *cpu)
{
return (struct qemu_vcpu *)cpu->hax_vcpu;
}
static struct nvmm_machine * static struct nvmm_machine *
get_nvmm_mach(void) get_nvmm_mach(void)
{ {
@ -86,7 +80,7 @@ nvmm_set_registers(CPUState *cpu)
{ {
CPUX86State *env = cpu->env_ptr; CPUX86State *env = cpu->env_ptr;
struct nvmm_machine *mach = get_nvmm_mach(); struct nvmm_machine *mach = get_nvmm_mach();
struct qemu_vcpu *qcpu = get_qemu_vcpu(cpu); AccelCPUState *qcpu = cpu->accel;
struct nvmm_vcpu *vcpu = &qcpu->vcpu; struct nvmm_vcpu *vcpu = &qcpu->vcpu;
struct nvmm_x64_state *state = vcpu->state; struct nvmm_x64_state *state = vcpu->state;
uint64_t bitmap; uint64_t bitmap;
@ -223,7 +217,7 @@ nvmm_get_registers(CPUState *cpu)
{ {
CPUX86State *env = cpu->env_ptr; CPUX86State *env = cpu->env_ptr;
struct nvmm_machine *mach = get_nvmm_mach(); struct nvmm_machine *mach = get_nvmm_mach();
struct qemu_vcpu *qcpu = get_qemu_vcpu(cpu); AccelCPUState *qcpu = cpu->accel;
struct nvmm_vcpu *vcpu = &qcpu->vcpu; struct nvmm_vcpu *vcpu = &qcpu->vcpu;
X86CPU *x86_cpu = X86_CPU(cpu); X86CPU *x86_cpu = X86_CPU(cpu);
struct nvmm_x64_state *state = vcpu->state; struct nvmm_x64_state *state = vcpu->state;
@ -347,7 +341,7 @@ static bool
nvmm_can_take_int(CPUState *cpu) nvmm_can_take_int(CPUState *cpu)
{ {
CPUX86State *env = cpu->env_ptr; CPUX86State *env = cpu->env_ptr;
struct qemu_vcpu *qcpu = get_qemu_vcpu(cpu); AccelCPUState *qcpu = cpu->accel;
struct nvmm_vcpu *vcpu = &qcpu->vcpu; struct nvmm_vcpu *vcpu = &qcpu->vcpu;
struct nvmm_machine *mach = get_nvmm_mach(); struct nvmm_machine *mach = get_nvmm_mach();
@ -372,7 +366,7 @@ nvmm_can_take_int(CPUState *cpu)
static bool static bool
nvmm_can_take_nmi(CPUState *cpu) nvmm_can_take_nmi(CPUState *cpu)
{ {
struct qemu_vcpu *qcpu = get_qemu_vcpu(cpu); AccelCPUState *qcpu = cpu->accel;
/* /*
* Contrary to INTs, NMIs always schedule an exit when they are * Contrary to INTs, NMIs always schedule an exit when they are
@ -395,7 +389,7 @@ nvmm_vcpu_pre_run(CPUState *cpu)
{ {
CPUX86State *env = cpu->env_ptr; CPUX86State *env = cpu->env_ptr;
struct nvmm_machine *mach = get_nvmm_mach(); struct nvmm_machine *mach = get_nvmm_mach();
struct qemu_vcpu *qcpu = get_qemu_vcpu(cpu); AccelCPUState *qcpu = cpu->accel;
struct nvmm_vcpu *vcpu = &qcpu->vcpu; struct nvmm_vcpu *vcpu = &qcpu->vcpu;
X86CPU *x86_cpu = X86_CPU(cpu); X86CPU *x86_cpu = X86_CPU(cpu);
struct nvmm_x64_state *state = vcpu->state; struct nvmm_x64_state *state = vcpu->state;
@ -478,7 +472,7 @@ nvmm_vcpu_pre_run(CPUState *cpu)
static void static void
nvmm_vcpu_post_run(CPUState *cpu, struct nvmm_vcpu_exit *exit) nvmm_vcpu_post_run(CPUState *cpu, struct nvmm_vcpu_exit *exit)
{ {
struct qemu_vcpu *qcpu = get_qemu_vcpu(cpu); AccelCPUState *qcpu = cpu->accel;
CPUX86State *env = cpu->env_ptr; CPUX86State *env = cpu->env_ptr;
X86CPU *x86_cpu = X86_CPU(cpu); X86CPU *x86_cpu = X86_CPU(cpu);
uint64_t tpr; uint64_t tpr;
@ -565,7 +559,7 @@ static int
nvmm_handle_rdmsr(struct nvmm_machine *mach, CPUState *cpu, nvmm_handle_rdmsr(struct nvmm_machine *mach, CPUState *cpu,
struct nvmm_vcpu_exit *exit) struct nvmm_vcpu_exit *exit)
{ {
struct qemu_vcpu *qcpu = get_qemu_vcpu(cpu); AccelCPUState *qcpu = cpu->accel;
struct nvmm_vcpu *vcpu = &qcpu->vcpu; struct nvmm_vcpu *vcpu = &qcpu->vcpu;
X86CPU *x86_cpu = X86_CPU(cpu); X86CPU *x86_cpu = X86_CPU(cpu);
struct nvmm_x64_state *state = vcpu->state; struct nvmm_x64_state *state = vcpu->state;
@ -610,7 +604,7 @@ static int
nvmm_handle_wrmsr(struct nvmm_machine *mach, CPUState *cpu, nvmm_handle_wrmsr(struct nvmm_machine *mach, CPUState *cpu,
struct nvmm_vcpu_exit *exit) struct nvmm_vcpu_exit *exit)
{ {
struct qemu_vcpu *qcpu = get_qemu_vcpu(cpu); AccelCPUState *qcpu = cpu->accel;
struct nvmm_vcpu *vcpu = &qcpu->vcpu; struct nvmm_vcpu *vcpu = &qcpu->vcpu;
X86CPU *x86_cpu = X86_CPU(cpu); X86CPU *x86_cpu = X86_CPU(cpu);
struct nvmm_x64_state *state = vcpu->state; struct nvmm_x64_state *state = vcpu->state;
@ -686,7 +680,7 @@ nvmm_vcpu_loop(CPUState *cpu)
{ {
CPUX86State *env = cpu->env_ptr; CPUX86State *env = cpu->env_ptr;
struct nvmm_machine *mach = get_nvmm_mach(); struct nvmm_machine *mach = get_nvmm_mach();
struct qemu_vcpu *qcpu = get_qemu_vcpu(cpu); AccelCPUState *qcpu = cpu->accel;
struct nvmm_vcpu *vcpu = &qcpu->vcpu; struct nvmm_vcpu *vcpu = &qcpu->vcpu;
X86CPU *x86_cpu = X86_CPU(cpu); X86CPU *x86_cpu = X86_CPU(cpu);
struct nvmm_vcpu_exit *exit = vcpu->exit; struct nvmm_vcpu_exit *exit = vcpu->exit;
@ -892,7 +886,7 @@ static void
nvmm_ipi_signal(int sigcpu) nvmm_ipi_signal(int sigcpu)
{ {
if (current_cpu) { if (current_cpu) {
struct qemu_vcpu *qcpu = get_qemu_vcpu(current_cpu); AccelCPUState *qcpu = current_cpu->accel;
#if NVMM_USER_VERSION >= 2 #if NVMM_USER_VERSION >= 2
struct nvmm_vcpu *vcpu = &qcpu->vcpu; struct nvmm_vcpu *vcpu = &qcpu->vcpu;
nvmm_vcpu_stop(vcpu); nvmm_vcpu_stop(vcpu);
@ -926,7 +920,7 @@ nvmm_init_vcpu(CPUState *cpu)
struct nvmm_vcpu_conf_cpuid cpuid; struct nvmm_vcpu_conf_cpuid cpuid;
struct nvmm_vcpu_conf_tpr tpr; struct nvmm_vcpu_conf_tpr tpr;
Error *local_error = NULL; Error *local_error = NULL;
struct qemu_vcpu *qcpu; AccelCPUState *qcpu;
int ret, err; int ret, err;
nvmm_init_cpu_signals(); nvmm_init_cpu_signals();
@ -942,11 +936,7 @@ nvmm_init_vcpu(CPUState *cpu)
} }
} }
qcpu = g_malloc0(sizeof(*qcpu)); qcpu = g_new0(AccelCPUState, 1);
if (qcpu == NULL) {
error_report("NVMM: Failed to allocate VCPU context.");
return -ENOMEM;
}
ret = nvmm_vcpu_create(mach, cpu->cpu_index, &qcpu->vcpu); ret = nvmm_vcpu_create(mach, cpu->cpu_index, &qcpu->vcpu);
if (ret == -1) { if (ret == -1) {
@ -995,7 +985,7 @@ nvmm_init_vcpu(CPUState *cpu)
} }
cpu->vcpu_dirty = true; cpu->vcpu_dirty = true;
cpu->hax_vcpu = (struct hax_vcpu_state *)qcpu; cpu->accel = qcpu;
return 0; return 0;
} }
@ -1027,10 +1017,10 @@ void
nvmm_destroy_vcpu(CPUState *cpu) nvmm_destroy_vcpu(CPUState *cpu)
{ {
struct nvmm_machine *mach = get_nvmm_mach(); struct nvmm_machine *mach = get_nvmm_mach();
struct qemu_vcpu *qcpu = get_qemu_vcpu(cpu); AccelCPUState *qcpu = cpu->accel;
nvmm_vcpu_destroy(mach, &qcpu->vcpu); nvmm_vcpu_destroy(mach, &qcpu->vcpu);
g_free(cpu->hax_vcpu); g_free(cpu->accel);
} }
/* -------------------------------------------------------------------------- */ /* -------------------------------------------------------------------------- */
@ -1138,7 +1128,7 @@ static MemoryListener nvmm_memory_listener = {
.region_add = nvmm_region_add, .region_add = nvmm_region_add,
.region_del = nvmm_region_del, .region_del = nvmm_region_del,
.log_sync = nvmm_log_sync, .log_sync = nvmm_log_sync,
.priority = 10, .priority = MEMORY_LISTENER_PRIORITY_ACCEL,
}; };
static void static void

View file

@ -71,9 +71,6 @@ static void whpx_start_vcpu_thread(CPUState *cpu)
cpu->cpu_index); cpu->cpu_index);
qemu_thread_create(cpu->thread, thread_name, whpx_cpu_thread_fn, qemu_thread_create(cpu->thread, thread_name, whpx_cpu_thread_fn,
cpu, QEMU_THREAD_JOINABLE); cpu, QEMU_THREAD_JOINABLE);
#ifdef _WIN32
cpu->hThread = qemu_thread_get_handle(cpu->thread);
#endif
} }
static void whpx_kick_vcpu_thread(CPUState *cpu) static void whpx_kick_vcpu_thread(CPUState *cpu)

View file

@ -31,8 +31,8 @@
#include "whpx-internal.h" #include "whpx-internal.h"
#include "whpx-accel-ops.h" #include "whpx-accel-ops.h"
#include <WinHvPlatform.h> #include <winhvplatform.h>
#include <WinHvEmulation.h> #include <winhvemulation.h>
#define HYPERV_APIC_BUS_FREQUENCY (200000000ULL) #define HYPERV_APIC_BUS_FREQUENCY (200000000ULL)
@ -229,7 +229,7 @@ typedef enum WhpxStepMode {
WHPX_STEP_EXCLUSIVE, WHPX_STEP_EXCLUSIVE,
} WhpxStepMode; } WhpxStepMode;
struct whpx_vcpu { struct AccelCPUState {
WHV_EMULATOR_HANDLE emulator; WHV_EMULATOR_HANDLE emulator;
bool window_registered; bool window_registered;
bool interruptable; bool interruptable;
@ -256,15 +256,6 @@ static bool whpx_has_xsave(void)
return whpx_xsave_cap.XsaveSupport; return whpx_xsave_cap.XsaveSupport;
} }
/*
* VP support
*/
static struct whpx_vcpu *get_whpx_vcpu(CPUState *cpu)
{
return (struct whpx_vcpu *)cpu->hax_vcpu;
}
static WHV_X64_SEGMENT_REGISTER whpx_seg_q2h(const SegmentCache *qs, int v86, static WHV_X64_SEGMENT_REGISTER whpx_seg_q2h(const SegmentCache *qs, int v86,
int r86) int r86)
{ {
@ -390,7 +381,7 @@ static uint64_t whpx_cr8_to_apic_tpr(uint64_t cr8)
static void whpx_set_registers(CPUState *cpu, int level) static void whpx_set_registers(CPUState *cpu, int level)
{ {
struct whpx_state *whpx = &whpx_global; struct whpx_state *whpx = &whpx_global;
struct whpx_vcpu *vcpu = get_whpx_vcpu(cpu); AccelCPUState *vcpu = cpu->accel;
CPUX86State *env = cpu->env_ptr; CPUX86State *env = cpu->env_ptr;
X86CPU *x86_cpu = X86_CPU(cpu); X86CPU *x86_cpu = X86_CPU(cpu);
struct whpx_register_set vcxt; struct whpx_register_set vcxt;
@ -609,7 +600,7 @@ static void whpx_get_xcrs(CPUState *cpu)
static void whpx_get_registers(CPUState *cpu) static void whpx_get_registers(CPUState *cpu)
{ {
struct whpx_state *whpx = &whpx_global; struct whpx_state *whpx = &whpx_global;
struct whpx_vcpu *vcpu = get_whpx_vcpu(cpu); AccelCPUState *vcpu = cpu->accel;
CPUX86State *env = cpu->env_ptr; CPUX86State *env = cpu->env_ptr;
X86CPU *x86_cpu = X86_CPU(cpu); X86CPU *x86_cpu = X86_CPU(cpu);
struct whpx_register_set vcxt; struct whpx_register_set vcxt;
@ -892,7 +883,7 @@ static const WHV_EMULATOR_CALLBACKS whpx_emu_callbacks = {
static int whpx_handle_mmio(CPUState *cpu, WHV_MEMORY_ACCESS_CONTEXT *ctx) static int whpx_handle_mmio(CPUState *cpu, WHV_MEMORY_ACCESS_CONTEXT *ctx)
{ {
HRESULT hr; HRESULT hr;
struct whpx_vcpu *vcpu = get_whpx_vcpu(cpu); AccelCPUState *vcpu = cpu->accel;
WHV_EMULATOR_STATUS emu_status; WHV_EMULATOR_STATUS emu_status;
hr = whp_dispatch.WHvEmulatorTryMmioEmulation( hr = whp_dispatch.WHvEmulatorTryMmioEmulation(
@ -917,7 +908,7 @@ static int whpx_handle_portio(CPUState *cpu,
WHV_X64_IO_PORT_ACCESS_CONTEXT *ctx) WHV_X64_IO_PORT_ACCESS_CONTEXT *ctx)
{ {
HRESULT hr; HRESULT hr;
struct whpx_vcpu *vcpu = get_whpx_vcpu(cpu); AccelCPUState *vcpu = cpu->accel;
WHV_EMULATOR_STATUS emu_status; WHV_EMULATOR_STATUS emu_status;
hr = whp_dispatch.WHvEmulatorTryIoEmulation( hr = whp_dispatch.WHvEmulatorTryIoEmulation(
@ -1417,7 +1408,7 @@ static vaddr whpx_vcpu_get_pc(CPUState *cpu, bool exit_context_valid)
* of QEMU, nor this port by calling WHvSetVirtualProcessorRegisters(). * of QEMU, nor this port by calling WHvSetVirtualProcessorRegisters().
* This is the most common case. * This is the most common case.
*/ */
struct whpx_vcpu *vcpu = get_whpx_vcpu(cpu); AccelCPUState *vcpu = cpu->accel;
return vcpu->exit_ctx.VpContext.Rip; return vcpu->exit_ctx.VpContext.Rip;
} else { } else {
/* /*
@ -1468,7 +1459,7 @@ static void whpx_vcpu_pre_run(CPUState *cpu)
{ {
HRESULT hr; HRESULT hr;
struct whpx_state *whpx = &whpx_global; struct whpx_state *whpx = &whpx_global;
struct whpx_vcpu *vcpu = get_whpx_vcpu(cpu); AccelCPUState *vcpu = cpu->accel;
CPUX86State *env = cpu->env_ptr; CPUX86State *env = cpu->env_ptr;
X86CPU *x86_cpu = X86_CPU(cpu); X86CPU *x86_cpu = X86_CPU(cpu);
int irq; int irq;
@ -1590,7 +1581,7 @@ static void whpx_vcpu_pre_run(CPUState *cpu)
static void whpx_vcpu_post_run(CPUState *cpu) static void whpx_vcpu_post_run(CPUState *cpu)
{ {
struct whpx_vcpu *vcpu = get_whpx_vcpu(cpu); AccelCPUState *vcpu = cpu->accel;
CPUX86State *env = cpu->env_ptr; CPUX86State *env = cpu->env_ptr;
X86CPU *x86_cpu = X86_CPU(cpu); X86CPU *x86_cpu = X86_CPU(cpu);
@ -1617,7 +1608,7 @@ static void whpx_vcpu_process_async_events(CPUState *cpu)
{ {
CPUX86State *env = cpu->env_ptr; CPUX86State *env = cpu->env_ptr;
X86CPU *x86_cpu = X86_CPU(cpu); X86CPU *x86_cpu = X86_CPU(cpu);
struct whpx_vcpu *vcpu = get_whpx_vcpu(cpu); AccelCPUState *vcpu = cpu->accel;
if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) && if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
!(env->hflags & HF_SMM_MASK)) { !(env->hflags & HF_SMM_MASK)) {
@ -1656,7 +1647,7 @@ static int whpx_vcpu_run(CPUState *cpu)
{ {
HRESULT hr; HRESULT hr;
struct whpx_state *whpx = &whpx_global; struct whpx_state *whpx = &whpx_global;
struct whpx_vcpu *vcpu = get_whpx_vcpu(cpu); AccelCPUState *vcpu = cpu->accel;
struct whpx_breakpoint *stepped_over_bp = NULL; struct whpx_breakpoint *stepped_over_bp = NULL;
WhpxStepMode exclusive_step_mode = WHPX_STEP_NONE; WhpxStepMode exclusive_step_mode = WHPX_STEP_NONE;
int ret; int ret;
@ -2154,7 +2145,7 @@ int whpx_init_vcpu(CPUState *cpu)
{ {
HRESULT hr; HRESULT hr;
struct whpx_state *whpx = &whpx_global; struct whpx_state *whpx = &whpx_global;
struct whpx_vcpu *vcpu = NULL; AccelCPUState *vcpu = NULL;
Error *local_error = NULL; Error *local_error = NULL;
CPUX86State *env = cpu->env_ptr; CPUX86State *env = cpu->env_ptr;
X86CPU *x86_cpu = X86_CPU(cpu); X86CPU *x86_cpu = X86_CPU(cpu);
@ -2177,13 +2168,7 @@ int whpx_init_vcpu(CPUState *cpu)
} }
} }
vcpu = g_new0(struct whpx_vcpu, 1); vcpu = g_new0(AccelCPUState, 1);
if (!vcpu) {
error_report("WHPX: Failed to allocte VCPU context.");
ret = -ENOMEM;
goto error;
}
hr = whp_dispatch.WHvEmulatorCreateEmulator( hr = whp_dispatch.WHvEmulatorCreateEmulator(
&whpx_emu_callbacks, &whpx_emu_callbacks,
@ -2258,7 +2243,7 @@ int whpx_init_vcpu(CPUState *cpu)
vcpu->interruptable = true; vcpu->interruptable = true;
cpu->vcpu_dirty = true; cpu->vcpu_dirty = true;
cpu->hax_vcpu = (struct hax_vcpu_state *)vcpu; cpu->accel = vcpu;
max_vcpu_index = max(max_vcpu_index, cpu->cpu_index); max_vcpu_index = max(max_vcpu_index, cpu->cpu_index);
qemu_add_vm_change_state_handler(whpx_cpu_update_state, cpu->env_ptr); qemu_add_vm_change_state_handler(whpx_cpu_update_state, cpu->env_ptr);
@ -2296,11 +2281,11 @@ int whpx_vcpu_exec(CPUState *cpu)
void whpx_destroy_vcpu(CPUState *cpu) void whpx_destroy_vcpu(CPUState *cpu)
{ {
struct whpx_state *whpx = &whpx_global; struct whpx_state *whpx = &whpx_global;
struct whpx_vcpu *vcpu = get_whpx_vcpu(cpu); AccelCPUState *vcpu = cpu->accel;
whp_dispatch.WHvDeleteVirtualProcessor(whpx->partition, cpu->cpu_index); whp_dispatch.WHvDeleteVirtualProcessor(whpx->partition, cpu->cpu_index);
whp_dispatch.WHvEmulatorDestroyEmulator(vcpu->emulator); whp_dispatch.WHvEmulatorDestroyEmulator(vcpu->emulator);
g_free(cpu->hax_vcpu); g_free(cpu->accel);
return; return;
} }
@ -2427,7 +2412,7 @@ static MemoryListener whpx_memory_listener = {
.region_add = whpx_region_add, .region_add = whpx_region_add,
.region_del = whpx_region_del, .region_del = whpx_region_del,
.log_sync = whpx_log_sync, .log_sync = whpx_log_sync,
.priority = 10, .priority = MEMORY_LISTENER_PRIORITY_ACCEL,
}; };
static void whpx_memory_init(void) static void whpx_memory_init(void)
@ -2613,8 +2598,8 @@ static int whpx_accel_init(MachineState *ms)
sizeof(WHV_PARTITION_PROPERTY)); sizeof(WHV_PARTITION_PROPERTY));
if (FAILED(hr)) { if (FAILED(hr)) {
error_report("WHPX: Failed to set partition core count to %d," error_report("WHPX: Failed to set partition processor count to %u,"
" hr=%08lx", ms->smp.cores, hr); " hr=%08lx", prop.ProcessorCount, hr);
ret = -EINVAL; ret = -EINVAL;
goto error; goto error;
} }

View file

@ -2,8 +2,8 @@
#define TARGET_I386_WHPX_INTERNAL_H #define TARGET_I386_WHPX_INTERNAL_H
#include <windows.h> #include <windows.h>
#include <WinHvPlatform.h> #include <winhvplatform.h>
#include <WinHvEmulation.h> #include <winhvemulation.h>
typedef enum WhpxBreakpointState { typedef enum WhpxBreakpointState {
WHPX_BP_CLEARED = 0, WHPX_BP_CLEARED = 0,

View file

@ -1149,8 +1149,10 @@ struct CPUArchState {
int nb_pids; /* Number of available PID registers */ int nb_pids; /* Number of available PID registers */
int tlb_type; /* Type of TLB we're dealing with */ int tlb_type; /* Type of TLB we're dealing with */
ppc_tlb_t tlb; /* TLB is optional. Allocate them only if needed */ ppc_tlb_t tlb; /* TLB is optional. Allocate them only if needed */
#ifdef CONFIG_KVM
bool tlb_dirty; /* Set to non-zero when modifying TLB */ bool tlb_dirty; /* Set to non-zero when modifying TLB */
bool kvm_sw_tlb; /* non-zero if KVM SW TLB API is active */ bool kvm_sw_tlb; /* non-zero if KVM SW TLB API is active */
#endif /* CONFIG_KVM */
uint32_t tlb_need_flush; /* Delayed flush needed */ uint32_t tlb_need_flush; /* Delayed flush needed */
#define TLB_NEED_LOCAL_FLUSH 0x1 #define TLB_NEED_LOCAL_FLUSH 0x1
#define TLB_NEED_GLOBAL_FLUSH 0x2 #define TLB_NEED_GLOBAL_FLUSH 0x2

View file

@ -930,10 +930,12 @@ static void mmubooke_dump_mmu(CPUPPCState *env)
ppcemb_tlb_t *entry; ppcemb_tlb_t *entry;
int i; int i;
#ifdef CONFIG_KVM
if (kvm_enabled() && !env->kvm_sw_tlb) { if (kvm_enabled() && !env->kvm_sw_tlb) {
qemu_printf("Cannot access KVM TLB\n"); qemu_printf("Cannot access KVM TLB\n");
return; return;
} }
#endif
qemu_printf("\nTLB:\n"); qemu_printf("\nTLB:\n");
qemu_printf("Effective Physical Size PID Prot " qemu_printf("Effective Physical Size PID Prot "
@ -1021,10 +1023,12 @@ static void mmubooke206_dump_mmu(CPUPPCState *env)
int offset = 0; int offset = 0;
int i; int i;
#ifdef CONFIG_KVM
if (kvm_enabled() && !env->kvm_sw_tlb) { if (kvm_enabled() && !env->kvm_sw_tlb) {
qemu_printf("Cannot access KVM TLB\n"); qemu_printf("Cannot access KVM TLB\n");
return; return;
} }
#endif
for (i = 0; i < BOOKE206_MAX_TLBN; i++) { for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
int size = booke206_tlb_size(env, i); int size = booke206_tlb_size(env, i);

View file

@ -584,7 +584,7 @@ static void riscv_host_cpu_init(Object *obj)
#endif #endif
riscv_cpu_add_user_properties(obj); riscv_cpu_add_user_properties(obj);
} }
#endif #endif /* CONFIG_KVM */
static ObjectClass *riscv_cpu_class_by_name(const char *cpu_model) static ObjectClass *riscv_cpu_class_by_name(const char *cpu_model)
{ {

View file

@ -363,12 +363,14 @@ struct CPUArchState {
hwaddr kernel_addr; hwaddr kernel_addr;
hwaddr fdt_addr; hwaddr fdt_addr;
#ifdef CONFIG_KVM
/* kvm timer */ /* kvm timer */
bool kvm_timer_dirty; bool kvm_timer_dirty;
uint64_t kvm_timer_time; uint64_t kvm_timer_time;
uint64_t kvm_timer_compare; uint64_t kvm_timer_compare;
uint64_t kvm_timer_state; uint64_t kvm_timer_state;
uint64_t kvm_timer_frequency; uint64_t kvm_timer_frequency;
#endif /* CONFIG_KVM */
}; };
/* /*

View file

@ -194,12 +194,13 @@ static const VMStateDescription vmstate_rv128 = {
} }
}; };
#ifdef CONFIG_KVM
static bool kvmtimer_needed(void *opaque) static bool kvmtimer_needed(void *opaque)
{ {
return kvm_enabled(); return kvm_enabled();
} }
static int cpu_post_load(void *opaque, int version_id) static int cpu_kvmtimer_post_load(void *opaque, int version_id)
{ {
RISCVCPU *cpu = opaque; RISCVCPU *cpu = opaque;
CPURISCVState *env = &cpu->env; CPURISCVState *env = &cpu->env;
@ -213,7 +214,7 @@ static const VMStateDescription vmstate_kvmtimer = {
.version_id = 1, .version_id = 1,
.minimum_version_id = 1, .minimum_version_id = 1,
.needed = kvmtimer_needed, .needed = kvmtimer_needed,
.post_load = cpu_post_load, .post_load = cpu_kvmtimer_post_load,
.fields = (VMStateField[]) { .fields = (VMStateField[]) {
VMSTATE_UINT64(env.kvm_timer_time, RISCVCPU), VMSTATE_UINT64(env.kvm_timer_time, RISCVCPU),
VMSTATE_UINT64(env.kvm_timer_compare, RISCVCPU), VMSTATE_UINT64(env.kvm_timer_compare, RISCVCPU),
@ -221,6 +222,7 @@ static const VMStateDescription vmstate_kvmtimer = {
VMSTATE_END_OF_LIST() VMSTATE_END_OF_LIST()
} }
}; };
#endif
static bool debug_needed(void *opaque) static bool debug_needed(void *opaque)
{ {
@ -409,7 +411,9 @@ const VMStateDescription vmstate_riscv_cpu = {
&vmstate_vector, &vmstate_vector,
&vmstate_pointermasking, &vmstate_pointermasking,
&vmstate_rv128, &vmstate_rv128,
#ifdef CONFIG_KVM
&vmstate_kvmtimer, &vmstate_kvmtimer,
#endif
&vmstate_envcfg, &vmstate_envcfg,
&vmstate_debug, &vmstate_debug,
&vmstate_smstateen, &vmstate_smstateen,