mirror of
https://github.com/Klipper3d/klipper.git
synced 2025-07-24 07:04:01 -06:00
input_shaper: Define input shapers in a single place in Python code
Signed-off-by: Dmitry Butyugin <dmbutyugin@google.com>
This commit is contained in:
parent
6c395fd016
commit
d5a7a7f00f
7 changed files with 209 additions and 385 deletions
|
@ -4,128 +4,16 @@
|
|||
#
|
||||
# This file may be distributed under the terms of the GNU GPLv3 license.
|
||||
import collections, importlib, logging, math, multiprocessing
|
||||
shaper_defs = importlib.import_module('.shaper_defs', 'extras')
|
||||
|
||||
MIN_FREQ = 5.
|
||||
MAX_FREQ = 200.
|
||||
WINDOW_T_SEC = 0.5
|
||||
MAX_SHAPER_FREQ = 150.
|
||||
|
||||
SHAPER_VIBRATION_REDUCTION=20.
|
||||
TEST_DAMPING_RATIOS=[0.075, 0.1, 0.15]
|
||||
SHAPER_DAMPING_RATIO = 0.1
|
||||
|
||||
######################################################################
|
||||
# Input shapers
|
||||
######################################################################
|
||||
|
||||
InputShaperCfg = collections.namedtuple(
|
||||
'InputShaperCfg', ('name', 'init_func', 'min_freq'))
|
||||
|
||||
def get_zv_shaper(shaper_freq, damping_ratio):
|
||||
df = math.sqrt(1. - damping_ratio**2)
|
||||
K = math.exp(-damping_ratio * math.pi / df)
|
||||
t_d = 1. / (shaper_freq * df)
|
||||
A = [1., K]
|
||||
T = [0., .5*t_d]
|
||||
return (A, T)
|
||||
|
||||
def get_zvd_shaper(shaper_freq, damping_ratio):
|
||||
df = math.sqrt(1. - damping_ratio**2)
|
||||
K = math.exp(-damping_ratio * math.pi / df)
|
||||
t_d = 1. / (shaper_freq * df)
|
||||
A = [1., 2.*K, K**2]
|
||||
T = [0., .5*t_d, t_d]
|
||||
return (A, T)
|
||||
|
||||
def get_mzv_shaper(shaper_freq, damping_ratio):
|
||||
df = math.sqrt(1. - damping_ratio**2)
|
||||
K = math.exp(-.75 * damping_ratio * math.pi / df)
|
||||
t_d = 1. / (shaper_freq * df)
|
||||
|
||||
a1 = 1. - 1. / math.sqrt(2.)
|
||||
a2 = (math.sqrt(2.) - 1.) * K
|
||||
a3 = a1 * K * K
|
||||
|
||||
A = [a1, a2, a3]
|
||||
T = [0., .375*t_d, .75*t_d]
|
||||
return (A, T)
|
||||
|
||||
def get_ei_shaper(shaper_freq, damping_ratio):
|
||||
v_tol = 1. / SHAPER_VIBRATION_REDUCTION # vibration tolerance
|
||||
df = math.sqrt(1. - damping_ratio**2)
|
||||
K = math.exp(-damping_ratio * math.pi / df)
|
||||
t_d = 1. / (shaper_freq * df)
|
||||
|
||||
a1 = .25 * (1. + v_tol)
|
||||
a2 = .5 * (1. - v_tol) * K
|
||||
a3 = a1 * K * K
|
||||
|
||||
A = [a1, a2, a3]
|
||||
T = [0., .5*t_d, t_d]
|
||||
return (A, T)
|
||||
|
||||
def get_2hump_ei_shaper(shaper_freq, damping_ratio):
|
||||
v_tol = 1. / SHAPER_VIBRATION_REDUCTION # vibration tolerance
|
||||
df = math.sqrt(1. - damping_ratio**2)
|
||||
K = math.exp(-damping_ratio * math.pi / df)
|
||||
t_d = 1. / (shaper_freq * df)
|
||||
|
||||
V2 = v_tol**2
|
||||
X = pow(V2 * (math.sqrt(1. - V2) + 1.), 1./3.)
|
||||
a1 = (3.*X*X + 2.*X + 3.*V2) / (16.*X)
|
||||
a2 = (.5 - a1) * K
|
||||
a3 = a2 * K
|
||||
a4 = a1 * K * K * K
|
||||
|
||||
A = [a1, a2, a3, a4]
|
||||
T = [0., .5*t_d, t_d, 1.5*t_d]
|
||||
return (A, T)
|
||||
|
||||
def get_3hump_ei_shaper(shaper_freq, damping_ratio):
|
||||
v_tol = 1. / SHAPER_VIBRATION_REDUCTION # vibration tolerance
|
||||
df = math.sqrt(1. - damping_ratio**2)
|
||||
K = math.exp(-damping_ratio * math.pi / df)
|
||||
t_d = 1. / (shaper_freq * df)
|
||||
|
||||
K2 = K*K
|
||||
a1 = 0.0625 * (1. + 3. * v_tol + 2. * math.sqrt(2. * (v_tol + 1.) * v_tol))
|
||||
a2 = 0.25 * (1. - v_tol) * K
|
||||
a3 = (0.5 * (1. + v_tol) - 2. * a1) * K2
|
||||
a4 = a2 * K2
|
||||
a5 = a1 * K2 * K2
|
||||
|
||||
A = [a1, a2, a3, a4, a5]
|
||||
T = [0., .5*t_d, t_d, 1.5*t_d, 2.*t_d]
|
||||
return (A, T)
|
||||
|
||||
def get_shaper_smoothing(shaper, accel=5000, scv=5.):
|
||||
half_accel = accel * .5
|
||||
|
||||
A, T = shaper
|
||||
inv_D = 1. / sum(A)
|
||||
n = len(T)
|
||||
# Calculate input shaper shift
|
||||
ts = sum([A[i] * T[i] for i in range(n)]) * inv_D
|
||||
|
||||
# Calculate offset for 90 and 180 degrees turn
|
||||
offset_90 = offset_180 = 0.
|
||||
for i in range(n):
|
||||
if T[i] >= ts:
|
||||
# Calculate offset for one of the axes
|
||||
offset_90 += A[i] * (scv + half_accel * (T[i]-ts)) * (T[i]-ts)
|
||||
offset_180 += A[i] * half_accel * (T[i]-ts)**2
|
||||
offset_90 *= inv_D * math.sqrt(2.)
|
||||
offset_180 *= inv_D
|
||||
return max(offset_90, offset_180)
|
||||
|
||||
# min_freq for each shaper is chosen to have projected max_accel ~= 1500
|
||||
INPUT_SHAPERS = [
|
||||
InputShaperCfg('zv', get_zv_shaper, min_freq=21.),
|
||||
InputShaperCfg('mzv', get_mzv_shaper, min_freq=23.),
|
||||
InputShaperCfg('ei', get_ei_shaper, min_freq=29.),
|
||||
InputShaperCfg('2hump_ei', get_2hump_ei_shaper, min_freq=39.),
|
||||
InputShaperCfg('3hump_ei', get_3hump_ei_shaper, min_freq=48.),
|
||||
]
|
||||
AUTOTUNE_SHAPERS = ['zv', 'mzv', 'ei', '2hump_ei', '3hump_ei']
|
||||
|
||||
######################################################################
|
||||
# Frequency response calculation and shaper auto-tuning
|
||||
|
@ -313,12 +201,32 @@ class ShaperCalibrate:
|
|||
# The input shaper can only reduce the amplitude of vibrations by
|
||||
# SHAPER_VIBRATION_REDUCTION times, so all vibrations below that
|
||||
# threshold can be igonred
|
||||
vibrations_threshold = psd.max() / SHAPER_VIBRATION_REDUCTION
|
||||
vibr_threshold = psd.max() / shaper_defs.SHAPER_VIBRATION_REDUCTION
|
||||
remaining_vibrations = self.numpy.maximum(
|
||||
vals * psd - vibrations_threshold, 0).sum()
|
||||
all_vibrations = self.numpy.maximum(psd - vibrations_threshold, 0).sum()
|
||||
vals * psd - vibr_threshold, 0).sum()
|
||||
all_vibrations = self.numpy.maximum(psd - vibr_threshold, 0).sum()
|
||||
return (remaining_vibrations / all_vibrations, vals)
|
||||
|
||||
def _get_shaper_smoothing(self, shaper, accel=5000, scv=5.):
|
||||
half_accel = accel * .5
|
||||
|
||||
A, T = shaper
|
||||
inv_D = 1. / sum(A)
|
||||
n = len(T)
|
||||
# Calculate input shaper shift
|
||||
ts = sum([A[i] * T[i] for i in range(n)]) * inv_D
|
||||
|
||||
# Calculate offset for 90 and 180 degrees turn
|
||||
offset_90 = offset_180 = 0.
|
||||
for i in range(n):
|
||||
if T[i] >= ts:
|
||||
# Calculate offset for one of the axes
|
||||
offset_90 += A[i] * (scv + half_accel * (T[i]-ts)) * (T[i]-ts)
|
||||
offset_180 += A[i] * half_accel * (T[i]-ts)**2
|
||||
offset_90 *= inv_D * math.sqrt(2.)
|
||||
offset_180 *= inv_D
|
||||
return max(offset_90, offset_180)
|
||||
|
||||
def fit_shaper(self, shaper_cfg, calibration_data, max_smoothing):
|
||||
np = self.numpy
|
||||
|
||||
|
@ -333,8 +241,9 @@ class ShaperCalibrate:
|
|||
for test_freq in test_freqs[::-1]:
|
||||
shaper_vibrations = 0.
|
||||
shaper_vals = np.zeros(shape=freq_bins.shape)
|
||||
shaper = shaper_cfg.init_func(test_freq, SHAPER_DAMPING_RATIO)
|
||||
shaper_smoothing = get_shaper_smoothing(shaper)
|
||||
shaper = shaper_cfg.init_func(
|
||||
test_freq, shaper_defs.DEFAULT_DAMPING_RATIO)
|
||||
shaper_smoothing = self._get_shaper_smoothing(shaper)
|
||||
if max_smoothing and shaper_smoothing > max_smoothing and best_res:
|
||||
return best_res
|
||||
# Exact damping ratio of the printer is unknown, pessimizing
|
||||
|
@ -387,14 +296,16 @@ class ShaperCalibrate:
|
|||
# Just some empirically chosen value which produces good projections
|
||||
# for max_accel without much smoothing
|
||||
TARGET_SMOOTHING = 0.12
|
||||
max_accel = self._bisect(lambda test_accel: get_shaper_smoothing(
|
||||
max_accel = self._bisect(lambda test_accel: self._get_shaper_smoothing(
|
||||
shaper, test_accel) <= TARGET_SMOOTHING)
|
||||
return max_accel
|
||||
|
||||
def find_best_shaper(self, calibration_data, max_smoothing, logger=None):
|
||||
best_shaper = None
|
||||
all_shapers = []
|
||||
for shaper_cfg in INPUT_SHAPERS:
|
||||
for shaper_cfg in shaper_defs.INPUT_SHAPERS:
|
||||
if shaper_cfg.name not in AUTOTUNE_SHAPERS:
|
||||
continue
|
||||
shaper = self.background_process_exec(self.fit_shaper, (
|
||||
shaper_cfg, calibration_data, max_smoothing))
|
||||
if logger is not None:
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue