stepcompress: Do all step rounding in C code

Commits f0cefebf and 8f331f08 changed the way the code determined what
steps to take on fractional steps.  Unfortunately, it was possible in
some situations for the C code to round differently from the python
code which could result in warnings and lost steps.

Change the code so that all fractional step handling is done in the C
code.  Implementing the step rounding logic in one location avoids any
conflicts.

In order to efficiently handle the step rounding in the C code, the C
code has also been extended to directly send the "set_next_step_dir"
command.

Signed-off-by: Kevin O'Connor <kevin@koconnor.net>
This commit is contained in:
Kevin O'Connor 2016-11-10 12:44:04 -05:00
parent 79da35d023
commit 7554c7f694
6 changed files with 154 additions and 131 deletions

View file

@ -97,45 +97,47 @@ class CartKinematics:
inv_accel = 1. / move.accel
inv_cruise_v = 1. / move.cruise_v
for i in StepList:
inv_step_dist = self.steppers[i].inv_step_dist
new_step_pos = int(move.end_pos[i]*inv_step_dist + 0.5)
step_pos = self.stepper_pos[i]
if new_step_pos == step_pos:
if not move.axes_d[i]:
continue
self.stepper_pos[i] = new_step_pos
mcu_time, so = self.steppers[i].prep_move(move_time)
inv_step_dist = self.steppers[i].inv_step_dist
steps = move.axes_d[i] * inv_step_dist
step_offset = step_pos - move.start_pos[i] * inv_step_dist + 0.5
sdir = 1
if steps < 0:
sdir = 0
steps = -steps
step_offset = 1. - step_offset
mcu_time, so = self.steppers[i].prep_move(move_time, sdir)
move_step_d = move.move_d / abs(steps)
move_step_d = move.move_d / steps
step_pos = self.stepper_pos[i]
step_offset = step_pos - move.start_pos[i] * inv_step_dist
# Acceleration steps
#t = sqrt(2*pos/accel + (start_v/accel)**2) - start_v/accel
accel_time_offset = move.start_v * inv_accel
accel_sqrt_offset = accel_time_offset**2
accel_multiplier = 2.0 * move_step_d * inv_accel
accel_steps = move.accel_r * steps
step_offset = so.step_sqrt(
mcu_time - accel_time_offset, accel_steps, step_offset
, accel_sqrt_offset, accel_multiplier)
mcu_time += move.accel_t
if move.accel_r:
#t = sqrt(2*pos/accel + (start_v/accel)**2) - start_v/accel
accel_time_offset = move.start_v * inv_accel
accel_sqrt_offset = accel_time_offset**2
accel_steps = move.accel_r * steps
count = so.step_sqrt(
mcu_time - accel_time_offset, accel_steps, step_offset
, accel_sqrt_offset, accel_multiplier)
step_pos += count
step_offset += count - accel_steps
mcu_time += move.accel_t
# Cruising steps
#t = pos/cruise_v
cruise_multiplier = move_step_d * inv_cruise_v
cruise_steps = move.cruise_r * steps
step_offset = so.step_factor(
mcu_time, cruise_steps, step_offset, cruise_multiplier)
mcu_time += move.cruise_t
if move.cruise_r:
#t = pos/cruise_v
cruise_multiplier = move_step_d * inv_cruise_v
cruise_steps = move.cruise_r * steps
count = so.step_factor(
mcu_time, cruise_steps, step_offset, cruise_multiplier)
step_pos += count
step_offset += count - cruise_steps
mcu_time += move.cruise_t
# Deceleration steps
#t = cruise_v/accel - sqrt((cruise_v/accel)**2 - 2*pos/accel)
decel_time_offset = move.cruise_v * inv_accel
decel_sqrt_offset = decel_time_offset**2
decel_steps = move.decel_r * steps
so.step_sqrt(
mcu_time + decel_time_offset, decel_steps, step_offset
, decel_sqrt_offset, -accel_multiplier)
if move.decel_r:
#t = cruise_v/accel - sqrt((cruise_v/accel)**2 - 2*pos/accel)
decel_time_offset = move.cruise_v * inv_accel
decel_sqrt_offset = decel_time_offset**2
decel_steps = move.decel_r * steps
count = so.step_sqrt(
mcu_time + decel_time_offset, decel_steps, step_offset
, decel_sqrt_offset, -accel_multiplier)
step_pos += count
self.stepper_pos[i] = step_pos