delta_calibrate: Add initial support for a DELTA_CALIBRATE command

Signed-off-by: Kevin O'Connor <kevin@koconnor.net>
This commit is contained in:
Kevin O'Connor 2017-12-03 18:54:34 -05:00
parent ce9db609ad
commit 434341d074
4 changed files with 249 additions and 30 deletions

View file

@ -24,10 +24,11 @@ class DeltaKinematics:
default_position=stepper_a.position_endstop)
self.steppers = [stepper_a, stepper_b, stepper_c]
self.need_motor_enable = self.need_home = True
radius = config.getfloat('delta_radius', above=0.)
self.radius = radius = config.getfloat('delta_radius', above=0.)
arm_length_a = stepper_configs[0].getfloat('arm_length', above=radius)
arm_lengths = [sconfig.getfloat('arm_length', arm_length_a, above=radius)
for sconfig in stepper_configs]
self.arm_lengths = arm_lengths = [
sconfig.getfloat('arm_length', arm_length_a, above=radius)
for sconfig in stepper_configs]
self.arm2 = [arm**2 for arm in arm_lengths]
self.endstops = [s.position_endstop + math.sqrt(arm2 - radius**2)
for s, arm2 in zip(self.steppers, self.arm2)]
@ -48,11 +49,12 @@ class DeltaKinematics:
for s in self.steppers:
s.set_max_jerk(max_halt_velocity, self.max_accel)
# Determine tower locations in cartesian space
angles = [sconfig.getfloat('angle', angle)
for sconfig, angle in zip(stepper_configs, [210., 330., 90.])]
self.angles = [sconfig.getfloat('angle', angle)
for sconfig, angle in zip(stepper_configs,
[210., 330., 90.])]
self.towers = [(math.cos(math.radians(angle)) * radius,
math.sin(math.radians(angle)) * radius)
for angle in angles]
for angle in self.angles]
# Find the point where an XY move could result in excessive
# tower movement
half_min_step_dist = min([s.step_dist for s in self.steppers]) * .5
@ -77,30 +79,7 @@ class DeltaKinematics:
- (self.towers[i][1] - coord[1])**2) + coord[2]
for i in StepList]
def _actuator_to_cartesian(self, pos):
# Find nozzle position using trilateration (see wikipedia)
carriage1 = list(self.towers[0]) + [pos[0]]
carriage2 = list(self.towers[1]) + [pos[1]]
carriage3 = list(self.towers[2]) + [pos[2]]
s21 = matrix_sub(carriage2, carriage1)
s31 = matrix_sub(carriage3, carriage1)
d = math.sqrt(matrix_magsq(s21))
ex = matrix_mul(s21, 1. / d)
i = matrix_dot(ex, s31)
vect_ey = matrix_sub(s31, matrix_mul(ex, i))
ey = matrix_mul(vect_ey, 1. / math.sqrt(matrix_magsq(vect_ey)))
ez = matrix_cross(ex, ey)
j = matrix_dot(ey, s31)
x = (self.arm2[0] - self.arm2[1] + d**2) / (2. * d)
y = (self.arm2[0] - self.arm2[2] - x**2 + (x-i)**2 + j**2) / (2. * j)
z = -math.sqrt(self.arm2[0] - x**2 - y**2)
ex_x = matrix_mul(ex, x)
ey_y = matrix_mul(ey, y)
ez_z = matrix_mul(ez, z)
return matrix_add(carriage1, matrix_add(ex_x, matrix_add(ey_y, ez_z)))
return actuator_to_cartesian(self.towers, self.arm2, pos)
def get_position(self):
spos = [s.mcu_stepper.get_commanded_position() for s in self.steppers]
return self._actuator_to_cartesian(spos)
@ -225,6 +204,21 @@ class DeltaKinematics:
if decel_d:
step_delta(move_time, decel_d, cruise_v, -accel,
vt_startz, vt_startxy_d, vt_arm_d, movez_r)
# Helper functions for DELTA_CALIBRATE script
def get_stable_position(self):
return [int((ep - s.mcu_stepper.get_commanded_position())
/ s.mcu_stepper.get_step_dist() + .5)
* s.mcu_stepper.get_step_dist()
for ep, s in zip(self.endstops, self.steppers)]
def get_calibrate_params(self):
return {
'endstop_a': self.steppers[0].position_endstop,
'endstop_b': self.steppers[1].position_endstop,
'endstop_c': self.steppers[2].position_endstop,
'angle_a': self.angles[0], 'angle_b': self.angles[1],
'angle_c': self.angles[2], 'radius': self.radius,
'arm_a': self.arm_lengths[0], 'arm_b': self.arm_lengths[1],
'arm_c': self.arm_lengths[2] }
######################################################################
@ -250,3 +244,41 @@ def matrix_sub(m1, m2):
def matrix_mul(m1, s):
return [m1[0]*s, m1[1]*s, m1[2]*s]
def actuator_to_cartesian(towers, arm2, pos):
# Find nozzle position using trilateration (see wikipedia)
carriage1 = list(towers[0]) + [pos[0]]
carriage2 = list(towers[1]) + [pos[1]]
carriage3 = list(towers[2]) + [pos[2]]
s21 = matrix_sub(carriage2, carriage1)
s31 = matrix_sub(carriage3, carriage1)
d = math.sqrt(matrix_magsq(s21))
ex = matrix_mul(s21, 1. / d)
i = matrix_dot(ex, s31)
vect_ey = matrix_sub(s31, matrix_mul(ex, i))
ey = matrix_mul(vect_ey, 1. / math.sqrt(matrix_magsq(vect_ey)))
ez = matrix_cross(ex, ey)
j = matrix_dot(ey, s31)
x = (arm2[0] - arm2[1] + d**2) / (2. * d)
y = (arm2[0] - arm2[2] - x**2 + (x-i)**2 + j**2) / (2. * j)
z = -math.sqrt(arm2[0] - x**2 - y**2)
ex_x = matrix_mul(ex, x)
ey_y = matrix_mul(ey, y)
ez_z = matrix_mul(ez, z)
return matrix_add(carriage1, matrix_add(ex_x, matrix_add(ey_y, ez_z)))
def get_position_from_stable(spos, params):
angles = [params['angle_a'], params['angle_b'], params['angle_c']]
radius = params['radius']
radius2 = radius**2
towers = [(math.cos(angle) * radius, math.sin(angle) * radius)
for angle in map(math.radians, angles)]
arm2 = [a**2 for a in [params['arm_a'], params['arm_b'], params['arm_c']]]
endstops = [params['endstop_a'], params['endstop_b'], params['endstop_c']]
pos = [es + math.sqrt(a2 - radius2) - p
for es, a2, p in zip(endstops, arm2, spos)]
return actuator_to_cartesian(towers, arm2, pos)