OrcaSlicer/tests/fff_print/test_trianglemesh.cpp
coryrc 52c2a85d28
Fix tests (#10906)
* Get libslic3r tests closer to passing

I can't get geometry tests to do anything useful. I've added extra
output, but it hasn't helped me figure out why they don't work
yet. That's also probably the last broken 3mf test doesn't work.

The config tests were mostly broken because of config name changes.

The placeholder_parser tests have some things that may-or-may-not
still apply to Orca.

* Vendor a 3.x version of Catch2

Everything is surely broken at this point.

* Allow building tests separately from Orca with build_linux.sh

* Remove unnecessary log message screwing up ctest

Same solution as Prusaslicer

* Make 2 TriangleMesh methods const

Since they can be.

* Move method comment to the header where it belongsc

* Add indirectly-included header directly

Transform3d IIRC

* libslic3r tests converted to Catch2 v3

Still has 3 failing tests, but builds and runs.

* Disable 2D convex hull test and comment what I've learned

Not sure the best way to solve this yet.

* Add diff compare method for DynamicConfig

Help the unit test report errors better.

* Perl no longer used, remove comment line

* Clang-format Config.?pp

So difficult to work with ATM

* Remove cpp17 unit tests

Who gives a shit

* Don't need explicit "example" test

We have lots of tests to serve as examples.

* Leave breadcrumb to enable sla_print tests

* Fix serialization of DynamicConfig

Add comments to test, because these code paths might not be even used
anymore.

* Update run_unit_tests to run all the tests

By the time I'm done with the PR all tests will either excluded by
default or passing, so just do all.

* Update how-to-test now that build_linux.sh builds tests separately

* Update cmake regenerate instructions

Read this online; hopefully works.

* Enable slic3rutils test with Catch2 v3

* Port libnest2d and fff_print to Catch2 v3

They build. Many failing.

* Add slightly more info to Objects not fit on bed exception

* Disable failing fff_print tests from running

They're mostly failing for "objects don't fit on bed" for an
infinite-sized bed. Given infinite bed is probably only used in tests,
it probably was incidentally broken long ago.

* Must checkout tests directory in GH Actions

So we get the test data

* Missed a failing fff_print test

* Disable (most/all) broken libnest2d tests

Trying all, not checking yet though

* Fix Polygon convex/concave detection tests

Document the implementation too. Reorganize the tests to be cleaner.

* Update the test script to run tests in parallel

* Get sla_print tests to build

Probably not passing

* Don't cause full project rebuild when updating test CMakeLists.txts

* Revert "Clang-format Config.?pp"

This reverts commit 771e4c0ad2.

---------

Co-authored-by: SoftFever <softfeverever@gmail.com>
2025-12-08 22:42:11 +08:00

353 lines
14 KiB
C++

#include <catch2/catch_all.hpp>
#include "libslic3r/TriangleMesh.hpp"
#include "libslic3r/TriangleMeshSlicer.hpp"
#include "libslic3r/Point.hpp"
#include "libslic3r/Config.hpp"
#include "libslic3r/Model.hpp"
#include "libslic3r/libslic3r.h"
#include <algorithm>
#include <future>
#include <chrono>
//#include "test_options.hpp"
#include "test_data.hpp"
using namespace Slic3r;
using namespace std;
static inline TriangleMesh make_cube() { return make_cube(20., 20, 20); }
SCENARIO( "TriangleMesh: Basic mesh statistics") {
GIVEN( "A 20mm cube, built from constexpr std::array" ) {
std::vector<Vec3f> vertices { {20,20,0}, {20,0,0}, {0,0,0}, {0,20,0}, {20,20,20}, {0,20,20}, {0,0,20}, {20,0,20} };
std::vector<Vec3i32> facets { {0,1,2}, {0,2,3}, {4,5,6}, {4,6,7}, {0,4,7}, {0,7,1}, {1,7,6}, {1,6,2}, {2,6,5}, {2,5,3}, {4,0,3}, {4,3,5} };
TriangleMesh cube(vertices, facets);
THEN( "Volume is appropriate for 20mm square cube.") {
REQUIRE(abs(cube.volume() - 20.0*20.0*20.0) < 1e-2);
}
THEN( "Vertices array matches input.") {
for (size_t i = 0U; i < cube.its.vertices.size(); i++) {
REQUIRE(cube.its.vertices.at(i) == vertices.at(i).cast<float>());
}
for (size_t i = 0U; i < vertices.size(); i++) {
REQUIRE(vertices.at(i).cast<float>() == cube.its.vertices.at(i));
}
}
THEN( "Vertex count matches vertex array size.") {
REQUIRE(cube.facets_count() == facets.size());
}
THEN( "Facet array matches input.") {
for (size_t i = 0U; i < cube.its.indices.size(); i++) {
REQUIRE(cube.its.indices.at(i) == facets.at(i));
}
for (size_t i = 0U; i < facets.size(); i++) {
REQUIRE(facets.at(i) == cube.its.indices.at(i));
}
}
THEN( "Facet count matches facet array size.") {
REQUIRE(cube.facets_count() == facets.size());
}
#if 0
THEN( "Number of normals is equal to the number of facets.") {
REQUIRE(cube.normals().size() == facets.size());
}
#endif
THEN( "center() returns the center of the object.") {
REQUIRE(cube.center() == Vec3d(10.0,10.0,10.0));
}
THEN( "Size of cube is (20,20,20)") {
REQUIRE(cube.size() == Vec3d(20,20,20));
}
}
}
SCENARIO( "TriangleMesh: Transformation functions affect mesh as expected.") {
GIVEN( "A 20mm cube with one corner on the origin") {
auto cube = make_cube();
WHEN( "The cube is scaled 200% uniformly") {
cube.scale(2.0);
THEN( "The volume is equivalent to 40x40x40 (all dimensions increased by 200%") {
REQUIRE(abs(cube.volume() - 40.0*40.0*40.0) < 1e-2);
}
}
WHEN( "The resulting cube is scaled 200% in the X direction") {
cube.scale(Vec3f(2.0, 1, 1));
THEN( "The volume is doubled.") {
REQUIRE(abs(cube.volume() - 2*20.0*20.0*20.0) < 1e-2);
}
THEN( "The X coordinate size is 200%.") {
REQUIRE(cube.its.vertices.at(0).x() == 40.0);
}
}
WHEN( "The cube is scaled 25% in the X direction") {
cube.scale(Vec3f(0.25, 1, 1));
THEN( "The volume is 25% of the previous volume.") {
REQUIRE(abs(cube.volume() - 0.25*20.0*20.0*20.0) < 1e-2);
}
THEN( "The X coordinate size is 25% from previous.") {
REQUIRE(cube.its.vertices.at(0).x() == 5.0);
}
}
WHEN( "The cube is rotated 45 degrees.") {
cube.rotate_z(float(M_PI / 4.));
THEN( "The X component of the size is sqrt(2)*20") {
REQUIRE(abs(cube.size().x() - sqrt(2.0)*20) < 1e-2);
}
}
WHEN( "The cube is translated (5, 10, 0) units with a Vec3f ") {
cube.translate(Vec3f(5.0, 10.0, 0.0));
THEN( "The first vertex is located at 25, 30, 0") {
REQUIRE(cube.its.vertices.at(0) == Vec3f(25.0, 30.0, 0.0));
}
}
WHEN( "The cube is translated (5, 10, 0) units with 3 doubles") {
cube.translate(5.0, 10.0, 0.0);
THEN( "The first vertex is located at 25, 30, 0") {
REQUIRE(cube.its.vertices.at(0) == Vec3f(25.0, 30.0, 0.0));
}
}
WHEN( "The cube is translated (5, 10, 0) units and then aligned to origin") {
cube.translate(5.0, 10.0, 0.0);
cube.align_to_origin();
THEN( "The third vertex is located at 0,0,0") {
REQUIRE(cube.its.vertices.at(2) == Vec3f::Zero());
}
THEN( "Size is OK") {
REQUIRE(cube.stats().size == Vec3f(20.f, 20.f, 20.f));
}
}
}
}
SCENARIO( "TriangleMesh: slice behavior.") {
GIVEN( "A 20mm cube with one corner on the origin") {
auto cube = make_cube();
WHEN("Cube is sliced with z = [0+EPSILON,2,4,8,6,8,10,12,14,16,18,20]") {
std::vector<double> z { 0+EPSILON,2,4,8,6,8,10,12,14,16,18,20 };
std::vector<ExPolygons> result = cube.slice(z);
THEN( "The correct number of polygons are returned per layer.") {
for (size_t i = 0U; i < z.size(); i++) {
REQUIRE(result.at(i).size() == 1);
}
}
THEN( "The area of the returned polygons is correct.") {
for (size_t i = 0U; i < z.size(); i++) {
REQUIRE(result.at(i).at(0).area() == 20.0*20/(std::pow(SCALING_FACTOR,2)));
}
}
}
}
GIVEN( "A STL with an irregular shape.") {
const std::vector<Vec3f> vertices {{0,0,0},{0,0,20},{0,5,0},{0,5,20},{50,0,0},{50,0,20},{15,5,0},{35,5,0},{15,20,0},{50,5,0},{35,20,0},{15,5,10},{50,5,20},{35,5,10},{35,20,10},{15,20,10}};
const std::vector<Vec3i32> facets {{0,1,2},{2,1,3},{1,0,4},{5,1,4},{0,2,4},{4,2,6},{7,6,8},{4,6,7},{9,4,7},{7,8,10},{2,3,6},{11,3,12},{7,12,9},{13,12,7},{6,3,11},{11,12,13},{3,1,5},{12,3,5},{5,4,9},{12,5,9},{13,7,10},{14,13,10},{8,15,10},{10,15,14},{6,11,8},{8,11,15},{15,11,13},{14,15,13}};
auto cube = make_cube();
WHEN(" a top tangent plane is sliced") {
// At Z = 10 we have a top horizontal surface.
std::vector<ExPolygons> slices = cube.slice({5.0, 10.0});
THEN( "its area is included") {
REQUIRE(slices.at(0).at(0).area() > 0);
REQUIRE(slices.at(1).at(0).area() > 0);
}
}
WHEN(" a model that has been transformed is sliced") {
cube.mirror_z();
std::vector<ExPolygons> slices = cube.slice({-5.0, -10.0});
THEN( "it is sliced properly (mirrored bottom plane area is included)") {
REQUIRE(slices.at(0).at(0).area() > 0);
REQUIRE(slices.at(1).at(0).area() > 0);
}
}
}
}
SCENARIO( "make_xxx functions produce meshes.") {
GIVEN("make_cube() function") {
WHEN("make_cube() is called with arguments 20,20,20") {
TriangleMesh cube = make_cube(20,20,20);
THEN("The resulting mesh has one and only one vertex at 0,0,0") {
const std::vector<Vec3f> &verts = cube.its.vertices;
REQUIRE(std::count_if(verts.begin(), verts.end(), [](const Vec3f& t) { return t.x() == 0 && t.y() == 0 && t.z() == 0; } ) == 1);
}
THEN("The mesh volume is 20*20*20") {
REQUIRE(abs(cube.volume() - 20.0*20.0*20.0) < 1e-2);
}
THEN("There are 12 facets.") {
REQUIRE(cube.its.indices.size() == 12);
}
}
}
GIVEN("make_cylinder() function") {
WHEN("make_cylinder() is called with arguments 10,10, PI / 3") {
TriangleMesh cyl = make_cylinder(10, 10, PI / 243.0);
double angle = (2*PI / floor(2*PI / (PI / 243.0)));
THEN("The resulting mesh has one and only one vertex at 0,0,0") {
const std::vector<Vec3f> &verts = cyl.its.vertices;
REQUIRE(std::count_if(verts.begin(), verts.end(), [](const Vec3f& t) { return t.x() == 0 && t.y() == 0 && t.z() == 0; } ) == 1);
}
THEN("The resulting mesh has one and only one vertex at 0,0,10") {
const std::vector<Vec3f> &verts = cyl.its.vertices;
REQUIRE(std::count_if(verts.begin(), verts.end(), [](const Vec3f& t) { return t.x() == 0 && t.y() == 0 && t.z() == 10; } ) == 1);
}
THEN("Resulting mesh has 2 + (2*PI/angle * 2) vertices.") {
REQUIRE(cyl.its.vertices.size() == (2 + ((2*PI/angle)*2)));
}
THEN("Resulting mesh has 2*PI/angle * 4 facets") {
REQUIRE(cyl.its.indices.size() == (2*PI/angle)*4);
}
THEN( "The mesh volume is approximately 10pi * 10^2") {
REQUIRE(abs(cyl.volume() - (10.0 * M_PI * std::pow(10,2))) < 1);
}
}
}
GIVEN("make_sphere() function") {
WHEN("make_sphere() is called with arguments 10, PI / 3") {
TriangleMesh sph = make_sphere(10, PI / 243.0);
THEN("Resulting mesh has one point at 0,0,-10 and one at 0,0,10") {
const std::vector<stl_vertex> &verts = sph.its.vertices;
REQUIRE(std::count_if(verts.begin(), verts.end(), [](const Vec3f& t) { return is_approx(t, Vec3f(0.f, 0.f, 10.f)); } ) == 1);
REQUIRE(std::count_if(verts.begin(), verts.end(), [](const Vec3f& t) { return is_approx(t, Vec3f(0.f, 0.f, -10.f)); } ) == 1);
}
THEN( "The mesh volume is approximately 4/3 * pi * 10^3") {
REQUIRE(abs(sph.volume() - (4.0/3.0 * M_PI * std::pow(10,3))) < 1); // 1% tolerance?
}
}
}
}
SCENARIO( "TriangleMesh: split functionality.") {
GIVEN( "A 20mm cube with one corner on the origin") {
auto cube = make_cube();
WHEN( "The mesh is split into its component parts.") {
std::vector<TriangleMesh> meshes = cube.split();
THEN(" The bounding box statistics are propagated to the split copies") {
REQUIRE(meshes.size() == 1);
REQUIRE((meshes.front().bounding_box() == cube.bounding_box()));
}
}
}
GIVEN( "Two 20mm cubes, each with one corner on the origin, merged into a single TriangleMesh") {
auto cube = make_cube();
TriangleMesh cube2(cube);
cube.merge(cube2);
WHEN( "The combined mesh is split") {
THEN( "Number of faces is 2x the source.") {
REQUIRE(cube.facets_count() == 2 * cube2.facets_count());
}
std::vector<TriangleMesh> meshes = cube.split();
THEN( "Two meshes are in the output vector.") {
REQUIRE(meshes.size() == 2);
}
}
}
}
SCENARIO( "TriangleMesh: Mesh merge functions") {
GIVEN( "Two 20mm cubes, each with one corner on the origin") {
auto cube = make_cube();
TriangleMesh cube2(cube);
WHEN( "The two meshes are merged") {
cube.merge(cube2);
THEN( "There are twice as many facets in the merged mesh as the original.") {
REQUIRE(cube.facets_count() == 2 * cube2.facets_count());
}
}
}
}
SCENARIO( "TriangleMeshSlicer: Cut behavior.") {
GIVEN( "A 20mm cube with one corner on the origin") {
auto cube = make_cube();
WHEN( "Object is cut at the bottom") {
indexed_triangle_set upper {};
indexed_triangle_set lower {};
cut_mesh(cube.its, 0, &upper, &lower);
THEN("Upper mesh has all facets except those belonging to the slicing plane.") {
REQUIRE(upper.indices.size() == 12);
}
THEN("Lower mesh has no facets.") {
REQUIRE(lower.indices.size() == 0);
}
}
WHEN( "Object is cut at the center") {
indexed_triangle_set upper {};
indexed_triangle_set lower {};
cut_mesh(cube.its, 10, &upper, &lower);
THEN("Upper mesh has 2 external horizontal facets, 3 facets on each side, and 6 facets on the triangulated side (2 + 12 + 6).") {
REQUIRE(upper.indices.size() == 2+12+6);
}
THEN("Lower mesh has 2 external horizontal facets, 3 facets on each side, and 6 facets on the triangulated side (2 + 12 + 6).") {
REQUIRE(lower.indices.size() == 2+12+6);
}
}
}
}
#ifdef TEST_PERFORMANCE
TEST_CASE("Regression test for issue #4486 - files take forever to slice") {
TriangleMesh mesh;
DynamicPrintConfig config = Slic3r::DynamicPrintConfig::full_print_config();
mesh.ReadSTLFile(std::string(testfile_dir) + "test_trianglemesh/4486/100_000.stl");
config.set("layer_height", 500);
config.set("first_layer_height", 250);
config.set("nozzle_diameter", 500);
Slic3r::Print print;
Slic3r::Model model;
Slic3r::Test::init_print({mesh}, print, model, config);
print.status_cb = [] (int ln, const std::string& msg) { Slic3r::Log::info("Print") << ln << " " << msg << "\n";};
std::future<void> fut = std::async([&print] () { print.process(); });
std::chrono::milliseconds span {120000};
bool timedout {false};
if(fut.wait_for(span) == std::future_status::timeout) {
timedout = true;
}
REQUIRE(timedout == false);
}
#endif // TEST_PERFORMANCE
#ifdef BUILD_PROFILE
TEST_CASE("Profile test for issue #4486 - files take forever to slice") {
TriangleMesh mesh;
DynamicPrintConfig config = Slic3r::DynamicPrintConfig::full_print_config();
mesh.ReadSTLFile(std::string(testfile_dir) + "test_trianglemesh/4486/10_000.stl");
config.set("layer_height", 500);
config.set("first_layer_height", 250);
config.set("nozzle_diameter", 500);
config.set("fill_density", "5%");
Slic3r::Print print;
Slic3r::Model model;
Slic3r::Test::init_print({mesh}, print, model, config);
print.status_cb = [] (int ln, const std::string& msg) { Slic3r::Log::info("Print") << ln << " " << msg << "\n";};
print.process();
REQUIRE(true);
}
#endif //BUILD_PROFILE