mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-10-31 12:41:20 -06:00 
			
		
		
		
	
		
			
				
	
	
		
			130 lines
		
	
	
	
		
			4.6 KiB
		
	
	
	
		
			GLSL
		
	
	
	
	
	
			
		
		
	
	
			130 lines
		
	
	
	
		
			4.6 KiB
		
	
	
	
		
			GLSL
		
	
	
	
	
	
| #version 110
 | |
| 
 | |
| #define INTENSITY_CORRECTION 0.6
 | |
| 
 | |
| // normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
 | |
| const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
 | |
| #define LIGHT_TOP_DIFFUSE    (0.8 * INTENSITY_CORRECTION)
 | |
| #define LIGHT_TOP_SPECULAR   (0.125 * INTENSITY_CORRECTION)
 | |
| #define LIGHT_TOP_SHININESS  20.0
 | |
| 
 | |
| // normalized values for (1./1.43, 0.2/1.43, 1./1.43)
 | |
| const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
 | |
| #define LIGHT_FRONT_DIFFUSE  (0.3 * INTENSITY_CORRECTION)
 | |
| 
 | |
| #define INTENSITY_AMBIENT    0.3
 | |
| 
 | |
| const vec3 ZERO = vec3(0.0, 0.0, 0.0);
 | |
| const vec3 GREEN = vec3(0.0, 0.7, 0.0);
 | |
| const vec3 YELLOW = vec3(0.5, 0.7, 0.0);
 | |
| const vec3 RED = vec3(0.7, 0.0, 0.0);
 | |
| const vec3 WHITE = vec3(1.0, 1.0, 1.0);
 | |
| const float EPSILON = 0.0001;
 | |
| const float BANDS_WIDTH = 10.0;
 | |
| 
 | |
| struct PrintVolumeDetection
 | |
| {
 | |
| 	// 0 = rectangle, 1 = circle, 2 = custom, 3 = invalid
 | |
| 	int type;
 | |
|     // type = 0 (rectangle):
 | |
|     // x = min.x, y = min.y, z = max.x, w = max.y
 | |
|     // type = 1 (circle):
 | |
|     // x = center.x, y = center.y, z = radius
 | |
| 	vec4 xy_data;
 | |
|     // x = min z, y = max z
 | |
| 	vec2 z_data;
 | |
| };
 | |
| 
 | |
| struct SlopeDetection
 | |
| {
 | |
|     bool actived;
 | |
| 	float normal_z;
 | |
|     mat3 volume_world_normal_matrix;
 | |
| };
 | |
| 
 | |
| uniform vec4 uniform_color;
 | |
| uniform SlopeDetection slope;
 | |
| 
 | |
| #ifdef ENABLE_ENVIRONMENT_MAP
 | |
|     uniform sampler2D environment_tex;
 | |
|     uniform bool use_environment_tex;
 | |
| #endif // ENABLE_ENVIRONMENT_MAP
 | |
| 
 | |
| varying vec3 clipping_planes_dots;
 | |
| 
 | |
| // x = diffuse, y = specular;
 | |
| varying vec2 intensity;
 | |
| 
 | |
| uniform PrintVolumeDetection print_volume;
 | |
| 
 | |
| varying vec4 model_pos;
 | |
| varying vec4 world_pos;
 | |
| varying float world_normal_z;
 | |
| varying vec3 eye_normal;
 | |
| 
 | |
| uniform bool compute_triangle_normals_in_fs;
 | |
| 
 | |
| void main()
 | |
| {
 | |
|     if (any(lessThan(clipping_planes_dots, ZERO)))
 | |
|         discard;
 | |
|     vec3  color = uniform_color.rgb;
 | |
|     float alpha = uniform_color.a;
 | |
| 
 | |
|     vec2  intensity_fs      = intensity;
 | |
|     vec3  eye_normal_fs     = eye_normal;
 | |
|     float world_normal_z_fs = world_normal_z;
 | |
|     if (compute_triangle_normals_in_fs) {
 | |
|         vec3 triangle_normal = normalize(cross(dFdx(model_pos.xyz), dFdy(model_pos.xyz)));
 | |
| #ifdef FLIP_TRIANGLE_NORMALS
 | |
|         triangle_normal = -triangle_normal;
 | |
| #endif
 | |
| 
 | |
|         // First transform the normal into camera space and normalize the result.
 | |
|         eye_normal_fs = normalize(gl_NormalMatrix * triangle_normal);
 | |
| 
 | |
|         // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
 | |
|         // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
 | |
|         float NdotL = max(dot(eye_normal_fs, LIGHT_TOP_DIR), 0.0);
 | |
| 
 | |
|         intensity_fs = vec2(0.0, 0.0);
 | |
|         intensity_fs.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
 | |
|         vec3 position = (gl_ModelViewMatrix * model_pos).xyz;
 | |
|         intensity_fs.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position), reflect(-LIGHT_TOP_DIR, eye_normal_fs)), 0.0), LIGHT_TOP_SHININESS);
 | |
| 
 | |
|         // Perform the same lighting calculation for the 2nd light source (no specular applied).
 | |
|         NdotL = max(dot(eye_normal_fs, LIGHT_FRONT_DIR), 0.0);
 | |
|         intensity_fs.x += NdotL * LIGHT_FRONT_DIFFUSE;
 | |
| 
 | |
|         // z component of normal vector in world coordinate used for slope shading
 | |
|         world_normal_z_fs = slope.actived ? (normalize(slope.volume_world_normal_matrix * triangle_normal)).z : 0.0;
 | |
|     }
 | |
| 
 | |
|     if (slope.actived && world_normal_z_fs < slope.normal_z - EPSILON) {
 | |
|         color = vec3(0.7, 0.7, 1.0);
 | |
|         alpha = 1.0;
 | |
|     }
 | |
| 	
 | |
|     // if the fragment is outside the print volume -> use darker color
 | |
| 	vec3 pv_check_min = ZERO;
 | |
| 	vec3 pv_check_max = ZERO;
 | |
|     if (print_volume.type == 0) {
 | |
| 		// rectangle
 | |
| 		pv_check_min = world_pos.xyz - vec3(print_volume.xy_data.x, print_volume.xy_data.y, print_volume.z_data.x);
 | |
| 		pv_check_max = world_pos.xyz - vec3(print_volume.xy_data.z, print_volume.xy_data.w, print_volume.z_data.y);
 | |
| 	}
 | |
| 	else if (print_volume.type == 1) {
 | |
| 		// circle
 | |
| 		float delta_radius = print_volume.xy_data.z - distance(world_pos.xy, print_volume.xy_data.xy);
 | |
| 		pv_check_min = vec3(delta_radius, 0.0, world_pos.z - print_volume.z_data.x);
 | |
| 		pv_check_max = vec3(0.0, 0.0, world_pos.z - print_volume.z_data.y);
 | |
| 	}	
 | |
| 	color = (any(lessThan(pv_check_min, ZERO)) || any(greaterThan(pv_check_max, ZERO))) ? mix(color, ZERO, 0.3333) : color;
 | |
| 	
 | |
| #ifdef ENABLE_ENVIRONMENT_MAP
 | |
|     if (use_environment_tex)
 | |
|         gl_FragColor = vec4(0.45 * texture2D(environment_tex, normalize(eye_normal_fs).xy * 0.5 + 0.5).xyz + 0.8 * color * intensity_fs.x, alpha);
 | |
|     else
 | |
| #endif
 | |
|         gl_FragColor = vec4(vec3(intensity_fs.y) + color * intensity_fs.x, alpha);
 | |
| }
 | 
