mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-10-31 04:31:15 -06:00 
			
		
		
		
	
		
			
				
	
	
		
			285 lines
		
	
	
	
		
			9.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			285 lines
		
	
	
	
		
			9.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include <functional>
 | |
| 
 | |
| #include <libslic3r/OpenVDBUtils.hpp>
 | |
| #include <libslic3r/TriangleMesh.hpp>
 | |
| #include <libslic3r/SLA/Hollowing.hpp>
 | |
| #include <libslic3r/SLA/IndexedMesh.hpp>
 | |
| #include <libslic3r/ClipperUtils.hpp>
 | |
| #include <libslic3r/SimplifyMesh.hpp>
 | |
| #include <libslic3r/SLA/SupportTreeMesher.hpp>
 | |
| 
 | |
| #include <boost/log/trivial.hpp>
 | |
| 
 | |
| #include <libslic3r/MTUtils.hpp>
 | |
| #include <libslic3r/I18N.hpp>
 | |
| 
 | |
| //! macro used to mark string used at localization,
 | |
| //! return same string
 | |
| #define L(s) Slic3r::I18N::translate(s)
 | |
| 
 | |
| namespace Slic3r {
 | |
| namespace sla {
 | |
| 
 | |
| template<class S, class = FloatingOnly<S>>
 | |
| inline void _scale(S s, TriangleMesh &m) { m.scale(float(s)); }
 | |
| 
 | |
| template<class S, class = FloatingOnly<S>>
 | |
| inline void _scale(S s, Contour3D &m) { for (auto &p : m.points) p *= s; }
 | |
| 
 | |
| static TriangleMesh _generate_interior(const TriangleMesh  &mesh,
 | |
|                                        const JobController &ctl,
 | |
|                                        double               min_thickness,
 | |
|                                        double               voxel_scale,
 | |
|                                        double               closing_dist)
 | |
| {
 | |
|     TriangleMesh imesh{mesh};
 | |
|     
 | |
|     _scale(voxel_scale, imesh);
 | |
|     
 | |
|     double offset = voxel_scale * min_thickness;
 | |
|     double D = voxel_scale * closing_dist;
 | |
|     float  out_range = 0.1f * float(offset);
 | |
|     float  in_range = 1.1f * float(offset + D);
 | |
|     
 | |
|     if (ctl.stopcondition()) return {};
 | |
|     else ctl.statuscb(0, L("Hollowing"));
 | |
|     
 | |
|     auto gridptr = mesh_to_grid(imesh, {}, out_range, in_range);
 | |
|     
 | |
|     assert(gridptr);
 | |
|     
 | |
|     if (!gridptr) {
 | |
|         BOOST_LOG_TRIVIAL(error) << "Returned OpenVDB grid is NULL";
 | |
|         return {};
 | |
|     }
 | |
|     
 | |
|     if (ctl.stopcondition()) return {};
 | |
|     else ctl.statuscb(30, L("Hollowing"));
 | |
|     
 | |
|     if (closing_dist > .0) {
 | |
|         gridptr = redistance_grid(*gridptr, -(offset + D), double(in_range));
 | |
|     } else {
 | |
|         D = -offset;
 | |
|     }
 | |
|     
 | |
|     if (ctl.stopcondition()) return {};
 | |
|     else ctl.statuscb(70, L("Hollowing"));
 | |
|     
 | |
|     double iso_surface = D;
 | |
|     double adaptivity = 0.;
 | |
|     auto omesh = grid_to_mesh(*gridptr, iso_surface, adaptivity);
 | |
|     
 | |
|     _scale(1. / voxel_scale, omesh);
 | |
|     
 | |
|     if (ctl.stopcondition()) return {};
 | |
|     else ctl.statuscb(100, L("Hollowing"));
 | |
|     
 | |
|     return omesh;
 | |
| }
 | |
| 
 | |
| std::unique_ptr<TriangleMesh> generate_interior(const TriangleMesh &   mesh,
 | |
|                                                 const HollowingConfig &hc,
 | |
|                                                 const JobController &  ctl)
 | |
| {
 | |
|     static const double MIN_OVERSAMPL = 3.;
 | |
|     static const double MAX_OVERSAMPL = 8.;
 | |
|         
 | |
|     // I can't figure out how to increase the grid resolution through openvdb
 | |
|     // API so the model will be scaled up before conversion and the result
 | |
|     // scaled down. Voxels have a unit size. If I set voxelSize smaller, it
 | |
|     // scales the whole geometry down, and doesn't increase the number of
 | |
|     // voxels.
 | |
|     //
 | |
|     // max 8x upscale, min is native voxel size
 | |
|     auto voxel_scale = MIN_OVERSAMPL + (MAX_OVERSAMPL - MIN_OVERSAMPL) * hc.quality;
 | |
|     auto meshptr = std::make_unique<TriangleMesh>(
 | |
|         _generate_interior(mesh, ctl, hc.min_thickness, voxel_scale,
 | |
|                            hc.closing_distance));
 | |
|     
 | |
|     if (meshptr && !meshptr->empty()) {
 | |
|         
 | |
|         // This flips the normals to be outward facing...
 | |
|         meshptr->require_shared_vertices();
 | |
|         indexed_triangle_set its = std::move(meshptr->its);
 | |
|         
 | |
|         Slic3r::simplify_mesh(its);
 | |
|         
 | |
|         // flip normals back...
 | |
|         for (stl_triangle_vertex_indices &ind : its.indices)
 | |
|             std::swap(ind(0), ind(2));
 | |
|         
 | |
|         *meshptr = Slic3r::TriangleMesh{its};
 | |
|     }
 | |
|     
 | |
|     return meshptr;
 | |
| }
 | |
| 
 | |
| Contour3D DrainHole::to_mesh() const
 | |
| {
 | |
|     auto r = double(radius);
 | |
|     auto h = double(height);
 | |
|     sla::Contour3D hole = sla::cylinder(r, h, steps);
 | |
|     Eigen::Quaterniond q;
 | |
|     q.setFromTwoVectors(Vec3d{0., 0., 1.}, normal.cast<double>());
 | |
|     for(auto& p : hole.points) p = q * p + pos.cast<double>();
 | |
|     
 | |
|     return hole;
 | |
| }
 | |
| 
 | |
| bool DrainHole::operator==(const DrainHole &sp) const
 | |
| {
 | |
|     return (pos == sp.pos) && (normal == sp.normal) &&
 | |
|             is_approx(radius, sp.radius) &&
 | |
|             is_approx(height, sp.height);
 | |
| }
 | |
| 
 | |
| bool DrainHole::is_inside(const Vec3f& pt) const
 | |
| {
 | |
|     Eigen::Hyperplane<float, 3> plane(normal, pos);
 | |
|     float dist = plane.signedDistance(pt);
 | |
|     if (dist < float(EPSILON) || dist > height)
 | |
|         return false;
 | |
| 
 | |
|     Eigen::ParametrizedLine<float, 3> axis(pos, normal);
 | |
|     if ( axis.squaredDistance(pt) < pow(radius, 2.f))
 | |
|         return true;
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Given a line s+dir*t, find parameter t of intersections with the hole
 | |
| // and the normal (points inside the hole). Outputs through out reference,
 | |
| // returns true if two intersections were found.
 | |
| bool DrainHole::get_intersections(const Vec3f& s, const Vec3f& dir,
 | |
|                                   std::array<std::pair<float, Vec3d>, 2>& out)
 | |
|                                   const
 | |
| {
 | |
|     assert(is_approx(normal.norm(), 1.f));
 | |
|     const Eigen::ParametrizedLine<float, 3> ray(s, dir.normalized());
 | |
| 
 | |
|     for (size_t i=0; i<2; ++i)
 | |
|         out[i] = std::make_pair(sla::IndexedMesh::hit_result::infty(), Vec3d::Zero());
 | |
| 
 | |
|     const float sqr_radius = pow(radius, 2.f);
 | |
| 
 | |
|     // first check a bounding sphere of the hole:
 | |
|     Vec3f center = pos+normal*height/2.f;
 | |
|     float sqr_dist_limit = pow(height/2.f, 2.f) + sqr_radius ;
 | |
|     if (ray.squaredDistance(center) > sqr_dist_limit)
 | |
|         return false;
 | |
| 
 | |
|     // The line intersects the bounding sphere, look for intersections with
 | |
|     // bases of the cylinder.
 | |
| 
 | |
|     size_t found = 0; // counts how many intersections were found
 | |
|     Eigen::Hyperplane<float, 3> base;
 | |
|     if (! is_approx(ray.direction().dot(normal), 0.f)) {
 | |
|         for (size_t i=1; i<=1; --i) {
 | |
|             Vec3f cylinder_center = pos+i*height*normal;
 | |
|             if (i == 0) {
 | |
|                 // The hole base can be identical to mesh surface if it is flat
 | |
|                 // let's better move the base outward a bit
 | |
|                 cylinder_center -= EPSILON*normal;
 | |
|             }
 | |
|             base = Eigen::Hyperplane<float, 3>(normal, cylinder_center);
 | |
|             Vec3f intersection = ray.intersectionPoint(base);
 | |
|             // Only accept the point if it is inside the cylinder base.
 | |
|             if ((cylinder_center-intersection).squaredNorm() < sqr_radius) {
 | |
|                 out[found].first = ray.intersectionParameter(base);
 | |
|                 out[found].second = (i==0 ? 1. : -1.) * normal.cast<double>();
 | |
|                 ++found;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         // In case the line was perpendicular to the cylinder axis, previous
 | |
|         // block was skipped, but base will later be assumed to be valid.
 | |
|         base = Eigen::Hyperplane<float, 3>(normal, pos-EPSILON*normal);
 | |
|     }
 | |
| 
 | |
|     // In case there is still an intersection to be found, check the wall
 | |
|     if (found != 2 && ! is_approx(std::abs(ray.direction().dot(normal)), 1.f)) {
 | |
|         // Project the ray onto the base plane
 | |
|         Vec3f proj_origin = base.projection(ray.origin());
 | |
|         Vec3f proj_dir = base.projection(ray.origin()+ray.direction())-proj_origin;
 | |
|         // save how the parameter scales and normalize the projected direction
 | |
|         float par_scale = proj_dir.norm();
 | |
|         proj_dir = proj_dir/par_scale;
 | |
|         Eigen::ParametrizedLine<float, 3> projected_ray(proj_origin, proj_dir);
 | |
|         // Calculate point on the secant that's closest to the center
 | |
|         // and its distance to the circle along the projected line
 | |
|         Vec3f closest = projected_ray.projection(pos);
 | |
|         float dist = sqrt((sqr_radius - (closest-pos).squaredNorm()));
 | |
|         // Unproject both intersections on the original line and check
 | |
|         // they are on the cylinder and not past it:
 | |
|         for (int i=-1; i<=1 && found !=2; i+=2) {
 | |
|             Vec3f isect = closest + i*dist * projected_ray.direction();
 | |
|             Vec3f to_isect = isect-proj_origin;
 | |
|             float par = to_isect.norm() / par_scale;
 | |
|             if (to_isect.normalized().dot(proj_dir.normalized()) < 0.f)
 | |
|                 par *= -1.f;
 | |
|             Vec3d hit_normal = (pos-isect).normalized().cast<double>();
 | |
|             isect = ray.pointAt(par);
 | |
|             // check that the intersection is between the base planes:
 | |
|             float vert_dist = base.signedDistance(isect);
 | |
|             if (vert_dist > 0.f && vert_dist < height) {
 | |
|                 out[found].first = par;
 | |
|                 out[found].second = hit_normal;
 | |
|                 ++found;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // If only one intersection was found, it is some corner case,
 | |
|     // no intersection will be returned:
 | |
|     if (found != 2)
 | |
|         return false;
 | |
| 
 | |
|     // Sort the intersections:
 | |
|     if (out[0].first > out[1].first)
 | |
|         std::swap(out[0], out[1]);
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| void cut_drainholes(std::vector<ExPolygons> & obj_slices,
 | |
|                     const std::vector<float> &slicegrid,
 | |
|                     float                     closing_radius,
 | |
|                     const sla::DrainHoles &   holes,
 | |
|                     std::function<void(void)> thr)
 | |
| {
 | |
|     TriangleMesh mesh;
 | |
|     for (const sla::DrainHole &holept : holes)
 | |
|         mesh.merge(sla::to_triangle_mesh(holept.to_mesh()));
 | |
|     
 | |
|     if (mesh.empty()) return;
 | |
|     
 | |
|     mesh.require_shared_vertices();
 | |
|     
 | |
|     TriangleMeshSlicer slicer(&mesh);
 | |
|     
 | |
|     std::vector<ExPolygons> hole_slices;
 | |
|     slicer.slice(slicegrid, SlicingMode::Regular, closing_radius, &hole_slices, thr);
 | |
|     
 | |
|     if (obj_slices.size() != hole_slices.size())
 | |
|         BOOST_LOG_TRIVIAL(warning)
 | |
|             << "Sliced object and drain-holes layer count does not match!";
 | |
| 
 | |
|     size_t until = std::min(obj_slices.size(), hole_slices.size());
 | |
|     
 | |
|     for (size_t i = 0; i < until; ++i)
 | |
|         obj_slices[i] = diff_ex(obj_slices[i], hole_slices[i]);
 | |
| }
 | |
| 
 | |
| void hollow_mesh(TriangleMesh &mesh, const HollowingConfig &cfg)
 | |
| {
 | |
|     std::unique_ptr<Slic3r::TriangleMesh> inter_ptr =
 | |
|             Slic3r::sla::generate_interior(mesh);
 | |
| 
 | |
|     if (inter_ptr) mesh.merge(*inter_ptr);
 | |
|     mesh.require_shared_vertices();
 | |
| }
 | |
| 
 | |
| }} // namespace Slic3r::sla
 | 
