mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-11-02 20:51:23 -07:00 
			
		
		
		
	
		
			
				
	
	
		
			116 lines
		
	
	
	
		
			4.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			116 lines
		
	
	
	
		
			4.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// This file is part of libigl, a simple c++ geometry processing library.
 | 
						|
//
 | 
						|
// Copyright (C) 2017 Oded Stein <oded.stein@columbia.edu>
 | 
						|
//
 | 
						|
// This Source Code Form is subject to the terms of the Mozilla Public License
 | 
						|
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
 | 
						|
// obtain one at http://mozilla.org/MPL/2.0/.
 | 
						|
 | 
						|
 | 
						|
#include "isolines.h"
 | 
						|
 | 
						|
#include <vector>
 | 
						|
#include <array>
 | 
						|
#include <iostream>
 | 
						|
 | 
						|
#include "remove_duplicate_vertices.h"
 | 
						|
 | 
						|
 | 
						|
template <typename DerivedV,
 | 
						|
typename DerivedF,
 | 
						|
typename DerivedZ,
 | 
						|
typename DerivedIsoV,
 | 
						|
typename DerivedIsoE>
 | 
						|
IGL_INLINE void igl::isolines(
 | 
						|
                              const Eigen::MatrixBase<DerivedV>& V,
 | 
						|
                              const Eigen::MatrixBase<DerivedF>& F,
 | 
						|
                              const Eigen::MatrixBase<DerivedZ>& z,
 | 
						|
                              const int n,
 | 
						|
                              Eigen::PlainObjectBase<DerivedIsoV>& isoV,
 | 
						|
                              Eigen::PlainObjectBase<DerivedIsoE>& isoE)
 | 
						|
{
 | 
						|
    //Constants
 | 
						|
    const int dim = V.cols();
 | 
						|
    assert(dim==2 || dim==3);
 | 
						|
    const int nVerts = V.rows();
 | 
						|
    assert(z.rows() == nVerts &&
 | 
						|
           "There must be as many function entries as vertices");
 | 
						|
    const int nFaces = F.rows();
 | 
						|
    const int np1 = n+1;
 | 
						|
    const double min = z.minCoeff(), max = z.maxCoeff();
 | 
						|
    
 | 
						|
    
 | 
						|
    //Following http://www.alecjacobson.com/weblog/?p=2529
 | 
						|
    typedef typename DerivedZ::Scalar Scalar;
 | 
						|
    typedef Eigen::Matrix<Scalar, Eigen::Dynamic, 1> Vec;
 | 
						|
    Vec iso(np1);
 | 
						|
    for(int i=0; i<np1; ++i)
 | 
						|
        iso(i) = Scalar(i)/Scalar(n)*(max-min) + min;
 | 
						|
    
 | 
						|
    typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> Matrix;
 | 
						|
    std::array<Matrix,3> t{{Matrix(nFaces, np1),
 | 
						|
        Matrix(nFaces, np1), Matrix(nFaces, np1)}};
 | 
						|
    for(int i=0; i<nFaces; ++i) {
 | 
						|
        for(int k=0; k<3; ++k) {
 | 
						|
            const Scalar z1=z(F(i,k)), z2=z(F(i,(k+1)%3));
 | 
						|
            for(int j=0; j<np1; ++j) {
 | 
						|
                t[k](i,j) = (iso(j)-z1) / (z2-z1);
 | 
						|
                if(t[k](i,j)<0 || t[k](i,j)>1)
 | 
						|
                    t[k](i,j) = std::numeric_limits<Scalar>::quiet_NaN();
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    
 | 
						|
    std::array<std::vector<int>,3> Fij, Iij;
 | 
						|
    for(int i=0; i<nFaces; ++i) {
 | 
						|
        for(int j=0; j<np1; ++j) {
 | 
						|
            for(int k=0; k<3; ++k) {
 | 
						|
                const int kp1=(k+1)%3, kp2=(k+2)%3;
 | 
						|
                if(std::isfinite(t[kp1](i,j)) && std::isfinite(t[kp2](i,j))) {
 | 
						|
                    Fij[k].push_back(i);
 | 
						|
                    Iij[k].push_back(j);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    
 | 
						|
    const int K = Fij[0].size()+Fij[1].size()+Fij[2].size();
 | 
						|
    isoV.resize(2*K, dim);
 | 
						|
    int b = 0;
 | 
						|
    for(int k=0; k<3; ++k) {
 | 
						|
        const int kp1=(k+1)%3, kp2=(k+2)%3;
 | 
						|
        for(int i=0; i<Fij[k].size(); ++i) {
 | 
						|
            isoV.row(b+i) = (1.-t[kp1](Fij[k][i],Iij[k][i]))*
 | 
						|
            V.row(F(Fij[k][i],kp1)) +
 | 
						|
            t[kp1](Fij[k][i],Iij[k][i])*V.row(F(Fij[k][i],kp2));
 | 
						|
            isoV.row(K+b+i) = (1.-t[kp2](Fij[k][i],Iij[k][i]))*
 | 
						|
            V.row(F(Fij[k][i],kp2)) +
 | 
						|
            t[kp2](Fij[k][i],Iij[k][i])*V.row(F(Fij[k][i],k));
 | 
						|
        }
 | 
						|
        b += Fij[k].size();
 | 
						|
    }
 | 
						|
    
 | 
						|
    isoE.resize(K,2);
 | 
						|
    for(int i=0; i<K; ++i)
 | 
						|
        isoE.row(i) << i, K+i;
 | 
						|
    
 | 
						|
    
 | 
						|
    //Remove double entries
 | 
						|
    typedef typename DerivedIsoV::Scalar LScalar;
 | 
						|
    typedef typename DerivedIsoE::Scalar LInt;
 | 
						|
    typedef Eigen::Matrix<LInt, Eigen::Dynamic, 1> LIVec;
 | 
						|
    typedef Eigen::Matrix<LScalar, Eigen::Dynamic, Eigen::Dynamic> LMat;
 | 
						|
    typedef Eigen::Matrix<LInt, Eigen::Dynamic, Eigen::Dynamic> LIMat;
 | 
						|
    LIVec dummy1, dummy2;
 | 
						|
    igl::remove_duplicate_vertices(LMat(isoV), LIMat(isoE),
 | 
						|
                                   2.2204e-15, isoV, dummy1, dummy2, isoE);
 | 
						|
    
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
#ifdef IGL_STATIC_LIBRARY
 | 
						|
// Explicit template instantiation
 | 
						|
template void igl::isolines<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1> >(Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, int const, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > &, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > &);
 | 
						|
#endif
 | 
						|
 |