mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-10-31 04:31:15 -06:00 
			
		
		
		
	
		
			
				
	
	
		
			484 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			484 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "sla_test_utils.hpp"
 | |
| #include "libslic3r/SLA/AGGRaster.hpp"
 | |
| 
 | |
| void test_support_model_collision(const std::string          &obj_filename,
 | |
|                                   const sla::SupportTreeConfig   &input_supportcfg,
 | |
|                                   const sla::HollowingConfig &hollowingcfg,
 | |
|                                   const sla::DrainHoles      &drainholes)
 | |
| {
 | |
|     SupportByproducts byproducts;
 | |
|     
 | |
|     sla::SupportTreeConfig supportcfg = input_supportcfg;
 | |
|     
 | |
|     // Set head penetration to a small negative value which should ensure that
 | |
|     // the supports will not touch the model body.
 | |
|     supportcfg.head_penetration_mm = -0.15;
 | |
|     
 | |
|     test_supports(obj_filename, supportcfg, hollowingcfg, drainholes, byproducts);
 | |
|     
 | |
|     // Slice the support mesh given the slice grid of the model.
 | |
|     std::vector<ExPolygons> support_slices =
 | |
|             byproducts.supporttree.slice(byproducts.slicegrid, CLOSING_RADIUS);
 | |
|     
 | |
|     // The slices originate from the same slice grid so the numbers must match
 | |
|     
 | |
|     bool support_mesh_is_empty =
 | |
|             byproducts.supporttree.retrieve_mesh(sla::MeshType::Pad).empty() &&
 | |
|             byproducts.supporttree.retrieve_mesh(sla::MeshType::Support).empty();
 | |
|     
 | |
|     if (support_mesh_is_empty)
 | |
|         REQUIRE(support_slices.empty());
 | |
|     else
 | |
|         REQUIRE(support_slices.size() == byproducts.model_slices.size());
 | |
|     
 | |
|     bool notouch = true;
 | |
|     for (size_t n = 0; notouch && n < support_slices.size(); ++n) {
 | |
|         const ExPolygons &sup_slice = support_slices[n];
 | |
|         const ExPolygons &mod_slice = byproducts.model_slices[n];
 | |
|         
 | |
|         Polygons intersections = intersection(sup_slice, mod_slice);
 | |
|         
 | |
|         double pinhead_r  = scaled(input_supportcfg.head_front_radius_mm);
 | |
| 
 | |
|         // TODO:: make it strict without a threshold of PI * pihead_radius ^ 2
 | |
|         notouch = notouch && area(intersections) < PI * pinhead_r * pinhead_r;
 | |
|     }
 | |
|     
 | |
|     /*if (!notouch) */export_failed_case(support_slices, byproducts);
 | |
|     
 | |
|     REQUIRE(notouch);
 | |
| }
 | |
| 
 | |
| void export_failed_case(const std::vector<ExPolygons> &support_slices, const SupportByproducts &byproducts)
 | |
| {
 | |
|     for (size_t n = 0; n < support_slices.size(); ++n) {
 | |
|         const ExPolygons &sup_slice = support_slices[n];
 | |
|         const ExPolygons &mod_slice = byproducts.model_slices[n];
 | |
|         Polygons intersections = intersection(sup_slice, mod_slice);
 | |
|         
 | |
|         std::stringstream ss;
 | |
|         if (!intersections.empty()) {
 | |
|             ss << byproducts.obj_fname << std::setprecision(4) << n << ".svg";
 | |
|             SVG svg(ss.str());
 | |
|             svg.draw(sup_slice, "green");
 | |
|             svg.draw(mod_slice, "blue");
 | |
|             svg.draw(intersections, "red");
 | |
|             svg.Close();
 | |
|         }
 | |
|     }
 | |
|     
 | |
|     TriangleMesh m;
 | |
|     byproducts.supporttree.retrieve_full_mesh(m);
 | |
|     m.merge(byproducts.input_mesh);
 | |
|     m.repair();
 | |
|     m.require_shared_vertices();
 | |
|     m.WriteOBJFile((Catch::getResultCapture().getCurrentTestName() + "_" +
 | |
|                     byproducts.obj_fname).c_str());
 | |
| }
 | |
| 
 | |
| void test_supports(const std::string          &obj_filename,
 | |
|                    const sla::SupportTreeConfig   &supportcfg,
 | |
|                    const sla::HollowingConfig &hollowingcfg,
 | |
|                    const sla::DrainHoles      &drainholes,
 | |
|                    SupportByproducts          &out)
 | |
| {
 | |
|     using namespace Slic3r;
 | |
|     TriangleMesh mesh = load_model(obj_filename);
 | |
|     
 | |
|     REQUIRE_FALSE(mesh.empty());
 | |
|     
 | |
|     if (hollowingcfg.enabled) {
 | |
|         auto inside = sla::generate_interior(mesh, hollowingcfg);
 | |
|         REQUIRE(inside);
 | |
|         mesh.merge(*inside);
 | |
|         mesh.require_shared_vertices();
 | |
|     }
 | |
|     
 | |
|     TriangleMeshSlicer slicer{&mesh};
 | |
|     
 | |
|     auto   bb      = mesh.bounding_box();
 | |
|     double zmin    = bb.min.z();
 | |
|     double zmax    = bb.max.z();
 | |
|     double gnd     = zmin - supportcfg.object_elevation_mm;
 | |
|     auto   layer_h = 0.05f;
 | |
|     
 | |
|     out.slicegrid = grid(float(gnd), float(zmax), layer_h);
 | |
|     slicer.slice(out.slicegrid, SlicingMode::Regular, CLOSING_RADIUS, &out.model_slices, []{});
 | |
|     sla::cut_drainholes(out.model_slices, out.slicegrid, CLOSING_RADIUS, drainholes, []{});
 | |
|     
 | |
|     // Create the special index-triangle mesh with spatial indexing which
 | |
|     // is the input of the support point and support mesh generators
 | |
|     sla::IndexedMesh emesh{mesh};
 | |
| 
 | |
| #ifdef SLIC3R_HOLE_RAYCASTER
 | |
|     if (hollowingcfg.enabled) 
 | |
|         emesh.load_holes(drainholes);
 | |
| #endif
 | |
| 
 | |
|     // TODO: do the cgal hole cutting...
 | |
|     
 | |
|     // Create the support point generator
 | |
|     sla::SupportPointGenerator::Config autogencfg;
 | |
|     autogencfg.head_diameter = float(2 * supportcfg.head_front_radius_mm);
 | |
|     sla::SupportPointGenerator point_gen{emesh, autogencfg, [] {}, [](int) {}};
 | |
|     
 | |
|     point_gen.seed(0); // Make the test repeatable
 | |
|     point_gen.execute(out.model_slices, out.slicegrid);
 | |
|     
 | |
|     // Get the calculated support points.
 | |
|     std::vector<sla::SupportPoint> support_points = point_gen.output();
 | |
|     
 | |
|     int validityflags = ASSUME_NO_REPAIR;
 | |
|     
 | |
|     // If there is no elevation, support points shall be removed from the
 | |
|     // bottom of the object.
 | |
|     if (std::abs(supportcfg.object_elevation_mm) < EPSILON) {
 | |
|         sla::remove_bottom_points(support_points, zmin + supportcfg.base_height_mm);
 | |
|     } else {
 | |
|         // Should be support points at least on the bottom of the model
 | |
|         REQUIRE_FALSE(support_points.empty());
 | |
|         
 | |
|         // Also the support mesh should not be empty.
 | |
|         validityflags |= ASSUME_NO_EMPTY;
 | |
|     }
 | |
|     
 | |
|     // Generate the actual support tree
 | |
|     sla::SupportTreeBuilder treebuilder;
 | |
|     sla::SupportableMesh    sm{emesh, support_points, supportcfg};
 | |
|     sla::SupportTreeBuildsteps::execute(treebuilder, sm);
 | |
|     
 | |
|     check_support_tree_integrity(treebuilder, supportcfg);
 | |
|     
 | |
|     const TriangleMesh &output_mesh = treebuilder.retrieve_mesh();
 | |
|     
 | |
|     check_validity(output_mesh, validityflags);
 | |
|     
 | |
|     // Quick check if the dimensions and placement of supports are correct
 | |
|     auto obb = output_mesh.bounding_box();
 | |
|     
 | |
|     double allowed_zmin = zmin - supportcfg.object_elevation_mm;
 | |
|     
 | |
|     if (std::abs(supportcfg.object_elevation_mm) < EPSILON)
 | |
|         allowed_zmin = zmin - 2 * supportcfg.head_back_radius_mm;
 | |
|     
 | |
|     REQUIRE(obb.min.z() >= Approx(allowed_zmin));
 | |
|     REQUIRE(obb.max.z() <= Approx(zmax));
 | |
|     
 | |
|     // Move out the support tree into the byproducts, we can examine it further
 | |
|     // in various tests.
 | |
|     out.obj_fname   = std::move(obj_filename);
 | |
|     out.supporttree = std::move(treebuilder);
 | |
|     out.input_mesh  = std::move(mesh);
 | |
| }
 | |
| 
 | |
| void check_support_tree_integrity(const sla::SupportTreeBuilder &stree, 
 | |
|                                   const sla::SupportTreeConfig &cfg)
 | |
| {
 | |
|     double gnd  = stree.ground_level;
 | |
|     double H1   = cfg.max_solo_pillar_height_mm;
 | |
|     double H2   = cfg.max_dual_pillar_height_mm;
 | |
|     
 | |
|     for (const sla::Head &head : stree.heads()) {
 | |
|         REQUIRE((!head.is_valid() || head.pillar_id != sla::SupportTreeNode::ID_UNSET ||
 | |
|                 head.bridge_id != sla::SupportTreeNode::ID_UNSET));
 | |
|     }
 | |
|     
 | |
|     for (const sla::Pillar &pillar : stree.pillars()) {
 | |
|         if (std::abs(pillar.endpoint().z() - gnd) < EPSILON) {
 | |
|             double h = pillar.height;
 | |
|             
 | |
|             if (h > H1) REQUIRE(pillar.links >= 1);
 | |
|             else if(h > H2) { REQUIRE(pillar.links >= 2); }
 | |
|         }
 | |
|         
 | |
|         REQUIRE(pillar.links <= cfg.pillar_cascade_neighbors);
 | |
|         REQUIRE(pillar.bridges <= cfg.max_bridges_on_pillar);
 | |
|     }
 | |
|     
 | |
|     double max_bridgelen = 0.;
 | |
|     auto chck_bridge = [&cfg](const sla::Bridge &bridge, double &max_brlen) {
 | |
|         Vec3d n = bridge.endp - bridge.startp;
 | |
|         double d = sla::distance(n);
 | |
|         max_brlen = std::max(d, max_brlen);
 | |
|         
 | |
|         double z     = n.z();
 | |
|         double polar = std::acos(z / d);
 | |
|         double slope = -polar + PI / 2.;
 | |
|         REQUIRE(std::abs(slope) >= cfg.bridge_slope - EPSILON);
 | |
|     };
 | |
|     
 | |
|     for (auto &bridge : stree.bridges()) chck_bridge(bridge, max_bridgelen);
 | |
|     REQUIRE(max_bridgelen <= Approx(cfg.max_bridge_length_mm));
 | |
|     
 | |
|     max_bridgelen = 0;
 | |
|     for (auto &bridge : stree.crossbridges()) chck_bridge(bridge, max_bridgelen);
 | |
|     
 | |
|     double md = cfg.max_pillar_link_distance_mm / std::cos(-cfg.bridge_slope);
 | |
|     REQUIRE(max_bridgelen <= md);
 | |
| }
 | |
| 
 | |
| void test_pad(const std::string &obj_filename, const sla::PadConfig &padcfg, PadByproducts &out)
 | |
| {
 | |
|     REQUIRE(padcfg.validate().empty());
 | |
|     
 | |
|     TriangleMesh mesh = load_model(obj_filename);
 | |
|     
 | |
|     REQUIRE_FALSE(mesh.empty());
 | |
|     
 | |
|     // Create pad skeleton only from the model
 | |
|     Slic3r::sla::pad_blueprint(mesh, out.model_contours);
 | |
|     
 | |
|     test_concave_hull(out.model_contours);
 | |
|     
 | |
|     REQUIRE_FALSE(out.model_contours.empty());
 | |
|     
 | |
|     // Create the pad geometry for the model contours only
 | |
|     Slic3r::sla::create_pad({}, out.model_contours, out.mesh, padcfg);
 | |
|     
 | |
|     check_validity(out.mesh);
 | |
|     
 | |
|     auto bb = out.mesh.bounding_box();
 | |
|     REQUIRE(bb.max.z() - bb.min.z() == Approx(padcfg.full_height()));
 | |
| }
 | |
| 
 | |
| static void _test_concave_hull(const Polygons &hull, const ExPolygons &polys)
 | |
| {
 | |
|     REQUIRE(polys.size() >=hull.size());
 | |
|     
 | |
|     double polys_area = 0;
 | |
|     for (const ExPolygon &p : polys) polys_area += p.area();
 | |
|     
 | |
|     double cchull_area = 0;
 | |
|     for (const Slic3r::Polygon &p : hull) cchull_area += p.area();
 | |
|     
 | |
|     REQUIRE(cchull_area >= Approx(polys_area));
 | |
|     
 | |
|     size_t cchull_holes = 0;
 | |
|     for (const Slic3r::Polygon &p : hull)
 | |
|         cchull_holes += p.is_clockwise() ? 1 : 0;
 | |
|     
 | |
|     REQUIRE(cchull_holes == 0);
 | |
|     
 | |
|     Polygons intr = diff(to_polygons(polys), hull);
 | |
|     REQUIRE(intr.empty());
 | |
| }
 | |
| 
 | |
| void test_concave_hull(const ExPolygons &polys) {
 | |
|     sla::PadConfig pcfg;
 | |
|     
 | |
|     Slic3r::sla::ConcaveHull cchull{polys, pcfg.max_merge_dist_mm, []{}};
 | |
|     
 | |
|     _test_concave_hull(cchull.polygons(), polys);
 | |
|     
 | |
|     coord_t delta = scaled(pcfg.brim_size_mm + pcfg.wing_distance());
 | |
|     ExPolygons wafflex = sla::offset_waffle_style_ex(cchull, delta);
 | |
|     Polygons waffl = sla::offset_waffle_style(cchull, delta);
 | |
|     
 | |
|     _test_concave_hull(to_polygons(wafflex), polys);
 | |
|     _test_concave_hull(waffl, polys);
 | |
| }
 | |
| 
 | |
| void check_validity(const TriangleMesh &input_mesh, int flags)
 | |
| {
 | |
|     TriangleMesh mesh{input_mesh};
 | |
|     
 | |
|     if (flags & ASSUME_NO_EMPTY) {
 | |
|         REQUIRE_FALSE(mesh.empty());
 | |
|     } else if (mesh.empty())
 | |
|         return; // If it can be empty and it is, there is nothing left to do.
 | |
|     
 | |
|     REQUIRE(stl_validate(&mesh.stl));
 | |
|     
 | |
|     bool do_update_shared_vertices = false;
 | |
|     mesh.repair(do_update_shared_vertices);
 | |
|     
 | |
|     if (flags & ASSUME_NO_REPAIR) {
 | |
|         REQUIRE_FALSE(mesh.needed_repair());
 | |
|     }
 | |
|     
 | |
|     if (flags & ASSUME_MANIFOLD) {
 | |
|         mesh.require_shared_vertices();
 | |
|         if (!mesh.is_manifold()) mesh.WriteOBJFile("non_manifold.obj");
 | |
|         REQUIRE(mesh.is_manifold());
 | |
|     }
 | |
| }
 | |
| 
 | |
| void check_raster_transformations(sla::RasterBase::Orientation o, sla::RasterBase::TMirroring mirroring)
 | |
| {
 | |
|     double disp_w = 120., disp_h = 68.;
 | |
|     sla::RasterBase::Resolution res{2560, 1440};
 | |
|     sla::RasterBase::PixelDim pixdim{disp_w / res.width_px, disp_h / res.height_px};
 | |
|     
 | |
|     auto bb = BoundingBox({0, 0}, {scaled(disp_w), scaled(disp_h)});
 | |
|     sla::RasterBase::Trafo trafo{o, mirroring};
 | |
|     trafo.center_x = bb.center().x();
 | |
|     trafo.center_y = bb.center().y();
 | |
|     double gamma = 1.;
 | |
|     
 | |
|     sla::RasterGrayscaleAAGammaPower raster{res, pixdim, trafo, gamma};
 | |
|     
 | |
|     // create box of size 32x32 pixels (not 1x1 to avoid antialiasing errors)
 | |
|     coord_t pw = 32 * coord_t(std::ceil(scaled<double>(pixdim.w_mm)));
 | |
|     coord_t ph = 32 * coord_t(std::ceil(scaled<double>(pixdim.h_mm)));
 | |
|     ExPolygon box;
 | |
|     box.contour.points = {{-pw, -ph}, {pw, -ph}, {pw, ph}, {-pw, ph}};
 | |
|     
 | |
|     double tr_x = scaled<double>(20.), tr_y = tr_x;
 | |
|     
 | |
|     box.translate(tr_x, tr_y);
 | |
|     ExPolygon expected_box = box;
 | |
|     
 | |
|     // Now calculate the position of the translated box according to output
 | |
|     // trafo.
 | |
|     if (o == sla::RasterBase::Orientation::roPortrait) expected_box.rotate(PI / 2.);
 | |
|     
 | |
|     if (mirroring[X])
 | |
|         for (auto &p : expected_box.contour.points) p.x() = -p.x();
 | |
|     
 | |
|     if (mirroring[Y])
 | |
|         for (auto &p : expected_box.contour.points) p.y() = -p.y();
 | |
|     
 | |
|     raster.draw(box);
 | |
|     
 | |
|     Point expected_coords = expected_box.contour.bounding_box().center();
 | |
|     double rx = unscaled(expected_coords.x() + bb.center().x()) / pixdim.w_mm;
 | |
|     double ry = unscaled(expected_coords.y() + bb.center().y()) / pixdim.h_mm;
 | |
|     auto w = size_t(std::floor(rx));
 | |
|     auto h = res.height_px - size_t(std::floor(ry));
 | |
|     
 | |
|     REQUIRE((w < res.width_px && h < res.height_px));
 | |
|     
 | |
|     auto px = raster.read_pixel(w, h);
 | |
|     
 | |
|     if (px != FullWhite) {
 | |
|         std::fstream outf("out.png", std::ios::out);
 | |
|         
 | |
|         outf << raster.encode(sla::PNGRasterEncoder());
 | |
|     }
 | |
|     
 | |
|     REQUIRE(px == FullWhite);
 | |
| }
 | |
| 
 | |
| ExPolygon square_with_hole(double v)
 | |
| {
 | |
|     ExPolygon poly;
 | |
|     coord_t V = scaled(v / 2.);
 | |
|     
 | |
|     poly.contour.points = {{-V, -V}, {V, -V}, {V, V}, {-V, V}};
 | |
|     poly.holes.emplace_back();
 | |
|     V = V / 2;
 | |
|     poly.holes.front().points = {{-V, V}, {V, V}, {V, -V}, {-V, -V}};
 | |
|     return poly;
 | |
| }
 | |
| 
 | |
| long raster_pxsum(const sla::RasterGrayscaleAA &raster)
 | |
| {
 | |
|     auto res = raster.resolution();
 | |
|     long a = 0;
 | |
|     
 | |
|     for (size_t x = 0; x < res.width_px; ++x)
 | |
|         for (size_t y = 0; y < res.height_px; ++y)
 | |
|             a += raster.read_pixel(x, y);
 | |
|         
 | |
|     return a;
 | |
| }
 | |
| 
 | |
| double raster_white_area(const sla::RasterGrayscaleAA &raster)
 | |
| {
 | |
|     if (raster.resolution().pixels() == 0) return std::nan("");
 | |
|     
 | |
|     auto res = raster.resolution();
 | |
|     double a = 0;
 | |
|     
 | |
|     for (size_t x = 0; x < res.width_px; ++x)
 | |
|         for (size_t y = 0; y < res.height_px; ++y) {
 | |
|             auto px = raster.read_pixel(x, y);
 | |
|             a += pixel_area(px, raster.pixel_dimensions());
 | |
|         }
 | |
|     
 | |
|     return a;
 | |
| }
 | |
| 
 | |
| double predict_error(const ExPolygon &p, const sla::RasterBase::PixelDim &pd)
 | |
| {
 | |
|     auto lines = p.lines();
 | |
|     double pix_err = pixel_area(FullWhite, pd)  / 2.;
 | |
|     
 | |
|     // Worst case is when a line is parallel to the shorter axis of one pixel,
 | |
|     // when the line will be composed of the max number of pixels
 | |
|     double pix_l = std::min(pd.h_mm, pd.w_mm);
 | |
|     
 | |
|     double error = 0.;
 | |
|     for (auto &l : lines)
 | |
|         error += (unscaled(l.length()) / pix_l) * pix_err;
 | |
|     
 | |
|     return error;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Make a 3D pyramid
 | |
| TriangleMesh make_pyramid(float base, float height)
 | |
| {
 | |
|     float a = base / 2.f;
 | |
| 
 | |
|     TriangleMesh mesh(
 | |
|         {
 | |
|             {-a, -a, 0}, {a, -a, 0}, {a, a, 0},
 | |
|             {-a, a, 0}, {0.f, 0.f, height}
 | |
|         },
 | |
|         {
 | |
|             {0, 1, 2},
 | |
|             {0, 2, 3},
 | |
|             {0, 1, 4},
 | |
|             {1, 2, 4},
 | |
|             {2, 3, 4},
 | |
|             {3, 0, 4}
 | |
|         });
 | |
| 
 | |
|     mesh.repair();
 | |
| 
 | |
|     return mesh;
 | |
| }
 | |
| 
 | |
|     TriangleMesh make_prism(double width, double length, double height)
 | |
| {
 | |
|     // We need two upward facing triangles
 | |
| 
 | |
|         double x = width / 2., y = length / 2.;
 | |
| 
 | |
|         TriangleMesh mesh(
 | |
|             {
 | |
|                 {-x, -y, 0.}, {x, -y, 0.}, {0., -y, height},
 | |
|                 {-x, y, 0.}, {x, y, 0.}, {0., y, height},
 | |
|                 },
 | |
|             {
 | |
|                 {0, 1, 2}, // side 1
 | |
|                 {4, 3, 5}, // side 2
 | |
|                 {1, 4, 2}, {2, 4, 5}, // roof 1
 | |
|                 {0, 2, 5}, {0, 5, 3}, // roof 2
 | |
|                 {3, 4, 1}, {3, 1, 0} // bottom
 | |
|             });
 | |
| 
 | |
|     return mesh;
 | |
| }
 | |
| 
 | |
| sla::SupportPoints calc_support_pts(
 | |
|     const TriangleMesh &                      mesh,
 | |
|     const sla::SupportPointGenerator::Config &cfg)
 | |
| {
 | |
|     // Prepare the slice grid and the slices
 | |
|     std::vector<ExPolygons> slices;
 | |
|     auto                    bb      = cast<float>(mesh.bounding_box());
 | |
|     std::vector<float>      heights = grid(bb.min.z(), bb.max.z(), 0.1f);
 | |
|     slice_mesh(mesh, heights, slices, CLOSING_RADIUS, [] {});
 | |
| 
 | |
|     // Prepare the support point calculator
 | |
|     sla::IndexedMesh emesh{mesh};
 | |
|     sla::SupportPointGenerator spgen{emesh, cfg, []{}, [](int){}};
 | |
| 
 | |
|     // Calculate the support points
 | |
|     spgen.seed(0);
 | |
|     spgen.execute(slices, heights);
 | |
| 
 | |
|     return spgen.output();
 | |
| }
 | 
