mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-10-30 20:21:12 -06:00 
			
		
		
		
	
		
			
				
	
	
		
			438 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			438 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "BoundingBox.hpp"
 | |
| #include "ClipperUtils.hpp"
 | |
| #include "Polygon.hpp"
 | |
| #include "Polyline.hpp"
 | |
| 
 | |
| namespace Slic3r {
 | |
| 
 | |
| Lines Polygon::lines() const
 | |
| {
 | |
|     return to_lines(*this);
 | |
| }
 | |
| 
 | |
| Polyline Polygon::split_at_vertex(const Point &point) const
 | |
| {
 | |
|     // find index of point
 | |
|     for (const Point &pt : this->points)
 | |
|         if (pt == point)
 | |
|             return this->split_at_index(int(&pt - &this->points.front()));
 | |
|     throw std::invalid_argument("Point not found");
 | |
|     return Polyline();
 | |
| }
 | |
| 
 | |
| // Split a closed polygon into an open polyline, with the split point duplicated at both ends.
 | |
| Polyline Polygon::split_at_index(int index) const
 | |
| {
 | |
|     Polyline polyline;
 | |
|     polyline.points.reserve(this->points.size() + 1);
 | |
|     for (Points::const_iterator it = this->points.begin() + index; it != this->points.end(); ++it)
 | |
|         polyline.points.push_back(*it);
 | |
|     for (Points::const_iterator it = this->points.begin(); it != this->points.begin() + index + 1; ++it)
 | |
|         polyline.points.push_back(*it);
 | |
|     return polyline;
 | |
| }
 | |
| 
 | |
| /*
 | |
| int64_t Polygon::area2x() const
 | |
| {
 | |
|     size_t n = poly.size();
 | |
|     if (n < 3) 
 | |
|         return 0;
 | |
| 
 | |
|     int64_t a = 0;
 | |
|     for (size_t i = 0, j = n - 1; i < n; ++i)
 | |
|         a += int64_t(poly[j](0) + poly[i](0)) * int64_t(poly[j](1) - poly[i](1));
 | |
|         j = i;
 | |
|     }
 | |
|     return -a * 0.5;
 | |
| }
 | |
| */
 | |
| 
 | |
| double Polygon::area() const
 | |
| {
 | |
|     size_t n = points.size();
 | |
|     if (n < 3) 
 | |
|         return 0.;
 | |
| 
 | |
|     double a = 0.;
 | |
|     for (size_t i = 0, j = n - 1; i < n; ++i) {
 | |
|         a += ((double)points[j](0) + (double)points[i](0)) * ((double)points[i](1) - (double)points[j](1));
 | |
|         j = i;
 | |
|     }
 | |
|     return 0.5 * a;
 | |
| }
 | |
| 
 | |
| bool Polygon::is_counter_clockwise() const
 | |
| {
 | |
|     return ClipperLib::Orientation(Slic3rMultiPoint_to_ClipperPath(*this));
 | |
| }
 | |
| 
 | |
| bool Polygon::is_clockwise() const
 | |
| {
 | |
|     return !this->is_counter_clockwise();
 | |
| }
 | |
| 
 | |
| bool Polygon::make_counter_clockwise()
 | |
| {
 | |
|     if (!this->is_counter_clockwise()) {
 | |
|         this->reverse();
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| bool Polygon::make_clockwise()
 | |
| {
 | |
|     if (this->is_counter_clockwise()) {
 | |
|         this->reverse();
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| // Does an unoriented polygon contain a point?
 | |
| // Tested by counting intersections along a horizontal line.
 | |
| bool Polygon::contains(const Point &point) const
 | |
| {
 | |
|     // http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html
 | |
|     bool result = false;
 | |
|     Points::const_iterator i = this->points.begin();
 | |
|     Points::const_iterator j = this->points.end() - 1;
 | |
|     for (; i != this->points.end(); j = i++) {
 | |
|         //FIXME this test is not numerically robust. Particularly, it does not handle horizontal segments at y == point(1) well.
 | |
|         // Does the ray with y == point(1) intersect this line segment?
 | |
| #if 1
 | |
|         if ( (((*i)(1) > point(1)) != ((*j)(1) > point(1)))
 | |
|             && ((double)point(0) < (double)((*j)(0) - (*i)(0)) * (double)(point(1) - (*i)(1)) / (double)((*j)(1) - (*i)(1)) + (double)(*i)(0)) )
 | |
|             result = !result;
 | |
| #else
 | |
|         if (((*i)(1) > point(1)) != ((*j)(1) > point(1))) {
 | |
|             // Orientation predicated relative to i-th point.
 | |
|             double orient = (double)(point(0) - (*i)(0)) * (double)((*j)(1) - (*i)(1)) - (double)(point(1) - (*i)(1)) * (double)((*j)(0) - (*i)(0));
 | |
|             if (((*i)(1) > (*j)(1)) ? (orient > 0.) : (orient < 0.))
 | |
|                 result = !result;
 | |
|         }
 | |
| #endif
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // this only works on CCW polygons as CW will be ripped out by Clipper's simplify_polygons()
 | |
| Polygons Polygon::simplify(double tolerance) const
 | |
| {
 | |
|     // repeat first point at the end in order to apply Douglas-Peucker
 | |
|     // on the whole polygon
 | |
|     Points points = this->points;
 | |
|     points.push_back(points.front());
 | |
|     Polygon p(MultiPoint::_douglas_peucker(points, tolerance));
 | |
|     p.points.pop_back();
 | |
|     
 | |
|     Polygons pp;
 | |
|     pp.push_back(p);
 | |
|     return simplify_polygons(pp);
 | |
| }
 | |
| 
 | |
| void Polygon::simplify(double tolerance, Polygons &polygons) const
 | |
| {
 | |
|     Polygons pp = this->simplify(tolerance);
 | |
|     polygons.reserve(polygons.size() + pp.size());
 | |
|     polygons.insert(polygons.end(), pp.begin(), pp.end());
 | |
| }
 | |
| 
 | |
| // Only call this on convex polygons or it will return invalid results
 | |
| void Polygon::triangulate_convex(Polygons* polygons) const
 | |
| {
 | |
|     for (Points::const_iterator it = this->points.begin() + 2; it != this->points.end(); ++it) {
 | |
|         Polygon p;
 | |
|         p.points.reserve(3);
 | |
|         p.points.push_back(this->points.front());
 | |
|         p.points.push_back(*(it-1));
 | |
|         p.points.push_back(*it);
 | |
|         
 | |
|         // this should be replaced with a more efficient call to a merge_collinear_segments() method
 | |
|         if (p.area() > 0) polygons->push_back(p);
 | |
|     }
 | |
| }
 | |
| 
 | |
| // center of mass
 | |
| Point Polygon::centroid() const
 | |
| {
 | |
|     double area_temp = this->area();
 | |
|     double x_temp = 0;
 | |
|     double y_temp = 0;
 | |
|     
 | |
|     Polyline polyline = this->split_at_first_point();
 | |
|     for (Points::const_iterator point = polyline.points.begin(); point != polyline.points.end() - 1; ++point) {
 | |
|         x_temp += (double)( point->x() + (point+1)->x() ) * ( (double)point->x()*(point+1)->y() - (double)(point+1)->x()*point->y() );
 | |
|         y_temp += (double)( point->y() + (point+1)->y() ) * ( (double)point->x()*(point+1)->y() - (double)(point+1)->x()*point->y() );
 | |
|     }
 | |
|     
 | |
|     return Point(x_temp/(6*area_temp), y_temp/(6*area_temp));
 | |
| }
 | |
| 
 | |
| // find all concave vertices (i.e. having an internal angle greater than the supplied angle)
 | |
| // (external = right side, thus we consider ccw orientation)
 | |
| Points Polygon::concave_points(double angle) const
 | |
| {
 | |
|     Points points;
 | |
|     angle = 2. * PI - angle + EPSILON;
 | |
|     
 | |
|     // check whether first point forms a concave angle
 | |
|     if (this->points.front().ccw_angle(this->points.back(), *(this->points.begin()+1)) <= angle)
 | |
|         points.push_back(this->points.front());
 | |
|     
 | |
|     // check whether points 1..(n-1) form concave angles
 | |
|     for (Points::const_iterator p = this->points.begin()+1; p != this->points.end()-1; ++ p)
 | |
|         if (p->ccw_angle(*(p-1), *(p+1)) <= angle)
 | |
|         	points.push_back(*p);
 | |
|     
 | |
|     // check whether last point forms a concave angle
 | |
|     if (this->points.back().ccw_angle(*(this->points.end()-2), this->points.front()) <= angle)
 | |
|         points.push_back(this->points.back());
 | |
|     
 | |
|     return points;
 | |
| }
 | |
| 
 | |
| // find all convex vertices (i.e. having an internal angle smaller than the supplied angle)
 | |
| // (external = right side, thus we consider ccw orientation)
 | |
| Points Polygon::convex_points(double angle) const
 | |
| {
 | |
|     Points points;
 | |
|     angle = 2*PI - angle - EPSILON;
 | |
|     
 | |
|     // check whether first point forms a convex angle
 | |
|     if (this->points.front().ccw_angle(this->points.back(), *(this->points.begin()+1)) >= angle)
 | |
|         points.push_back(this->points.front());
 | |
|     
 | |
|     // check whether points 1..(n-1) form convex angles
 | |
|     for (Points::const_iterator p = this->points.begin()+1; p != this->points.end()-1; ++p) {
 | |
|         if (p->ccw_angle(*(p-1), *(p+1)) >= angle) points.push_back(*p);
 | |
|     }
 | |
|     
 | |
|     // check whether last point forms a convex angle
 | |
|     if (this->points.back().ccw_angle(*(this->points.end()-2), this->points.front()) >= angle)
 | |
|         points.push_back(this->points.back());
 | |
|     
 | |
|     return points;
 | |
| }
 | |
| 
 | |
| // Projection of a point onto the polygon.
 | |
| Point Polygon::point_projection(const Point &point) const
 | |
| {
 | |
|     Point proj = point;
 | |
|     double dmin = std::numeric_limits<double>::max();
 | |
|     if (! this->points.empty()) {
 | |
|         for (size_t i = 0; i < this->points.size(); ++ i) {
 | |
|             const Point &pt0 = this->points[i];
 | |
|             const Point &pt1 = this->points[(i + 1 == this->points.size()) ? 0 : i + 1];
 | |
|             double d = (point - pt0).cast<double>().norm();
 | |
|             if (d < dmin) {
 | |
|                 dmin = d;
 | |
|                 proj = pt0;
 | |
|             }
 | |
|             d = (point - pt1).cast<double>().norm();
 | |
|             if (d < dmin) {
 | |
|                 dmin = d;
 | |
|                 proj = pt1;
 | |
|             }
 | |
|             Vec2d v1(coordf_t(pt1(0) - pt0(0)), coordf_t(pt1(1) - pt0(1)));
 | |
|             coordf_t div = v1.squaredNorm();
 | |
|             if (div > 0.) {
 | |
|                 Vec2d v2(coordf_t(point(0) - pt0(0)), coordf_t(point(1) - pt0(1)));
 | |
|                 coordf_t t = v1.dot(v2) / div;
 | |
|                 if (t > 0. && t < 1.) {
 | |
|                     Point foot(coord_t(floor(coordf_t(pt0(0)) + t * v1(0) + 0.5)), coord_t(floor(coordf_t(pt0(1)) + t * v1(1) + 0.5)));
 | |
|                     d = (point - foot).cast<double>().norm();
 | |
|                     if (d < dmin) {
 | |
|                         dmin = d;
 | |
|                         proj = foot;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return proj;
 | |
| }
 | |
| 
 | |
| BoundingBox get_extents(const Polygon &poly) 
 | |
| { 
 | |
|     return poly.bounding_box();
 | |
| }
 | |
| 
 | |
| BoundingBox get_extents(const Polygons &polygons)
 | |
| {
 | |
|     BoundingBox bb;
 | |
|     if (! polygons.empty()) {
 | |
|         bb = get_extents(polygons.front());
 | |
|         for (size_t i = 1; i < polygons.size(); ++ i)
 | |
|             bb.merge(get_extents(polygons[i]));
 | |
|     }
 | |
|     return bb;
 | |
| }
 | |
| 
 | |
| BoundingBox get_extents_rotated(const Polygon &poly, double angle) 
 | |
| { 
 | |
|     return get_extents_rotated(poly.points, angle);
 | |
| }
 | |
| 
 | |
| BoundingBox get_extents_rotated(const Polygons &polygons, double angle)
 | |
| {
 | |
|     BoundingBox bb;
 | |
|     if (! polygons.empty()) {
 | |
|         bb = get_extents_rotated(polygons.front().points, angle);
 | |
|         for (size_t i = 1; i < polygons.size(); ++ i)
 | |
|             bb.merge(get_extents_rotated(polygons[i].points, angle));
 | |
|     }
 | |
|     return bb;
 | |
| }
 | |
| 
 | |
| extern std::vector<BoundingBox> get_extents_vector(const Polygons &polygons)
 | |
| {
 | |
|     std::vector<BoundingBox> out;
 | |
|     out.reserve(polygons.size());
 | |
|     for (Polygons::const_iterator it = polygons.begin(); it != polygons.end(); ++ it)
 | |
|         out.push_back(get_extents(*it));
 | |
|     return out;
 | |
| }
 | |
| 
 | |
| static inline bool is_stick(const Point &p1, const Point &p2, const Point &p3)
 | |
| {
 | |
|     Point v1 = p2 - p1;
 | |
|     Point v2 = p3 - p2;
 | |
|     int64_t dir = int64_t(v1(0)) * int64_t(v2(0)) + int64_t(v1(1)) * int64_t(v2(1));
 | |
|     if (dir > 0)
 | |
|         // p3 does not turn back to p1. Do not remove p2.
 | |
|         return false;
 | |
|     double l2_1 = double(v1(0)) * double(v1(0)) + double(v1(1)) * double(v1(1));
 | |
|     double l2_2 = double(v2(0)) * double(v2(0)) + double(v2(1)) * double(v2(1));
 | |
|     if (dir == 0)
 | |
|         // p1, p2, p3 may make a perpendicular corner, or there is a zero edge length.
 | |
|         // Remove p2 if it is coincident with p1 or p2.
 | |
|         return l2_1 == 0 || l2_2 == 0;
 | |
|     // p3 turns back to p1 after p2. Are p1, p2, p3 collinear?
 | |
|     // Calculate distance from p3 to a segment (p1, p2) or from p1 to a segment(p2, p3),
 | |
|     // whichever segment is longer
 | |
|     double cross = double(v1(0)) * double(v2(1)) - double(v2(0)) * double(v1(1));
 | |
|     double dist2 = cross * cross / std::max(l2_1, l2_2);
 | |
|     return dist2 < EPSILON * EPSILON;
 | |
| }
 | |
| 
 | |
| bool remove_sticks(Polygon &poly)
 | |
| {
 | |
|     bool modified = false;
 | |
|     size_t j = 1;
 | |
|     for (size_t i = 1; i + 1 < poly.points.size(); ++ i) {
 | |
|         if (! is_stick(poly[j-1], poly[i], poly[i+1])) {
 | |
|             // Keep the point.
 | |
|             if (j < i)
 | |
|                 poly.points[j] = poly.points[i];
 | |
|             ++ j;
 | |
|         }
 | |
|     }
 | |
|     if (++ j < poly.points.size()) {
 | |
|         poly.points[j-1] = poly.points.back();
 | |
|         poly.points.erase(poly.points.begin() + j, poly.points.end());
 | |
|         modified = true;
 | |
|     }
 | |
|     while (poly.points.size() >= 3 && is_stick(poly.points[poly.points.size()-2], poly.points.back(), poly.points.front())) {
 | |
|         poly.points.pop_back();
 | |
|         modified = true;
 | |
|     }
 | |
|     while (poly.points.size() >= 3 && is_stick(poly.points.back(), poly.points.front(), poly.points[1]))
 | |
|         poly.points.erase(poly.points.begin());
 | |
|     return modified;
 | |
| }
 | |
| 
 | |
| bool remove_sticks(Polygons &polys)
 | |
| {
 | |
|     bool modified = false;
 | |
|     size_t j = 0;
 | |
|     for (size_t i = 0; i < polys.size(); ++ i) {
 | |
|         modified |= remove_sticks(polys[i]);
 | |
|         if (polys[i].points.size() >= 3) {
 | |
|             if (j < i) 
 | |
|                 std::swap(polys[i].points, polys[j].points);
 | |
|             ++ j;
 | |
|         }
 | |
|     }
 | |
|     if (j < polys.size())
 | |
|         polys.erase(polys.begin() + j, polys.end());
 | |
|     return modified;
 | |
| }
 | |
| 
 | |
| bool remove_degenerate(Polygons &polys)
 | |
| {
 | |
|     bool modified = false;
 | |
|     size_t j = 0;
 | |
|     for (size_t i = 0; i < polys.size(); ++ i) {
 | |
|         if (polys[i].points.size() >= 3) {
 | |
|             if (j < i) 
 | |
|                 std::swap(polys[i].points, polys[j].points);
 | |
|             ++ j;
 | |
|         } else
 | |
|             modified = true;
 | |
|     }
 | |
|     if (j < polys.size())
 | |
|         polys.erase(polys.begin() + j, polys.end());
 | |
|     return modified;
 | |
| }
 | |
| 
 | |
| bool remove_small(Polygons &polys, double min_area)
 | |
| {
 | |
|     bool modified = false;
 | |
|     size_t j = 0;
 | |
|     for (size_t i = 0; i < polys.size(); ++ i) {
 | |
|         if (std::abs(polys[i].area()) >= min_area) {
 | |
|             if (j < i) 
 | |
|                 std::swap(polys[i].points, polys[j].points);
 | |
|             ++ j;
 | |
|         } else
 | |
|             modified = true;
 | |
|     }
 | |
|     if (j < polys.size())
 | |
|         polys.erase(polys.begin() + j, polys.end());
 | |
|     return modified;
 | |
| }
 | |
| 
 | |
| void remove_collinear(Polygon &poly)
 | |
| {
 | |
|     if (poly.points.size() > 2) {
 | |
|         // copy points and append both 1 and last point in place to cover the boundaries
 | |
|         Points pp;
 | |
|         pp.reserve(poly.points.size()+2);
 | |
|         pp.push_back(poly.points.back());
 | |
|         pp.insert(pp.begin()+1, poly.points.begin(), poly.points.end());
 | |
|         pp.push_back(poly.points.front());
 | |
|         // delete old points vector. Will be re-filled in the loop
 | |
|         poly.points.clear();
 | |
| 
 | |
|         size_t i = 0;
 | |
|         size_t k = 0;
 | |
|         while (i < pp.size()-2) {
 | |
|             k = i+1;
 | |
|             const Point &p1 = pp[i];
 | |
|             while (k < pp.size()-1) {
 | |
|                 const Point &p2 = pp[k];
 | |
|                 const Point &p3 = pp[k+1];
 | |
|                 Line l(p1, p3);
 | |
|                 if(l.distance_to(p2) < SCALED_EPSILON) {
 | |
|                     k++;
 | |
|                 } else {
 | |
|                     if(i > 0) poly.points.push_back(p1); // implicitly removes the first point we appended above
 | |
|                     i = k;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|             if(k > pp.size()-2) break; // all remaining points are collinear and can be skipped
 | |
|         }
 | |
|         poly.points.push_back(pp[i]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void remove_collinear(Polygons &polys)
 | |
| {
 | |
| 	for (Polygon &poly : polys)
 | |
| 		remove_collinear(poly);
 | |
| }
 | |
| 
 | |
| }
 | 
