mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-10-31 12:41:20 -06:00 
			
		
		
		
	 cd4cddfca4
			
		
	
	
		cd4cddfca4
		
	
	
	
	
		
			
			Change-Id: I65163314374fb74f0b16df47dacae82caa6fab0d (cherry picked from commit 7bacc2c2a89be471f6fee51dd07a42222a28b55a)
		
			
				
	
	
		
			712 lines
		
	
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			712 lines
		
	
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "libslic3r.h"
 | |
| #include "Exception.hpp"
 | |
| #include "Geometry.hpp"
 | |
| #include "ClipperUtils.hpp"
 | |
| #include "ExPolygon.hpp"
 | |
| #include "Line.hpp"
 | |
| #include "clipper.hpp"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cmath>
 | |
| #include <list>
 | |
| #include <map>
 | |
| #include <numeric>
 | |
| #include <set>
 | |
| #include <utility>
 | |
| #include <stack>
 | |
| #include <vector>
 | |
| 
 | |
| #include <boost/algorithm/string/classification.hpp>
 | |
| #include <boost/algorithm/string/split.hpp>
 | |
| #include <boost/log/trivial.hpp>
 | |
| 
 | |
| #if defined(_MSC_VER) && defined(__clang__)
 | |
| #define BOOST_NO_CXX17_HDR_STRING_VIEW
 | |
| #endif
 | |
| 
 | |
| namespace Slic3r { namespace Geometry {
 | |
| 
 | |
| bool directions_parallel(double angle1, double angle2, double max_diff)
 | |
| {
 | |
|     double diff = fabs(angle1 - angle2);
 | |
|     max_diff += EPSILON;
 | |
|     return diff < max_diff || fabs(diff - PI) < max_diff;
 | |
| }
 | |
| 
 | |
| bool directions_perpendicular(double angle1, double angle2, double max_diff)
 | |
| {
 | |
|     double diff = fabs(angle1 - angle2);
 | |
|     max_diff += EPSILON;
 | |
|     return fabs(diff - 0.5 * PI) < max_diff || fabs(diff - 1.5 * PI) < max_diff;
 | |
| }
 | |
| 
 | |
| template<class T>
 | |
| bool contains(const std::vector<T> &vector, const Point &point)
 | |
| {
 | |
|     for (typename std::vector<T>::const_iterator it = vector.begin(); it != vector.end(); ++it) {
 | |
|         if (it->contains(point)) return true;
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| template bool contains(const ExPolygons &vector, const Point &point);
 | |
| 
 | |
| double rad2deg_dir(double angle)
 | |
| {
 | |
|     angle = (angle < PI) ? (-angle + PI/2.0) : (angle + PI/2.0);
 | |
|     if (angle < 0) angle += PI;
 | |
|     return rad2deg(angle);
 | |
| }
 | |
| 
 | |
| void simplify_polygons(const Polygons &polygons, double tolerance, Polygons* retval)
 | |
| {
 | |
|     Polygons pp;
 | |
|     for (Polygons::const_iterator it = polygons.begin(); it != polygons.end(); ++it) {
 | |
|         Polygon p = *it;
 | |
|         p.points.push_back(p.points.front());
 | |
|         p.points = MultiPoint::_douglas_peucker(p.points, tolerance);
 | |
|         p.points.pop_back();
 | |
|         pp.push_back(p);
 | |
|     }
 | |
|     *retval = Slic3r::simplify_polygons(pp);
 | |
| }
 | |
| 
 | |
| double linint(double value, double oldmin, double oldmax, double newmin, double newmax)
 | |
| {
 | |
|     return (value - oldmin) * (newmax - newmin) / (oldmax - oldmin) + newmin;
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| // Point with a weight, by which the points are sorted.
 | |
| // If the points have the same weight, sort them lexicographically by their positions.
 | |
| struct ArrangeItem {
 | |
|     ArrangeItem() {}
 | |
|     Vec2d    pos;
 | |
|     coordf_t  weight;
 | |
|     bool operator<(const ArrangeItem &other) const {
 | |
|         return weight < other.weight ||
 | |
|             ((weight == other.weight) && (pos(1) < other.pos(1) || (pos(1) == other.pos(1) && pos(0) < other.pos(0))));
 | |
|     }
 | |
| };
 | |
| 
 | |
| Pointfs arrange(size_t num_parts, const Vec2d &part_size, coordf_t gap, const BoundingBoxf* bed_bounding_box)
 | |
| {
 | |
|     // Use actual part size (the largest) plus separation distance (half on each side) in spacing algorithm.
 | |
|     const Vec2d       cell_size(part_size(0) + gap, part_size(1) + gap);
 | |
| 
 | |
|     const BoundingBoxf bed_bbox = (bed_bounding_box != NULL && bed_bounding_box->defined) ? 
 | |
|         *bed_bounding_box :
 | |
|         // Bogus bed size, large enough not to trigger the unsufficient bed size error.
 | |
|         BoundingBoxf(
 | |
|             Vec2d(0, 0),
 | |
|             Vec2d(cell_size(0) * num_parts, cell_size(1) * num_parts));
 | |
| 
 | |
|     // This is how many cells we have available into which to put parts.
 | |
|     size_t cellw = size_t(floor((bed_bbox.size()(0) + gap) / cell_size(0)));
 | |
|     size_t cellh = size_t(floor((bed_bbox.size()(1) + gap) / cell_size(1)));
 | |
|     if (num_parts > cellw * cellh)
 | |
|         throw Slic3r::InvalidArgument("%zu parts won't fit in your print area!\n", num_parts);
 | |
|     
 | |
|     // Get a bounding box of cellw x cellh cells, centered at the center of the bed.
 | |
|     Vec2d       cells_size(cellw * cell_size(0) - gap, cellh * cell_size(1) - gap);
 | |
|     Vec2d       cells_offset(bed_bbox.center() - 0.5 * cells_size);
 | |
|     BoundingBoxf cells_bb(cells_offset, cells_size + cells_offset);
 | |
|     
 | |
|     // List of cells, sorted by distance from center.
 | |
|     std::vector<ArrangeItem> cellsorder(cellw * cellh, ArrangeItem());
 | |
|     for (size_t j = 0; j < cellh; ++ j) {
 | |
|         // Center of the jth row on the bed.
 | |
|         coordf_t cy = linint(j + 0.5, 0., double(cellh), cells_bb.min(1), cells_bb.max(1));
 | |
|         // Offset from the bed center.
 | |
|         coordf_t yd = cells_bb.center()(1) - cy;
 | |
|         for (size_t i = 0; i < cellw; ++ i) {
 | |
|             // Center of the ith column on the bed.
 | |
|             coordf_t cx = linint(i + 0.5, 0., double(cellw), cells_bb.min(0), cells_bb.max(0));
 | |
|             // Offset from the bed center.
 | |
|             coordf_t xd = cells_bb.center()(0) - cx;
 | |
|             // Cell with a distance from the bed center.
 | |
|             ArrangeItem &ci = cellsorder[j * cellw + i];
 | |
|             // Cell center
 | |
|             ci.pos(0) = cx;
 | |
|             ci.pos(1) = cy;
 | |
|             // Square distance of the cell center to the bed center.
 | |
|             ci.weight = xd * xd + yd * yd;
 | |
|         }
 | |
|     }
 | |
|     // Sort the cells lexicographically by their distances to the bed center and left to right / bttom to top.
 | |
|     std::sort(cellsorder.begin(), cellsorder.end());
 | |
|     cellsorder.erase(cellsorder.begin() + num_parts, cellsorder.end());
 | |
| 
 | |
|     // Return the (left,top) corners of the cells.
 | |
|     Pointfs positions;
 | |
|     positions.reserve(num_parts);
 | |
|     for (std::vector<ArrangeItem>::const_iterator it = cellsorder.begin(); it != cellsorder.end(); ++ it)
 | |
|         positions.push_back(Vec2d(it->pos(0) - 0.5 * part_size(0), it->pos(1) - 0.5 * part_size(1)));
 | |
|     return positions;
 | |
| }
 | |
| #else
 | |
| class ArrangeItem {
 | |
| public:
 | |
|     Vec2d pos = Vec2d::Zero();
 | |
|     size_t index_x, index_y;
 | |
|     coordf_t dist;
 | |
| };
 | |
| class ArrangeItemIndex {
 | |
| public:
 | |
|     coordf_t index;
 | |
|     ArrangeItem item;
 | |
|     ArrangeItemIndex(coordf_t _index, ArrangeItem _item) : index(_index), item(_item) {};
 | |
| };
 | |
| 
 | |
| bool
 | |
| arrange(size_t total_parts, const Vec2d &part_size, coordf_t dist, const BoundingBoxf* bb, Pointfs &positions)
 | |
| {
 | |
|     positions.clear();
 | |
| 
 | |
|     Vec2d part = part_size;
 | |
| 
 | |
|     // use actual part size (the largest) plus separation distance (half on each side) in spacing algorithm
 | |
|     part(0) += dist;
 | |
|     part(1) += dist;
 | |
|     
 | |
|     Vec2d area(Vec2d::Zero());
 | |
|     if (bb != NULL && bb->defined) {
 | |
|         area = bb->size();
 | |
|     } else {
 | |
|         // bogus area size, large enough not to trigger the error below
 | |
|         area(0) = part(0) * total_parts;
 | |
|         area(1) = part(1) * total_parts;
 | |
|     }
 | |
|     
 | |
|     // this is how many cells we have available into which to put parts
 | |
|     size_t cellw = floor((area(0) + dist) / part(0));
 | |
|     size_t cellh = floor((area(1) + dist) / part(1));
 | |
|     if (total_parts > (cellw * cellh))
 | |
|         return false;
 | |
|     
 | |
|     // total space used by cells
 | |
|     Vec2d cells(cellw * part(0), cellh * part(1));
 | |
|     
 | |
|     // bounding box of total space used by cells
 | |
|     BoundingBoxf cells_bb;
 | |
|     cells_bb.merge(Vec2d(0,0)); // min
 | |
|     cells_bb.merge(cells);  // max
 | |
|     
 | |
|     // center bounding box to area
 | |
|     cells_bb.translate(
 | |
|         (area(0) - cells(0)) / 2,
 | |
|         (area(1) - cells(1)) / 2
 | |
|     );
 | |
|     
 | |
|     // list of cells, sorted by distance from center
 | |
|     std::vector<ArrangeItemIndex> cellsorder;
 | |
|     
 | |
|     // work out distance for all cells, sort into list
 | |
|     for (size_t i = 0; i <= cellw-1; ++i) {
 | |
|         for (size_t j = 0; j <= cellh-1; ++j) {
 | |
|             coordf_t cx = linint(i + 0.5, 0, cellw, cells_bb.min(0), cells_bb.max(0));
 | |
|             coordf_t cy = linint(j + 0.5, 0, cellh, cells_bb.min(1), cells_bb.max(1));
 | |
|             
 | |
|             coordf_t xd = fabs((area(0) / 2) - cx);
 | |
|             coordf_t yd = fabs((area(1) / 2) - cy);
 | |
|             
 | |
|             ArrangeItem c;
 | |
|             c.pos(0) = cx;
 | |
|             c.pos(1) = cy;
 | |
|             c.index_x = i;
 | |
|             c.index_y = j;
 | |
|             c.dist = xd * xd + yd * yd - fabs((cellw / 2) - (i + 0.5));
 | |
|             
 | |
|             // binary insertion sort
 | |
|             {
 | |
|                 coordf_t index = c.dist;
 | |
|                 size_t low = 0;
 | |
|                 size_t high = cellsorder.size();
 | |
|                 while (low < high) {
 | |
|                     size_t mid = (low + ((high - low) / 2)) | 0;
 | |
|                     coordf_t midval = cellsorder[mid].index;
 | |
|                     
 | |
|                     if (midval < index) {
 | |
|                         low = mid + 1;
 | |
|                     } else if (midval > index) {
 | |
|                         high = mid;
 | |
|                     } else {
 | |
|                         cellsorder.insert(cellsorder.begin() + mid, ArrangeItemIndex(index, c));
 | |
|                         goto ENDSORT;
 | |
|                     }
 | |
|                 }
 | |
|                 cellsorder.insert(cellsorder.begin() + low, ArrangeItemIndex(index, c));
 | |
|             }
 | |
|             ENDSORT: ;
 | |
|         }
 | |
|     }
 | |
|     
 | |
|     // the extents of cells actually used by objects
 | |
|     coordf_t lx = 0;
 | |
|     coordf_t ty = 0;
 | |
|     coordf_t rx = 0;
 | |
|     coordf_t by = 0;
 | |
| 
 | |
|     // now find cells actually used by objects, map out the extents so we can position correctly
 | |
|     for (size_t i = 1; i <= total_parts; ++i) {
 | |
|         ArrangeItemIndex c = cellsorder[i - 1];
 | |
|         coordf_t cx = c.item.index_x;
 | |
|         coordf_t cy = c.item.index_y;
 | |
|         if (i == 1) {
 | |
|             lx = rx = cx;
 | |
|             ty = by = cy;
 | |
|         } else {
 | |
|             if (cx > rx) rx = cx;
 | |
|             if (cx < lx) lx = cx;
 | |
|             if (cy > by) by = cy;
 | |
|             if (cy < ty) ty = cy;
 | |
|         }
 | |
|     }
 | |
|     // now we actually place objects into cells, positioned such that the left and bottom borders are at 0
 | |
|     for (size_t i = 1; i <= total_parts; ++i) {
 | |
|         ArrangeItemIndex c = cellsorder.front();
 | |
|         cellsorder.erase(cellsorder.begin());
 | |
|         coordf_t cx = c.item.index_x - lx;
 | |
|         coordf_t cy = c.item.index_y - ty;
 | |
|         
 | |
|         positions.push_back(Vec2d(cx * part(0), cy * part(1)));
 | |
|     }
 | |
|     
 | |
|     if (bb != NULL && bb->defined) {
 | |
|         for (Pointfs::iterator p = positions.begin(); p != positions.end(); ++p) {
 | |
|             p->x() += bb->min(0);
 | |
|             p->y() += bb->min(1);
 | |
|         }
 | |
|     }
 | |
|     
 | |
|     return true;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| // Euclidian distance of two boost::polygon points.
 | |
| template<typename T>
 | |
| T dist(const boost::polygon::point_data<T> &p1,const boost::polygon::point_data<T> &p2)
 | |
| {
 | |
| 	T dx = p2(0) - p1(0);
 | |
| 	T dy = p2(1) - p1(1);
 | |
| 	return sqrt(dx*dx+dy*dy);
 | |
| }
 | |
| 
 | |
| // Find a foot point of "px" on a segment "seg".
 | |
| template<typename segment_type, typename point_type>
 | |
| inline point_type project_point_to_segment(segment_type &seg, point_type &px)
 | |
| {
 | |
|     typedef typename point_type::coordinate_type T;
 | |
|     const point_type &p0 = low(seg);
 | |
|     const point_type &p1 = high(seg);
 | |
|     const point_type  dir(p1(0)-p0(0), p1(1)-p0(1));
 | |
|     const point_type  dproj(px(0)-p0(0), px(1)-p0(1));
 | |
|     const T           t = (dir(0)*dproj(0) + dir(1)*dproj(1)) / (dir(0)*dir(0) + dir(1)*dir(1));
 | |
|     assert(t >= T(-1e-6) && t <= T(1. + 1e-6));
 | |
|     return point_type(p0(0) + t*dir(0), p0(1) + t*dir(1));
 | |
| }
 | |
| 
 | |
| void assemble_transform(Transform3d& transform, const Vec3d& translation, const Vec3d& rotation, const Vec3d& scale, const Vec3d& mirror)
 | |
| {
 | |
|     transform = Transform3d::Identity();
 | |
|     transform.translate(translation);
 | |
|     transform.rotate(Eigen::AngleAxisd(rotation(2), Vec3d::UnitZ()) * Eigen::AngleAxisd(rotation(1), Vec3d::UnitY()) * Eigen::AngleAxisd(rotation(0), Vec3d::UnitX()));
 | |
|     transform.scale(scale.cwiseProduct(mirror));
 | |
| }
 | |
| 
 | |
| Transform3d assemble_transform(const Vec3d& translation, const Vec3d& rotation, const Vec3d& scale, const Vec3d& mirror)
 | |
| {
 | |
|     Transform3d transform;
 | |
|     assemble_transform(transform, translation, rotation, scale, mirror);
 | |
|     return transform;
 | |
| }
 | |
| 
 | |
| Vec3d extract_euler_angles(const Eigen::Matrix<double, 3, 3, Eigen::DontAlign>& rotation_matrix)
 | |
| {
 | |
|     // reference: http://www.gregslabaugh.net/publications/euler.pdf
 | |
|     Vec3d angles1 = Vec3d::Zero();
 | |
|     Vec3d angles2 = Vec3d::Zero();
 | |
|     // BBS: rotation_matrix(2, 0) may be slighterly larger than 1 due to numerical accuracy
 | |
|     if (std::abs(std::abs(rotation_matrix(2, 0)) - 1.0) < 1e-5 || std::abs(rotation_matrix(2, 0))>1)
 | |
|     {
 | |
|         angles1(2) = 0.0;
 | |
|         if (rotation_matrix(2, 0) < 0.0) // == -1.0
 | |
|         {
 | |
|             angles1(1) = 0.5 * (double)PI;
 | |
|             angles1(0) = angles1(2) + ::atan2(rotation_matrix(0, 1), rotation_matrix(0, 2));
 | |
|         }
 | |
|         else // == 1.0
 | |
|         {
 | |
|             angles1(1) = - 0.5 * (double)PI;
 | |
|             angles1(0) = - angles1(2) + ::atan2(- rotation_matrix(0, 1), - rotation_matrix(0, 2));
 | |
|         }
 | |
|         angles2 = angles1;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         angles1(1) = -::asin(rotation_matrix(2, 0));
 | |
|         double inv_cos1 = 1.0 / ::cos(angles1(1));
 | |
|         angles1(0) = ::atan2(rotation_matrix(2, 1) * inv_cos1, rotation_matrix(2, 2) * inv_cos1);
 | |
|         angles1(2) = ::atan2(rotation_matrix(1, 0) * inv_cos1, rotation_matrix(0, 0) * inv_cos1);
 | |
| 
 | |
|         angles2(1) = (double)PI - angles1(1);
 | |
|         double inv_cos2 = 1.0 / ::cos(angles2(1));
 | |
|         angles2(0) = ::atan2(rotation_matrix(2, 1) * inv_cos2, rotation_matrix(2, 2) * inv_cos2);
 | |
|         angles2(2) = ::atan2(rotation_matrix(1, 0) * inv_cos2, rotation_matrix(0, 0) * inv_cos2);
 | |
|     }
 | |
| 
 | |
|     // The following euristic is the best found up to now (in the sense that it works fine with the greatest number of edge use-cases)
 | |
|     // but there are other use-cases were it does not
 | |
|     // We need to improve it
 | |
|     double min_1 = angles1.cwiseAbs().minCoeff();
 | |
|     double min_2 = angles2.cwiseAbs().minCoeff();
 | |
|     bool use_1 = (min_1 < min_2) || (is_approx(min_1, min_2) && (angles1.norm() <= angles2.norm()));
 | |
| 
 | |
|     return use_1 ? angles1 : angles2;
 | |
| }
 | |
| 
 | |
| Vec3d extract_euler_angles(const Transform3d& transform)
 | |
| {
 | |
|     // use only the non-translational part of the transform
 | |
|     Eigen::Matrix<double, 3, 3, Eigen::DontAlign> m = transform.matrix().block(0, 0, 3, 3);
 | |
|     // remove scale
 | |
|     m.col(0).normalize();
 | |
|     m.col(1).normalize();
 | |
|     m.col(2).normalize();
 | |
|     return extract_euler_angles(m);
 | |
| }
 | |
| 
 | |
| void rotation_from_two_vectors(Vec3d from, Vec3d to, Vec3d& rotation_axis, double& phi, Matrix3d* rotation_matrix)
 | |
| {
 | |
|     double epsilon = 1e-5;
 | |
|     // note: a.isMuchSmallerThan(b,prec) compares a.abs().sum()<b*prec, so previously we set b=0 && prec=dummpy_prec() is wrong
 | |
|     if ((from + to).isMuchSmallerThan(1, epsilon))
 | |
|     {
 | |
|         rotation_axis << 1, 0, 0;
 | |
|         phi = M_PI;
 | |
|         if (rotation_matrix)
 | |
|             *rotation_matrix = -Matrix3d::Identity();
 | |
|     }
 | |
|     else if ((from - to).isMuchSmallerThan(1, epsilon)) {
 | |
|         rotation_axis << 1, 0, 0;
 | |
|         phi = 0;
 | |
|         if (rotation_matrix)
 | |
|             *rotation_matrix = Matrix3d::Identity();
 | |
|     }
 | |
|     else {
 | |
|         rotation_axis = from.cross(to);
 | |
|         double s = rotation_axis.norm(); // sin(phi)
 | |
|         double c = from.dot(to); // cos(phi)
 | |
|         auto& v = rotation_axis;
 | |
|         Matrix3d kmat;
 | |
|         kmat << 0, -v[2], v[1],
 | |
|             v[2], 0, -v[0],
 | |
|             -v[1], v[0], 0;
 | |
| 
 | |
|         rotation_axis.normalize();
 | |
|         phi = acos(std::min(from.dot(to), 1.0));
 | |
|         if (rotation_matrix)
 | |
|             *rotation_matrix = Matrix3d::Identity() + kmat + kmat * kmat * ((1 - c) / (s * s));
 | |
|     }
 | |
| }
 | |
| 
 | |
| Transform3d translation_transform(const Vec3d &translation)
 | |
| {
 | |
|     Transform3d transform = Transform3d::Identity();
 | |
|     transform.translate(translation);
 | |
|     return transform;
 | |
| }
 | |
| 
 | |
| Transform3d rotation_transform(const Vec3d& rotation)
 | |
| {
 | |
|     Transform3d transform = Transform3d::Identity();
 | |
|     transform.rotate(Eigen::AngleAxisd(rotation.z(), Vec3d::UnitZ()) * Eigen::AngleAxisd(rotation.y(), Vec3d::UnitY()) * Eigen::AngleAxisd(rotation.x(), Vec3d::UnitX()));
 | |
|     return transform;
 | |
| }
 | |
| 
 | |
| Transformation::Flags::Flags()
 | |
|     : dont_translate(true)
 | |
|     , dont_rotate(true)
 | |
|     , dont_scale(true)
 | |
|     , dont_mirror(true)
 | |
| {
 | |
| }
 | |
| 
 | |
| bool Transformation::Flags::needs_update(bool dont_translate, bool dont_rotate, bool dont_scale, bool dont_mirror) const
 | |
| {
 | |
|     return (this->dont_translate != dont_translate) || (this->dont_rotate != dont_rotate) || (this->dont_scale != dont_scale) || (this->dont_mirror != dont_mirror);
 | |
| }
 | |
| 
 | |
| void Transformation::Flags::set(bool dont_translate, bool dont_rotate, bool dont_scale, bool dont_mirror)
 | |
| {
 | |
|     this->dont_translate = dont_translate;
 | |
|     this->dont_rotate = dont_rotate;
 | |
|     this->dont_scale = dont_scale;
 | |
|     this->dont_mirror = dont_mirror;
 | |
| }
 | |
| 
 | |
| Transformation::Transformation()
 | |
| {
 | |
|     reset();
 | |
| }
 | |
| 
 | |
| Transformation::Transformation(const Transform3d& transform)
 | |
| {
 | |
|     set_from_transform(transform);
 | |
| }
 | |
| 
 | |
| void Transformation::set_offset(const Vec3d& offset)
 | |
| {
 | |
|     set_offset(X, offset(0));
 | |
|     set_offset(Y, offset(1));
 | |
|     set_offset(Z, offset(2));
 | |
| }
 | |
| 
 | |
| void Transformation::set_offset(Axis axis, double offset)
 | |
| {
 | |
|     if (m_offset(axis) != offset)
 | |
|     {
 | |
|         m_offset(axis) = offset;
 | |
|         m_dirty = true;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Transformation::set_rotation(const Vec3d& rotation)
 | |
| {
 | |
|     set_rotation(X, rotation(0));
 | |
|     set_rotation(Y, rotation(1));
 | |
|     set_rotation(Z, rotation(2));
 | |
| }
 | |
| 
 | |
| void Transformation::set_rotation(Axis axis, double rotation)
 | |
| {
 | |
|     rotation = angle_to_0_2PI(rotation);
 | |
|     if (is_approx(std::abs(rotation), 2.0 * (double)PI))
 | |
|         rotation = 0.0;
 | |
| 
 | |
|     if (m_rotation(axis) != rotation)
 | |
|     {
 | |
|         m_rotation(axis) = rotation;
 | |
|         m_dirty = true;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Transformation::set_scaling_factor(const Vec3d& scaling_factor)
 | |
| {
 | |
|     set_scaling_factor(X, scaling_factor(0));
 | |
|     set_scaling_factor(Y, scaling_factor(1));
 | |
|     set_scaling_factor(Z, scaling_factor(2));
 | |
| }
 | |
| 
 | |
| void Transformation::set_scaling_factor(Axis axis, double scaling_factor)
 | |
| {
 | |
|     if (m_scaling_factor(axis) != std::abs(scaling_factor))
 | |
|     {
 | |
|         m_scaling_factor(axis) = std::abs(scaling_factor);
 | |
|         m_dirty = true;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Transformation::set_mirror(const Vec3d& mirror)
 | |
| {
 | |
|     set_mirror(X, mirror(0));
 | |
|     set_mirror(Y, mirror(1));
 | |
|     set_mirror(Z, mirror(2));
 | |
| }
 | |
| 
 | |
| void Transformation::set_mirror(Axis axis, double mirror)
 | |
| {
 | |
|     double abs_mirror = std::abs(mirror);
 | |
|     if (abs_mirror == 0.0)
 | |
|         mirror = 1.0;
 | |
|     else if (abs_mirror != 1.0)
 | |
|         mirror /= abs_mirror;
 | |
| 
 | |
|     if (m_mirror(axis) != mirror)
 | |
|     {
 | |
|         m_mirror(axis) = mirror;
 | |
|         m_dirty = true;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Transformation::set_from_transform(const Transform3d& transform)
 | |
| {
 | |
|     // offset
 | |
|     set_offset(transform.matrix().block(0, 3, 3, 1));
 | |
| 
 | |
|     Eigen::Matrix<double, 3, 3, Eigen::DontAlign> m3x3 = transform.matrix().block(0, 0, 3, 3);
 | |
| 
 | |
|     // mirror
 | |
|     // it is impossible to reconstruct the original mirroring factors from a matrix,
 | |
|     // we can only detect if the matrix contains a left handed reference system
 | |
|     // in which case we reorient it back to right handed by mirroring the x axis
 | |
|     Vec3d mirror = Vec3d::Ones();
 | |
|     if (m3x3.col(0).dot(m3x3.col(1).cross(m3x3.col(2))) < 0.0)
 | |
|     {
 | |
|         mirror(0) = -1.0;
 | |
|         // remove mirror
 | |
|         m3x3.col(0) *= -1.0;
 | |
|     }
 | |
|     set_mirror(mirror);
 | |
| 
 | |
|     // scale
 | |
|     set_scaling_factor(Vec3d(m3x3.col(0).norm(), m3x3.col(1).norm(), m3x3.col(2).norm()));
 | |
| 
 | |
|     // remove scale
 | |
|     m3x3.col(0).normalize();
 | |
|     m3x3.col(1).normalize();
 | |
|     m3x3.col(2).normalize();
 | |
| 
 | |
|     // rotation
 | |
|     set_rotation(extract_euler_angles(m3x3));
 | |
| 
 | |
|     // forces matrix recalculation matrix
 | |
|     m_matrix = get_matrix();
 | |
| 
 | |
| //    // debug check
 | |
| //    if (!m_matrix.isApprox(transform))
 | |
| //        std::cout << "something went wrong in extracting data from matrix" << std::endl;
 | |
| }
 | |
| 
 | |
| void Transformation::reset()
 | |
| {
 | |
|     m_offset = Vec3d::Zero();
 | |
|     m_rotation = Vec3d::Zero();
 | |
|     m_scaling_factor = Vec3d::Ones();
 | |
|     m_mirror = Vec3d::Ones();
 | |
|     m_matrix = Transform3d::Identity();
 | |
|     m_dirty = false;
 | |
| }
 | |
| 
 | |
| const Transform3d& Transformation::get_matrix(bool dont_translate, bool dont_rotate, bool dont_scale, bool dont_mirror) const
 | |
| {
 | |
|     if (m_dirty || m_flags.needs_update(dont_translate, dont_rotate, dont_scale, dont_mirror))
 | |
|     {
 | |
|         m_matrix = Geometry::assemble_transform(
 | |
|             dont_translate ? Vec3d::Zero() : m_offset, 
 | |
|             dont_rotate ? Vec3d::Zero() : m_rotation,
 | |
|             dont_scale ? Vec3d::Ones() : m_scaling_factor,
 | |
|             dont_mirror ? Vec3d::Ones() : m_mirror
 | |
|             );
 | |
| 
 | |
|         m_flags.set(dont_translate, dont_rotate, dont_scale, dont_mirror);
 | |
|         m_dirty = false;
 | |
|     }
 | |
| 
 | |
|     return m_matrix;
 | |
| }
 | |
| 
 | |
| Transformation Transformation::operator * (const Transformation& other) const
 | |
| {
 | |
|     return Transformation(get_matrix() * other.get_matrix());
 | |
| }
 | |
| 
 | |
| Transformation Transformation::volume_to_bed_transformation(const Transformation& instance_transformation, const BoundingBoxf3& bbox)
 | |
| {
 | |
|     Transformation out;
 | |
| 
 | |
|     if (instance_transformation.is_scaling_uniform()) {
 | |
|         // No need to run the non-linear least squares fitting for uniform scaling.
 | |
|         // Just set the inverse.
 | |
|         out.set_from_transform(instance_transformation.get_matrix(true).inverse());
 | |
|     }
 | |
|     else if (is_rotation_ninety_degrees(instance_transformation.get_rotation()))
 | |
|     {
 | |
|         // Anisotropic scaling, rotation by multiples of ninety degrees.
 | |
|         Eigen::Matrix3d instance_rotation_trafo =
 | |
|             (Eigen::AngleAxisd(instance_transformation.get_rotation().z(), Vec3d::UnitZ()) *
 | |
|             Eigen::AngleAxisd(instance_transformation.get_rotation().y(), Vec3d::UnitY()) *
 | |
|             Eigen::AngleAxisd(instance_transformation.get_rotation().x(), Vec3d::UnitX())).toRotationMatrix();
 | |
|         Eigen::Matrix3d volume_rotation_trafo =
 | |
|             (Eigen::AngleAxisd(-instance_transformation.get_rotation().x(), Vec3d::UnitX()) *
 | |
|             Eigen::AngleAxisd(-instance_transformation.get_rotation().y(), Vec3d::UnitY()) *
 | |
|             Eigen::AngleAxisd(-instance_transformation.get_rotation().z(), Vec3d::UnitZ())).toRotationMatrix();
 | |
| 
 | |
|         // 8 corners of the bounding box.
 | |
|         auto pts = Eigen::MatrixXd(8, 3);
 | |
|         pts(0, 0) = bbox.min.x(); pts(0, 1) = bbox.min.y(); pts(0, 2) = bbox.min.z();
 | |
|         pts(1, 0) = bbox.min.x(); pts(1, 1) = bbox.min.y(); pts(1, 2) = bbox.max.z();
 | |
|         pts(2, 0) = bbox.min.x(); pts(2, 1) = bbox.max.y(); pts(2, 2) = bbox.min.z();
 | |
|         pts(3, 0) = bbox.min.x(); pts(3, 1) = bbox.max.y(); pts(3, 2) = bbox.max.z();
 | |
|         pts(4, 0) = bbox.max.x(); pts(4, 1) = bbox.min.y(); pts(4, 2) = bbox.min.z();
 | |
|         pts(5, 0) = bbox.max.x(); pts(5, 1) = bbox.min.y(); pts(5, 2) = bbox.max.z();
 | |
|         pts(6, 0) = bbox.max.x(); pts(6, 1) = bbox.max.y(); pts(6, 2) = bbox.min.z();
 | |
|         pts(7, 0) = bbox.max.x(); pts(7, 1) = bbox.max.y(); pts(7, 2) = bbox.max.z();
 | |
| 
 | |
|         // Corners of the bounding box transformed into the modifier mesh coordinate space, with inverse rotation applied to the modifier.
 | |
|         auto qs = pts *
 | |
|             (instance_rotation_trafo *
 | |
|             Eigen::Scaling(instance_transformation.get_scaling_factor().cwiseProduct(instance_transformation.get_mirror())) *
 | |
|             volume_rotation_trafo).inverse().transpose();
 | |
|         // Fill in scaling based on least squares fitting of the bounding box corners.
 | |
|         Vec3d scale;
 | |
|         for (int i = 0; i < 3; ++i)
 | |
|             scale(i) = pts.col(i).dot(qs.col(i)) / pts.col(i).dot(pts.col(i));
 | |
| 
 | |
|         out.set_rotation(Geometry::extract_euler_angles(volume_rotation_trafo));
 | |
|         out.set_scaling_factor(Vec3d(std::abs(scale(0)), std::abs(scale(1)), std::abs(scale(2))));
 | |
|         out.set_mirror(Vec3d(scale(0) > 0 ? 1. : -1, scale(1) > 0 ? 1. : -1, scale(2) > 0 ? 1. : -1));
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         // General anisotropic scaling, general rotation.
 | |
|         // Keep the modifier mesh in the instance coordinate system, so the modifier mesh will not be aligned with the world.
 | |
|         // Scale it to get the required size.
 | |
|         out.set_scaling_factor(instance_transformation.get_scaling_factor().cwiseInverse());
 | |
|     }
 | |
| 
 | |
|     return out;
 | |
| }
 | |
| 
 | |
| // For parsing a transformation matrix from 3MF / AMF.
 | |
| Transform3d transform3d_from_string(const std::string& transform_str)
 | |
| {
 | |
|     assert(is_decimal_separator_point()); // for atof
 | |
|     Transform3d transform = Transform3d::Identity();
 | |
| 
 | |
|     if (!transform_str.empty())
 | |
|     {
 | |
|         std::vector<std::string> mat_elements_str;
 | |
|         boost::split(mat_elements_str, transform_str, boost::is_any_of(" "), boost::token_compress_on);
 | |
| 
 | |
|         unsigned int size = (unsigned int)mat_elements_str.size();
 | |
|         if (size == 16)
 | |
|         {
 | |
|             unsigned int i = 0;
 | |
|             for (unsigned int r = 0; r < 4; ++r)
 | |
|             {
 | |
|                 for (unsigned int c = 0; c < 4; ++c)
 | |
|                 {
 | |
|                     transform(r, c) = ::atof(mat_elements_str[i++].c_str());
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return transform;
 | |
| }
 | |
| 
 | |
| Eigen::Quaterniond rotation_xyz_diff(const Vec3d &rot_xyz_from, const Vec3d &rot_xyz_to)
 | |
| {
 | |
|     return
 | |
|         // From the current coordinate system to world.
 | |
|         Eigen::AngleAxisd(rot_xyz_to(2), Vec3d::UnitZ()) * Eigen::AngleAxisd(rot_xyz_to(1), Vec3d::UnitY()) * Eigen::AngleAxisd(rot_xyz_to(0), Vec3d::UnitX()) *
 | |
|         // From world to the initial coordinate system.
 | |
|         Eigen::AngleAxisd(-rot_xyz_from(0), Vec3d::UnitX()) * Eigen::AngleAxisd(-rot_xyz_from(1), Vec3d::UnitY()) * Eigen::AngleAxisd(-rot_xyz_from(2), Vec3d::UnitZ());
 | |
| }
 | |
| 
 | |
| // This should only be called if it is known, that the two rotations only differ in rotation around the Z axis.
 | |
| double rotation_diff_z(const Vec3d &rot_xyz_from, const Vec3d &rot_xyz_to)
 | |
| {
 | |
|     Eigen::AngleAxisd angle_axis(rotation_xyz_diff(rot_xyz_from, rot_xyz_to));
 | |
|     Vec3d  axis  = angle_axis.axis();
 | |
|     double angle = angle_axis.angle();
 | |
| #ifndef NDEBUG
 | |
|     if (std::abs(angle) > 1e-8) {
 | |
|         assert(std::abs(axis.x()) < 1e-8);
 | |
|         assert(std::abs(axis.y()) < 1e-8);
 | |
|     }
 | |
| #endif /* NDEBUG */
 | |
|     return (axis.z() < 0) ? -angle : angle;
 | |
| }
 | |
| 
 | |
| }} // namespace Slic3r::Geometry
 |