mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-07-23 06:33:57 -06:00

1.store each printer's calibration status to appconfig. 2.add retraction calibration 3.add choose fine calibration directly at flowrate calibration 4.add start pages for every calibration 5.add history window for pa calibration Change-Id: I117fd46e689e0573e70e8579f5a52ba62d99f3d6
352 lines
13 KiB
C++
352 lines
13 KiB
C++
#include "MeshUtils.hpp"
|
|
|
|
#include "libslic3r/Tesselate.hpp"
|
|
#include "libslic3r/TriangleMesh.hpp"
|
|
#include "libslic3r/TriangleMeshSlicer.hpp"
|
|
#include "libslic3r/ClipperUtils.hpp"
|
|
#include "libslic3r/Model.hpp"
|
|
|
|
#include "slic3r/GUI/Camera.hpp"
|
|
|
|
#include <GL/glew.h>
|
|
|
|
#include <igl/unproject.h>
|
|
#include "CameraUtils.hpp"
|
|
|
|
|
|
namespace Slic3r {
|
|
namespace GUI {
|
|
|
|
void MeshClipper::set_plane(const ClippingPlane& plane)
|
|
{
|
|
if (m_plane != plane) {
|
|
m_plane = plane;
|
|
m_triangles_valid = false;
|
|
}
|
|
}
|
|
|
|
|
|
void MeshClipper::set_limiting_plane(const ClippingPlane& plane)
|
|
{
|
|
if (m_limiting_plane != plane) {
|
|
m_limiting_plane = plane;
|
|
m_triangles_valid = false;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void MeshClipper::set_mesh(const TriangleMesh& mesh)
|
|
{
|
|
if (m_mesh != &mesh) {
|
|
m_mesh = &mesh;
|
|
m_triangles_valid = false;
|
|
m_triangles2d.resize(0);
|
|
}
|
|
}
|
|
|
|
void MeshClipper::set_negative_mesh(const TriangleMesh& mesh)
|
|
{
|
|
if (m_negative_mesh != &mesh) {
|
|
m_negative_mesh = &mesh;
|
|
m_triangles_valid = false;
|
|
m_triangles2d.resize(0);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void MeshClipper::set_transformation(const Geometry::Transformation& trafo)
|
|
{
|
|
if (! m_trafo.get_matrix().isApprox(trafo.get_matrix())) {
|
|
m_trafo = trafo;
|
|
m_triangles_valid = false;
|
|
m_triangles2d.resize(0);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void MeshClipper::render_cut()
|
|
{
|
|
if (! m_triangles_valid)
|
|
recalculate_triangles();
|
|
|
|
if (m_vertex_array.has_VBOs())
|
|
m_vertex_array.render();
|
|
}
|
|
|
|
bool MeshClipper::is_projection_inside_cut(const Vec3d &point_in) const
|
|
{
|
|
if (!m_result || m_result->cut_islands.empty())
|
|
return false;
|
|
Vec3d point = m_result->trafo.inverse() * point_in;
|
|
Point pt_2d = Point::new_scale(Vec2d(point.x(), point.y()));
|
|
|
|
for (const CutIsland &isl : m_result->cut_islands) {
|
|
if (isl.expoly_bb.contains(pt_2d) && isl.expoly.contains(pt_2d))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool MeshClipper::has_valid_contour() const
|
|
{
|
|
return m_result && std::any_of(m_result->cut_islands.begin(), m_result->cut_islands.end(), [](const CutIsland &isl) { return !isl.expoly.empty(); });
|
|
}
|
|
|
|
void MeshClipper::recalculate_triangles()
|
|
{
|
|
const Transform3f& instance_matrix_no_translation_no_scaling = m_trafo.get_matrix(true,false,true).cast<float>();
|
|
// Calculate clipping plane normal in mesh coordinates.
|
|
const Vec3f up_noscale = instance_matrix_no_translation_no_scaling.inverse() * m_plane.get_normal().cast<float>();
|
|
const Vec3d up = up_noscale.cast<double>().cwiseProduct(m_trafo.get_scaling_factor());
|
|
// Calculate distance from mesh origin to the clipping plane (in mesh coordinates).
|
|
const float height_mesh = m_plane.distance(m_trafo.get_offset()) * (up_noscale.norm()/up.norm());
|
|
|
|
// Now do the cutting
|
|
MeshSlicingParams slicing_params;
|
|
slicing_params.trafo.rotate(Eigen::Quaternion<double, Eigen::DontAlign>::FromTwoVectors(up, Vec3d::UnitZ()));
|
|
|
|
ExPolygons expolys = union_ex(slice_mesh(m_mesh->its, height_mesh, slicing_params));
|
|
|
|
if (m_negative_mesh && !m_negative_mesh->empty()) {
|
|
const ExPolygons neg_expolys = union_ex(slice_mesh(m_negative_mesh->its, height_mesh, slicing_params));
|
|
expolys = diff_ex(expolys, neg_expolys);
|
|
}
|
|
|
|
// Triangulate and rotate the cut into world coords:
|
|
Eigen::Quaterniond q;
|
|
q.setFromTwoVectors(Vec3d::UnitZ(), up);
|
|
Transform3d tr = Transform3d::Identity();
|
|
tr.rotate(q);
|
|
tr = m_trafo.get_matrix() * tr;
|
|
|
|
m_result = ClipResult();
|
|
m_result->trafo = tr;
|
|
|
|
if (m_limiting_plane != ClippingPlane::ClipsNothing())
|
|
{
|
|
// Now remove whatever ended up below the limiting plane (e.g. sinking objects).
|
|
// First transform the limiting plane from world to mesh coords.
|
|
// Note that inverse of tr transforms the plane from world to horizontal.
|
|
const Vec3d normal_old = m_limiting_plane.get_normal().normalized();
|
|
const Vec3d normal_new = (tr.matrix().block<3,3>(0,0).transpose() * normal_old).normalized();
|
|
|
|
// normal_new should now be the plane normal in mesh coords. To find the offset,
|
|
// transform a point and set offset so it belongs to the transformed plane.
|
|
Vec3d pt = Vec3d::Zero();
|
|
const double plane_offset = m_limiting_plane.get_data()[3];
|
|
if (std::abs(normal_old.z()) > 0.5) // normal is normalized, at least one of the coords if larger than sqrt(3)/3 = 0.57
|
|
pt.z() = - plane_offset / normal_old.z();
|
|
else if (std::abs(normal_old.y()) > 0.5)
|
|
pt.y() = - plane_offset / normal_old.y();
|
|
else
|
|
pt.x() = - plane_offset / normal_old.x();
|
|
pt = tr.inverse() * pt;
|
|
const double offset = -(normal_new.dot(pt));
|
|
|
|
if (std::abs(normal_old.dot(m_plane.get_normal().normalized())) > 0.99) {
|
|
// The cuts are parallel, show all or nothing.
|
|
if (normal_old.dot(m_plane.get_normal().normalized()) < 0.0 && offset < height_mesh)
|
|
expolys.clear();
|
|
} else {
|
|
// The cut is a horizontal plane defined by z=height_mesh.
|
|
// ax+by+e=0 is the line of intersection with the limiting plane.
|
|
// Normalized so a^2 + b^2 = 1.
|
|
const double len = std::hypot(normal_new.x(), normal_new.y());
|
|
if (len == 0.)
|
|
return;
|
|
const double a = normal_new.x() / len;
|
|
const double b = normal_new.y() / len;
|
|
const double e = (normal_new.z() * height_mesh + offset) / len;
|
|
|
|
// We need a half-plane to limit the cut. Get angle of the intersecting line.
|
|
double angle = (b != 0.0) ? std::atan(-a / b) : ((a < 0.0) ? -0.5 * M_PI : 0.5 * M_PI);
|
|
if (b > 0) // select correct half-plane
|
|
angle += M_PI;
|
|
|
|
// We'll take a big rectangle above x-axis and rotate and translate
|
|
// it so it lies on our line. This will be the figure to subtract
|
|
// from the cut. The coordinates must not overflow after the transform,
|
|
// make the rectangle a bit smaller.
|
|
const coord_t size = (std::numeric_limits<coord_t>::max() - scale_(std::max(std::abs(e*a), std::abs(e*b)))) / 4;
|
|
Polygons ep {Polygon({Point(-size, 0), Point(size, 0), Point(size, 2*size), Point(-size, 2*size)})};
|
|
ep.front().rotate(angle);
|
|
ep.front().translate(scale_(-e * a), scale_(-e * b));
|
|
expolys = diff_ex(expolys, ep);
|
|
}
|
|
}
|
|
|
|
for (const ExPolygon &exp : expolys) {
|
|
m_result->cut_islands.push_back(CutIsland());
|
|
CutIsland &isl = m_result->cut_islands.back();
|
|
isl.expoly = std::move(exp);
|
|
isl.expoly_bb = get_extents(exp);
|
|
}
|
|
|
|
m_triangles2d = triangulate_expolygons_2f(expolys, m_trafo.get_matrix().matrix().determinant() < 0.);
|
|
|
|
tr.pretranslate(0.001 * m_plane.get_normal().normalized()); // to avoid z-fighting
|
|
|
|
m_vertex_array.release_geometry();
|
|
for (auto it=m_triangles2d.cbegin(); it != m_triangles2d.cend(); it=it+3) {
|
|
m_vertex_array.push_geometry(tr * Vec3d((*(it+0))(0), (*(it+0))(1), height_mesh), up);
|
|
m_vertex_array.push_geometry(tr * Vec3d((*(it+1))(0), (*(it+1))(1), height_mesh), up);
|
|
m_vertex_array.push_geometry(tr * Vec3d((*(it+2))(0), (*(it+2))(1), height_mesh), up);
|
|
const size_t idx = it - m_triangles2d.cbegin();
|
|
m_vertex_array.push_triangle(idx, idx+1, idx+2);
|
|
}
|
|
m_vertex_array.finalize_geometry(true);
|
|
|
|
m_triangles_valid = true;
|
|
}
|
|
|
|
|
|
Vec3f MeshRaycaster::get_triangle_normal(size_t facet_idx) const
|
|
{
|
|
return m_normals[facet_idx];
|
|
}
|
|
|
|
void MeshRaycaster::line_from_mouse_pos_static(const Vec2d &mouse_pos, const Transform3d &trafo, const Camera &camera, Vec3d &point, Vec3d &direction)
|
|
{
|
|
CameraUtils::ray_from_screen_pos(camera, mouse_pos, point, direction);
|
|
Transform3d inv = trafo.inverse();
|
|
point = inv * point;
|
|
direction = inv.linear() * direction;
|
|
}
|
|
|
|
void MeshRaycaster::line_from_mouse_pos(const Vec2d& mouse_pos, const Transform3d& trafo, const Camera& camera,
|
|
Vec3d& point, Vec3d& direction) const
|
|
{
|
|
Matrix4d modelview = camera.get_view_matrix().matrix();
|
|
Matrix4d projection= camera.get_projection_matrix().matrix();
|
|
Vec4i viewport(camera.get_viewport().data());
|
|
|
|
Vec3d pt1;
|
|
Vec3d pt2;
|
|
igl::unproject(Vec3d(mouse_pos(0), viewport[3] - mouse_pos(1), 0.),
|
|
modelview, projection, viewport, pt1);
|
|
igl::unproject(Vec3d(mouse_pos(0), viewport[3] - mouse_pos(1), 1.),
|
|
modelview, projection, viewport, pt2);
|
|
|
|
Transform3d inv = trafo.inverse();
|
|
pt1 = inv * pt1;
|
|
pt2 = inv * pt2;
|
|
|
|
point = pt1;
|
|
direction = pt2-pt1;
|
|
}
|
|
|
|
|
|
bool MeshRaycaster::unproject_on_mesh(const Vec2d& mouse_pos, const Transform3d& trafo, const Camera& camera,
|
|
Vec3f& position, Vec3f& normal, const ClippingPlane* clipping_plane,
|
|
size_t* facet_idx, bool sinking_limit) const
|
|
{
|
|
Vec3d point;
|
|
Vec3d direction;
|
|
line_from_mouse_pos(mouse_pos, trafo, camera, point, direction);
|
|
|
|
std::vector<sla::IndexedMesh::hit_result> hits = m_emesh.query_ray_hits(point, direction);
|
|
|
|
if (hits.empty())
|
|
return false; // no intersection found
|
|
|
|
unsigned i = 0;
|
|
|
|
// Remove points that are obscured or cut by the clipping plane.
|
|
// Also, remove anything below the bed (sinking objects).
|
|
for (i=0; i<hits.size(); ++i) {
|
|
Vec3d transformed_hit = trafo * hits[i].position();
|
|
if (transformed_hit.z() >= (sinking_limit ? SINKING_Z_THRESHOLD : -std::numeric_limits<double>::max()) &&
|
|
(!clipping_plane || !clipping_plane->is_point_clipped(transformed_hit)))
|
|
break;
|
|
}
|
|
|
|
if (i==hits.size() || (hits.size()-i) % 2 != 0) {
|
|
// All hits are either clipped, or there is an odd number of unclipped
|
|
// hits - meaning the nearest must be from inside the mesh.
|
|
return false;
|
|
}
|
|
|
|
// Now stuff the points in the provided vector and calculate normals if asked about them:
|
|
position = hits[i].position().cast<float>();
|
|
normal = hits[i].normal().cast<float>();
|
|
|
|
if (facet_idx)
|
|
*facet_idx = hits[i].face();
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
std::vector<unsigned> MeshRaycaster::get_unobscured_idxs(const Geometry::Transformation& trafo, const Camera& camera, const std::vector<Vec3f>& points,
|
|
const ClippingPlane* clipping_plane) const
|
|
{
|
|
std::vector<unsigned> out;
|
|
|
|
const Transform3d& instance_matrix_no_translation_no_scaling = trafo.get_matrix(true,false,true);
|
|
Vec3d direction_to_camera = -camera.get_dir_forward();
|
|
Vec3d direction_to_camera_mesh = (instance_matrix_no_translation_no_scaling.inverse() * direction_to_camera).normalized().eval();
|
|
direction_to_camera_mesh = direction_to_camera_mesh.cwiseProduct(trafo.get_scaling_factor());
|
|
const Transform3d inverse_trafo = trafo.get_matrix().inverse();
|
|
|
|
for (size_t i=0; i<points.size(); ++i) {
|
|
const Vec3f& pt = points[i];
|
|
if (clipping_plane && clipping_plane->is_point_clipped(pt.cast<double>()))
|
|
continue;
|
|
|
|
bool is_obscured = false;
|
|
// Cast a ray in the direction of the camera and look for intersection with the mesh:
|
|
std::vector<sla::IndexedMesh::hit_result> hits;
|
|
// Offset the start of the ray by EPSILON to account for numerical inaccuracies.
|
|
hits = m_emesh.query_ray_hits((inverse_trafo * pt.cast<double>() + direction_to_camera_mesh * EPSILON),
|
|
direction_to_camera_mesh);
|
|
|
|
if (! hits.empty()) {
|
|
// If the closest hit facet normal points in the same direction as the ray,
|
|
// we are looking through the mesh and should therefore discard the point:
|
|
if (hits.front().normal().dot(direction_to_camera_mesh.cast<double>()) > 0)
|
|
is_obscured = true;
|
|
|
|
// Eradicate all hits that the caller wants to ignore
|
|
for (unsigned j=0; j<hits.size(); ++j) {
|
|
if (clipping_plane && clipping_plane->is_point_clipped(trafo.get_matrix() * hits[j].position())) {
|
|
hits.erase(hits.begin()+j);
|
|
--j;
|
|
}
|
|
}
|
|
|
|
// FIXME: the intersection could in theory be behind the camera, but as of now we only have camera direction.
|
|
// Also, the threshold is in mesh coordinates, not in actual dimensions.
|
|
if (! hits.empty())
|
|
is_obscured = true;
|
|
}
|
|
if (! is_obscured)
|
|
out.push_back(i);
|
|
}
|
|
return out;
|
|
}
|
|
|
|
|
|
Vec3f MeshRaycaster::get_closest_point(const Vec3f& point, Vec3f* normal) const
|
|
{
|
|
int idx = 0;
|
|
Vec3d closest_point;
|
|
m_emesh.squared_distance(point.cast<double>(), idx, closest_point);
|
|
if (normal)
|
|
*normal = m_normals[idx];
|
|
|
|
return closest_point.cast<float>();
|
|
}
|
|
|
|
int MeshRaycaster::get_closest_facet(const Vec3f &point) const
|
|
{
|
|
int facet_idx = 0;
|
|
Vec3d closest_point;
|
|
m_emesh.squared_distance(point.cast<double>(), facet_idx, closest_point);
|
|
return facet_idx;
|
|
}
|
|
|
|
} // namespace GUI
|
|
} // namespace Slic3r
|