mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-07-10 08:17:51 -06:00

* Add back the option to disable `ensure vertical shell thickness` (#2602) * Add back the option to disable `detect narrow internal solid infill` (#2623)
1129 lines
52 KiB
C++
1129 lines
52 KiB
C++
///|/ Copyright (c) Prusa Research 2016 - 2023 Lukáš Matěna @lukasmatena, Vojtěch Bubník @bubnikv, Pavel Mikuš @Godrak, Lukáš Hejl @hejllukas
|
|
///|/ Copyright (c) SuperSlicer 2023 Remi Durand @supermerill
|
|
///|/ Copyright (c) 2016 Sakari Kapanen @Flannelhead
|
|
///|/ Copyright (c) Slic3r 2011 - 2015 Alessandro Ranellucci @alranel
|
|
///|/ Copyright (c) 2013 Mark Hindess
|
|
///|/ Copyright (c) 2011 Michael Moon
|
|
///|/
|
|
///|/ PrusaSlicer is released under the terms of the AGPLv3 or higher
|
|
///|/
|
|
#include <assert.h>
|
|
#include <stdio.h>
|
|
#include <memory>
|
|
|
|
#include "../ClipperUtils.hpp"
|
|
#include "../Geometry.hpp"
|
|
#include "../Layer.hpp"
|
|
#include "../Print.hpp"
|
|
#include "../PrintConfig.hpp"
|
|
#include "../Surface.hpp"
|
|
|
|
#include "FillBase.hpp"
|
|
#include "FillRectilinear.hpp"
|
|
#include "FillLightning.hpp"
|
|
#include "FillConcentricInternal.hpp"
|
|
#include "FillConcentric.hpp"
|
|
|
|
namespace Slic3r {
|
|
|
|
struct SurfaceFillParams
|
|
{
|
|
// Zero based extruder ID.
|
|
unsigned int extruder = 0;
|
|
// Infill pattern, adjusted for the density etc.
|
|
InfillPattern pattern = InfillPattern(0);
|
|
|
|
// FillBase
|
|
// in unscaled coordinates
|
|
coordf_t spacing = 0.;
|
|
// infill / perimeter overlap, in unscaled coordinates
|
|
coordf_t overlap = 0.;
|
|
// Angle as provided by the region config, in radians.
|
|
float angle = 0.f;
|
|
// Is bridging used for this fill? Bridging parameters may be used even if this->flow.bridge() is not set.
|
|
bool bridge;
|
|
// Non-negative for a bridge.
|
|
float bridge_angle = 0.f;
|
|
|
|
// FillParams
|
|
float density = 0.f;
|
|
// Don't adjust spacing to fill the space evenly.
|
|
// bool dont_adjust = false;
|
|
// Length of the infill anchor along the perimeter line.
|
|
// 1000mm is roughly the maximum length line that fits into a 32bit coord_t.
|
|
float anchor_length = 1000.f;
|
|
float anchor_length_max = 1000.f;
|
|
|
|
// width, height of extrusion, nozzle diameter, is bridge
|
|
// For the output, for fill generator.
|
|
Flow flow;
|
|
|
|
// For the output
|
|
ExtrusionRole extrusion_role = ExtrusionRole(0);
|
|
|
|
// Various print settings?
|
|
|
|
// Index of this entry in a linear vector.
|
|
size_t idx = 0;
|
|
|
|
|
|
bool operator<(const SurfaceFillParams &rhs) const {
|
|
#define RETURN_COMPARE_NON_EQUAL(KEY) if (this->KEY < rhs.KEY) return true; if (this->KEY > rhs.KEY) return false;
|
|
#define RETURN_COMPARE_NON_EQUAL_TYPED(TYPE, KEY) if (TYPE(this->KEY) < TYPE(rhs.KEY)) return true; if (TYPE(this->KEY) > TYPE(rhs.KEY)) return false;
|
|
|
|
// Sort first by decreasing bridging angle, so that the bridges are processed with priority when trimming one layer by the other.
|
|
if (this->bridge_angle > rhs.bridge_angle) return true;
|
|
if (this->bridge_angle < rhs.bridge_angle) return false;
|
|
|
|
RETURN_COMPARE_NON_EQUAL(extruder);
|
|
RETURN_COMPARE_NON_EQUAL_TYPED(unsigned, pattern);
|
|
RETURN_COMPARE_NON_EQUAL(spacing);
|
|
RETURN_COMPARE_NON_EQUAL(overlap);
|
|
RETURN_COMPARE_NON_EQUAL(angle);
|
|
RETURN_COMPARE_NON_EQUAL(density);
|
|
// RETURN_COMPARE_NON_EQUAL_TYPED(unsigned, dont_adjust);
|
|
RETURN_COMPARE_NON_EQUAL(anchor_length);
|
|
RETURN_COMPARE_NON_EQUAL(anchor_length_max);
|
|
RETURN_COMPARE_NON_EQUAL(flow.width());
|
|
RETURN_COMPARE_NON_EQUAL(flow.height());
|
|
RETURN_COMPARE_NON_EQUAL(flow.nozzle_diameter());
|
|
RETURN_COMPARE_NON_EQUAL_TYPED(unsigned, bridge);
|
|
RETURN_COMPARE_NON_EQUAL_TYPED(unsigned, extrusion_role);
|
|
return false;
|
|
}
|
|
|
|
bool operator==(const SurfaceFillParams &rhs) const {
|
|
return this->extruder == rhs.extruder &&
|
|
this->pattern == rhs.pattern &&
|
|
this->spacing == rhs.spacing &&
|
|
this->overlap == rhs.overlap &&
|
|
this->angle == rhs.angle &&
|
|
this->bridge == rhs.bridge &&
|
|
this->bridge_angle == rhs.bridge_angle &&
|
|
this->density == rhs.density &&
|
|
// this->dont_adjust == rhs.dont_adjust &&
|
|
this->anchor_length == rhs.anchor_length &&
|
|
this->anchor_length_max == rhs.anchor_length_max &&
|
|
this->flow == rhs.flow &&
|
|
this->extrusion_role == rhs.extrusion_role;
|
|
}
|
|
};
|
|
|
|
struct SurfaceFill {
|
|
SurfaceFill(const SurfaceFillParams& params) : region_id(size_t(-1)), surface(stCount, ExPolygon()), params(params) {}
|
|
|
|
size_t region_id;
|
|
Surface surface;
|
|
ExPolygons expolygons;
|
|
SurfaceFillParams params;
|
|
// BBS
|
|
std::vector<size_t> region_id_group;
|
|
ExPolygons no_overlap_expolygons;
|
|
};
|
|
|
|
|
|
// Detect narrow infill regions
|
|
// Based on the anti-vibration algorithm from PrusaSlicer:
|
|
// https://github.com/prusa3d/PrusaSlicer/blob/94290e09d75f23719c3d2ab2398737c8be4c3fd6/src/libslic3r/Fill/FillEnsuring.cpp#L100-L289
|
|
void split_solid_surface(size_t layer_id, const SurfaceFill &fill, ExPolygons &normal_infill, ExPolygons &narrow_infill)
|
|
{
|
|
assert(fill.surface.surface_type == stInternalSolid);
|
|
|
|
switch (fill.params.pattern) {
|
|
case ipRectilinear:
|
|
case ipMonotonic:
|
|
case ipMonotonicLine:
|
|
case ipAlignedRectilinear:
|
|
// Only support straight line based infill
|
|
break;
|
|
|
|
default:
|
|
// For all other types, don't split
|
|
return;
|
|
}
|
|
|
|
Polygons normal_fill_areas; // Areas that filled with normal infill
|
|
|
|
constexpr double connect_extrusions = true;
|
|
|
|
auto segments_overlap = [](coord_t alow, coord_t ahigh, coord_t blow, coord_t bhigh) {
|
|
return (alow >= blow && alow <= bhigh) || (ahigh >= blow && ahigh <= bhigh) || (blow >= alow && blow <= ahigh) ||
|
|
(bhigh >= alow && bhigh <= ahigh);
|
|
};
|
|
|
|
const coord_t scaled_spacing = scaled<coord_t>(fill.params.spacing);
|
|
double distance_limit_reconnection = 2.0 * double(scaled_spacing);
|
|
double squared_distance_limit_reconnection = distance_limit_reconnection * distance_limit_reconnection;
|
|
// Calculate infill direction, see Fill::_infill_direction
|
|
double base_angle = fill.params.angle + float(M_PI / 2.);
|
|
// For pattern other than ipAlignedRectilinear, the angle are alternated
|
|
if (fill.params.pattern != ipAlignedRectilinear) {
|
|
size_t idx = layer_id / fill.surface.thickness_layers;
|
|
base_angle += (idx & 1) ? float(M_PI / 2.) : 0;
|
|
}
|
|
const double aligning_angle = -base_angle + PI;
|
|
|
|
for (const ExPolygon &expolygon : fill.expolygons) {
|
|
Polygons filled_area = to_polygons(expolygon);
|
|
polygons_rotate(filled_area, aligning_angle);
|
|
BoundingBox bb = get_extents(filled_area);
|
|
|
|
Polygons inner_area = intersection(filled_area, opening(filled_area, 2 * scaled_spacing, 3 * scaled_spacing));
|
|
|
|
inner_area = shrink(inner_area, scaled_spacing * 0.5 - scaled<double>(fill.params.overlap));
|
|
|
|
AABBTreeLines::LinesDistancer<Line> area_walls{to_lines(inner_area)};
|
|
|
|
const size_t n_vlines = (bb.max.x() - bb.min.x() + scaled_spacing - 1) / scaled_spacing;
|
|
std::vector<Line> vertical_lines(n_vlines);
|
|
coord_t y_min = bb.min.y();
|
|
coord_t y_max = bb.max.y();
|
|
for (size_t i = 0; i < n_vlines; i++) {
|
|
coord_t x = bb.min.x() + i * double(scaled_spacing);
|
|
vertical_lines[i].a = Point{x, y_min};
|
|
vertical_lines[i].b = Point{x, y_max};
|
|
}
|
|
if (vertical_lines.size() > 0) {
|
|
vertical_lines.push_back(vertical_lines.back());
|
|
vertical_lines.back().a = Point{coord_t(bb.min.x() + n_vlines * double(scaled_spacing) + scaled_spacing * 0.5), y_min};
|
|
vertical_lines.back().b = Point{vertical_lines.back().a.x(), y_max};
|
|
}
|
|
|
|
std::vector<std::vector<Line>> polygon_sections(n_vlines);
|
|
|
|
for (size_t i = 0; i < n_vlines; i++) {
|
|
const auto intersections = area_walls.intersections_with_line<true>(vertical_lines[i]);
|
|
|
|
for (int intersection_idx = 0; intersection_idx < int(intersections.size()) - 1; intersection_idx++) {
|
|
const auto &a = intersections[intersection_idx];
|
|
const auto &b = intersections[intersection_idx + 1];
|
|
if (area_walls.outside((a.first + b.first) / 2) < 0) {
|
|
if (std::abs(a.first.y() - b.first.y()) > scaled_spacing) {
|
|
polygon_sections[i].emplace_back(a.first, b.first);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
struct Node
|
|
{
|
|
int section_idx;
|
|
int line_idx;
|
|
int skips_taken = 0;
|
|
bool neighbours_explored = false;
|
|
std::vector<std::pair<int, int>> neighbours{};
|
|
};
|
|
|
|
coord_t length_filter = scale_(4);
|
|
size_t skips_allowed = 2;
|
|
size_t min_removal_conut = 5;
|
|
for (int section_idx = 0; section_idx < int(polygon_sections.size()); ++section_idx) {
|
|
for (int line_idx = 0; line_idx < int(polygon_sections[section_idx].size()); ++line_idx) {
|
|
if (const Line &line = polygon_sections[section_idx][line_idx]; line.a != line.b && line.length() < length_filter) {
|
|
std::set<std::pair<int, int>> to_remove{{section_idx, line_idx}};
|
|
std::vector<Node> to_visit{{section_idx, line_idx}};
|
|
|
|
bool initial_touches_long_lines = false;
|
|
if (section_idx > 0) {
|
|
for (int prev_line_idx = 0; prev_line_idx < int(polygon_sections[section_idx - 1].size()); ++prev_line_idx) {
|
|
if (const Line &nl = polygon_sections[section_idx - 1][prev_line_idx];
|
|
nl.a != nl.b && segments_overlap(line.a.y(), line.b.y(), nl.a.y(), nl.b.y())) {
|
|
initial_touches_long_lines = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
while (!to_visit.empty()) {
|
|
Node curr = to_visit.back();
|
|
const Line &curr_l = polygon_sections[curr.section_idx][curr.line_idx];
|
|
if (curr.neighbours_explored) {
|
|
bool is_valid_for_removal = (curr_l.length() < length_filter) &&
|
|
((int(to_remove.size()) - curr.skips_taken > int(min_removal_conut)) ||
|
|
(curr.neighbours.empty() && !initial_touches_long_lines));
|
|
if (!is_valid_for_removal) {
|
|
for (const auto &n : curr.neighbours) {
|
|
if (to_remove.find(n) != to_remove.end()) {
|
|
is_valid_for_removal = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (!is_valid_for_removal) {
|
|
to_remove.erase({curr.section_idx, curr.line_idx});
|
|
}
|
|
to_visit.pop_back();
|
|
} else {
|
|
to_visit.back().neighbours_explored = true;
|
|
int curr_index = to_visit.size() - 1;
|
|
bool can_use_skip = curr_l.length() <= length_filter && curr.skips_taken < int(skips_allowed);
|
|
if (curr.section_idx + 1 < int(polygon_sections.size())) {
|
|
for (int lidx = 0; lidx < int(polygon_sections[curr.section_idx + 1].size()); ++lidx) {
|
|
if (const Line &nl = polygon_sections[curr.section_idx + 1][lidx];
|
|
nl.a != nl.b && segments_overlap(curr_l.a.y(), curr_l.b.y(), nl.a.y(), nl.b.y()) &&
|
|
(nl.length() < length_filter || can_use_skip)) {
|
|
to_visit[curr_index].neighbours.push_back({curr.section_idx + 1, lidx});
|
|
to_remove.insert({curr.section_idx + 1, lidx});
|
|
Node next_node{curr.section_idx + 1, lidx, curr.skips_taken + (nl.length() >= length_filter)};
|
|
to_visit.push_back(next_node);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (const auto &pair : to_remove) {
|
|
Line &l = polygon_sections[pair.first][pair.second];
|
|
l.a = l.b;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (size_t section_idx = 0; section_idx < polygon_sections.size(); section_idx++) {
|
|
polygon_sections[section_idx].erase(std::remove_if(polygon_sections[section_idx].begin(), polygon_sections[section_idx].end(),
|
|
[](const Line &s) { return s.a == s.b; }),
|
|
polygon_sections[section_idx].end());
|
|
std::sort(polygon_sections[section_idx].begin(), polygon_sections[section_idx].end(),
|
|
[](const Line &a, const Line &b) { return a.a.y() < b.b.y(); });
|
|
}
|
|
|
|
Polygons reconstructed_area{};
|
|
// reconstruct polygon from polygon sections
|
|
{
|
|
struct TracedPoly
|
|
{
|
|
Points lows;
|
|
Points highs;
|
|
};
|
|
|
|
std::vector<std::vector<Line>> polygon_sections_w_width = polygon_sections;
|
|
for (auto &slice : polygon_sections_w_width) {
|
|
for (Line &l : slice) {
|
|
l.a -= Point{0.0, 0.5 * scaled_spacing};
|
|
l.b += Point{0.0, 0.5 * scaled_spacing};
|
|
}
|
|
}
|
|
|
|
std::vector<TracedPoly> current_traced_polys;
|
|
for (const auto &polygon_slice : polygon_sections_w_width) {
|
|
std::unordered_set<const Line *> used_segments;
|
|
for (TracedPoly &traced_poly : current_traced_polys) {
|
|
auto candidates_begin = std::upper_bound(polygon_slice.begin(), polygon_slice.end(), traced_poly.lows.back(),
|
|
[](const Point &low, const Line &seg) { return seg.b.y() > low.y(); });
|
|
auto candidates_end = std::upper_bound(polygon_slice.begin(), polygon_slice.end(), traced_poly.highs.back(),
|
|
[](const Point &high, const Line &seg) { return seg.a.y() > high.y(); });
|
|
|
|
bool segment_added = false;
|
|
for (auto candidate = candidates_begin; candidate != candidates_end && !segment_added; candidate++) {
|
|
if (used_segments.find(&(*candidate)) != used_segments.end()) {
|
|
continue;
|
|
}
|
|
if (connect_extrusions && (traced_poly.lows.back() - candidates_begin->a).cast<double>().squaredNorm() <
|
|
squared_distance_limit_reconnection) {
|
|
traced_poly.lows.push_back(candidates_begin->a);
|
|
} else {
|
|
traced_poly.lows.push_back(traced_poly.lows.back() + Point{scaled_spacing / 2, 0});
|
|
traced_poly.lows.push_back(candidates_begin->a - Point{scaled_spacing / 2, 0});
|
|
traced_poly.lows.push_back(candidates_begin->a);
|
|
}
|
|
|
|
if (connect_extrusions && (traced_poly.highs.back() - candidates_begin->b).cast<double>().squaredNorm() <
|
|
squared_distance_limit_reconnection) {
|
|
traced_poly.highs.push_back(candidates_begin->b);
|
|
} else {
|
|
traced_poly.highs.push_back(traced_poly.highs.back() + Point{scaled_spacing / 2, 0});
|
|
traced_poly.highs.push_back(candidates_begin->b - Point{scaled_spacing / 2, 0});
|
|
traced_poly.highs.push_back(candidates_begin->b);
|
|
}
|
|
segment_added = true;
|
|
used_segments.insert(&(*candidates_begin));
|
|
}
|
|
|
|
if (!segment_added) {
|
|
// Zero or multiple overlapping segments. Resolving this is nontrivial,
|
|
// so we just close this polygon and maybe open several new. This will hopefully happen much less often
|
|
traced_poly.lows.push_back(traced_poly.lows.back() + Point{scaled_spacing / 2, 0});
|
|
traced_poly.highs.push_back(traced_poly.highs.back() + Point{scaled_spacing / 2, 0});
|
|
Polygon &new_poly = reconstructed_area.emplace_back(std::move(traced_poly.lows));
|
|
new_poly.points.insert(new_poly.points.end(), traced_poly.highs.rbegin(), traced_poly.highs.rend());
|
|
traced_poly.lows.clear();
|
|
traced_poly.highs.clear();
|
|
}
|
|
}
|
|
|
|
current_traced_polys.erase(std::remove_if(current_traced_polys.begin(), current_traced_polys.end(),
|
|
[](const TracedPoly &tp) { return tp.lows.empty(); }),
|
|
current_traced_polys.end());
|
|
|
|
for (const auto &segment : polygon_slice) {
|
|
if (used_segments.find(&segment) == used_segments.end()) {
|
|
TracedPoly &new_tp = current_traced_polys.emplace_back();
|
|
new_tp.lows.push_back(segment.a - Point{scaled_spacing / 2, 0});
|
|
new_tp.lows.push_back(segment.a);
|
|
new_tp.highs.push_back(segment.b - Point{scaled_spacing / 2, 0});
|
|
new_tp.highs.push_back(segment.b);
|
|
}
|
|
}
|
|
}
|
|
|
|
// add not closed polys
|
|
for (TracedPoly &traced_poly : current_traced_polys) {
|
|
Polygon &new_poly = reconstructed_area.emplace_back(std::move(traced_poly.lows));
|
|
new_poly.points.insert(new_poly.points.end(), traced_poly.highs.rbegin(), traced_poly.highs.rend());
|
|
}
|
|
}
|
|
|
|
polygons_append(normal_fill_areas, reconstructed_area);
|
|
}
|
|
|
|
polygons_rotate(normal_fill_areas, -aligning_angle);
|
|
|
|
// Do the split
|
|
ExPolygons normal_fill_areas_ex = union_safety_offset_ex(normal_fill_areas);
|
|
ExPolygons narrow_fill_areas = diff_ex(fill.expolygons, normal_fill_areas_ex);
|
|
|
|
// Merge very small areas that is smaller than a single line width to the normal infill if they touches
|
|
for (auto iter = narrow_fill_areas.begin(); iter != narrow_fill_areas.end();) {
|
|
auto shrinked_expoly = offset_ex(*iter, -scaled_spacing * 0.5);
|
|
if (shrinked_expoly.empty()) {
|
|
// Too small! Check if it touches any normal infills
|
|
auto expanede_exploy = offset_ex(*iter, scaled_spacing * 0.3);
|
|
Polygons normal_fill_area_clipped = ClipperUtils::clip_clipper_polygons_with_subject_bbox(normal_fill_areas_ex, get_extents(expanede_exploy));
|
|
auto touch_check = intersection_ex(normal_fill_area_clipped, expanede_exploy);
|
|
if (!touch_check.empty()) {
|
|
normal_fill_areas_ex.emplace_back(*iter);
|
|
iter = narrow_fill_areas.erase(iter);
|
|
continue;
|
|
}
|
|
}
|
|
iter++;
|
|
}
|
|
|
|
if (narrow_fill_areas.empty()) {
|
|
// No split needed
|
|
return;
|
|
}
|
|
|
|
// Expand the normal infills a little bit to avoid gaps between normal and narrow infills
|
|
normal_infill = intersection_ex(offset_ex(normal_fill_areas_ex, scaled_spacing * 0.1), fill.expolygons);
|
|
narrow_infill = narrow_fill_areas;
|
|
|
|
#ifdef DEBUG_SURFACE_SPLIT
|
|
{
|
|
BoundingBox bbox = get_extents(fill.expolygons);
|
|
bbox.offset(scale_(1.));
|
|
::Slic3r::SVG svg(debug_out_path("surface_split_%d.svg", layer_id), bbox);
|
|
svg.draw(to_lines(fill.expolygons), "red", scale_(0.1));
|
|
svg.draw(normal_infill, "blue", 0.5);
|
|
svg.draw(narrow_infill, "green", 0.5);
|
|
svg.Close();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
std::vector<SurfaceFill> group_fills(const Layer &layer)
|
|
{
|
|
std::vector<SurfaceFill> surface_fills;
|
|
|
|
// Fill in a map of a region & surface to SurfaceFillParams.
|
|
std::set<SurfaceFillParams> set_surface_params;
|
|
std::vector<std::vector<const SurfaceFillParams*>> region_to_surface_params(layer.regions().size(), std::vector<const SurfaceFillParams*>());
|
|
SurfaceFillParams params;
|
|
bool has_internal_voids = false;
|
|
const PrintObjectConfig& object_config = layer.object()->config();
|
|
for (size_t region_id = 0; region_id < layer.regions().size(); ++ region_id) {
|
|
const LayerRegion &layerm = *layer.regions()[region_id];
|
|
region_to_surface_params[region_id].assign(layerm.fill_surfaces.size(), nullptr);
|
|
for (const Surface &surface : layerm.fill_surfaces.surfaces)
|
|
if (surface.surface_type == stInternalVoid)
|
|
has_internal_voids = true;
|
|
else {
|
|
const PrintRegionConfig ®ion_config = layerm.region().config();
|
|
FlowRole extrusion_role = surface.is_top() ? frTopSolidInfill : (surface.is_solid() ? frSolidInfill : frInfill);
|
|
bool is_bridge = layer.id() > 0 && surface.is_bridge();
|
|
params.extruder = layerm.region().extruder(extrusion_role);
|
|
params.pattern = region_config.sparse_infill_pattern.value;
|
|
params.density = float(region_config.sparse_infill_density);
|
|
|
|
if (surface.is_solid()) {
|
|
params.density = 100.f;
|
|
//FIXME for non-thick bridges, shall we allow a bottom surface pattern?
|
|
if (surface.is_solid_infill())
|
|
params.pattern = region_config.internal_solid_infill_pattern.value;
|
|
else if (surface.is_external() && ! is_bridge) {
|
|
if(surface.is_top())
|
|
params.pattern = region_config.top_surface_pattern.value;
|
|
else
|
|
params.pattern = region_config.bottom_surface_pattern.value;
|
|
}
|
|
else {
|
|
if(region_config.top_surface_pattern == ipMonotonic || region_config.top_surface_pattern == ipMonotonicLine)
|
|
params.pattern = ipMonotonic;
|
|
else
|
|
params.pattern = ipRectilinear;
|
|
}
|
|
} else if (params.density <= 0)
|
|
continue;
|
|
|
|
params.extrusion_role = erInternalInfill;
|
|
if (is_bridge) {
|
|
if (surface.is_internal_bridge())
|
|
params.extrusion_role = erInternalBridgeInfill;
|
|
else
|
|
params.extrusion_role = erBridgeInfill;
|
|
} else if (surface.is_solid()) {
|
|
if (surface.is_top()) {
|
|
params.extrusion_role = erTopSolidInfill;
|
|
} else if (surface.is_bottom()) {
|
|
params.extrusion_role = erBottomSurface;
|
|
} else {
|
|
params.extrusion_role = erSolidInfill;
|
|
}
|
|
}
|
|
params.bridge_angle = float(surface.bridge_angle);
|
|
params.angle = float(Geometry::deg2rad(region_config.infill_direction.value));
|
|
|
|
// Calculate the actual flow we'll be using for this infill.
|
|
params.bridge = is_bridge || Fill::use_bridge_flow(params.pattern);
|
|
params.flow = params.bridge ?
|
|
//BBS: always enable thick bridge for internal bridge
|
|
layerm.bridging_flow(extrusion_role, (surface.is_bridge() && !surface.is_external()) || object_config.thick_bridges) :
|
|
layerm.flow(extrusion_role, (surface.thickness == -1) ? layer.height : surface.thickness);
|
|
|
|
// Calculate flow spacing for infill pattern generation.
|
|
if (surface.is_solid() || is_bridge) {
|
|
params.spacing = params.flow.spacing();
|
|
// Don't limit anchor length for solid or bridging infill.
|
|
params.anchor_length = 1000.f;
|
|
params.anchor_length_max = 1000.f;
|
|
} else {
|
|
// Internal infill. Calculating infill line spacing independent of the current layer height and 1st layer status,
|
|
// so that internall infill will be aligned over all layers of the current region.
|
|
params.spacing = layerm.region().flow(*layer.object(), frInfill, layer.object()->config().layer_height, false).spacing();
|
|
// Anchor a sparse infill to inner perimeters with the following anchor length:
|
|
params.anchor_length = float(region_config.infill_anchor);
|
|
if (region_config.infill_anchor.percent)
|
|
params.anchor_length = float(params.anchor_length * 0.01 * params.spacing);
|
|
params.anchor_length_max = float(region_config.infill_anchor_max);
|
|
if (region_config.infill_anchor_max.percent)
|
|
params.anchor_length_max = float(params.anchor_length_max * 0.01 * params.spacing);
|
|
params.anchor_length = std::min(params.anchor_length, params.anchor_length_max);
|
|
}
|
|
|
|
auto it_params = set_surface_params.find(params);
|
|
if (it_params == set_surface_params.end())
|
|
it_params = set_surface_params.insert(it_params, params);
|
|
region_to_surface_params[region_id][&surface - &layerm.fill_surfaces.surfaces.front()] = &(*it_params);
|
|
}
|
|
}
|
|
|
|
surface_fills.reserve(set_surface_params.size());
|
|
for (const SurfaceFillParams ¶ms : set_surface_params) {
|
|
const_cast<SurfaceFillParams&>(params).idx = surface_fills.size();
|
|
surface_fills.emplace_back(params);
|
|
}
|
|
|
|
for (size_t region_id = 0; region_id < layer.regions().size(); ++ region_id) {
|
|
const LayerRegion &layerm = *layer.regions()[region_id];
|
|
for (const Surface &surface : layerm.fill_surfaces.surfaces)
|
|
if (surface.surface_type != stInternalVoid) {
|
|
const SurfaceFillParams *params = region_to_surface_params[region_id][&surface - &layerm.fill_surfaces.surfaces.front()];
|
|
if (params != nullptr) {
|
|
SurfaceFill &fill = surface_fills[params->idx];
|
|
if (fill.region_id == size_t(-1)) {
|
|
fill.region_id = region_id;
|
|
fill.surface = surface;
|
|
fill.expolygons.emplace_back(std::move(fill.surface.expolygon));
|
|
//BBS
|
|
fill.region_id_group.push_back(region_id);
|
|
fill.no_overlap_expolygons = layerm.fill_no_overlap_expolygons;
|
|
} else {
|
|
fill.expolygons.emplace_back(surface.expolygon);
|
|
//BBS
|
|
auto t = find(fill.region_id_group.begin(), fill.region_id_group.end(), region_id);
|
|
if (t == fill.region_id_group.end()) {
|
|
fill.region_id_group.push_back(region_id);
|
|
fill.no_overlap_expolygons = union_ex(fill.no_overlap_expolygons, layerm.fill_no_overlap_expolygons);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
Polygons all_polygons;
|
|
for (SurfaceFill &fill : surface_fills)
|
|
if (! fill.expolygons.empty()) {
|
|
if (fill.expolygons.size() > 1 || ! all_polygons.empty()) {
|
|
Polygons polys = to_polygons(std::move(fill.expolygons));
|
|
// Make a union of polygons, use a safety offset, subtract the preceding polygons.
|
|
// Bridges are processed first (see SurfaceFill::operator<())
|
|
fill.expolygons = all_polygons.empty() ? union_safety_offset_ex(polys) : diff_ex(polys, all_polygons, ApplySafetyOffset::Yes);
|
|
append(all_polygons, std::move(polys));
|
|
} else if (&fill != &surface_fills.back())
|
|
append(all_polygons, to_polygons(fill.expolygons));
|
|
}
|
|
}
|
|
|
|
// we need to detect any narrow surfaces that might collapse
|
|
// when adding spacing below
|
|
// such narrow surfaces are often generated in sloping walls
|
|
// by bridge_over_infill() and combine_infill() as a result of the
|
|
// subtraction of the combinable area from the layer infill area,
|
|
// which leaves small areas near the perimeters
|
|
// we are going to grow such regions by overlapping them with the void (if any)
|
|
// TODO: detect and investigate whether there could be narrow regions without
|
|
// any void neighbors
|
|
if (has_internal_voids) {
|
|
// Internal voids are generated only if "infill_only_where_needed" or "infill_every_layers" are active.
|
|
coord_t distance_between_surfaces = 0;
|
|
Polygons surfaces_polygons;
|
|
Polygons voids;
|
|
int region_internal_infill = -1;
|
|
int region_solid_infill = -1;
|
|
int region_some_infill = -1;
|
|
for (SurfaceFill &surface_fill : surface_fills)
|
|
if (! surface_fill.expolygons.empty()) {
|
|
distance_between_surfaces = std::max(distance_between_surfaces, surface_fill.params.flow.scaled_spacing());
|
|
append((surface_fill.surface.surface_type == stInternalVoid) ? voids : surfaces_polygons, to_polygons(surface_fill.expolygons));
|
|
if (surface_fill.surface.surface_type == stInternalSolid)
|
|
region_internal_infill = (int)surface_fill.region_id;
|
|
if (surface_fill.surface.is_solid())
|
|
region_solid_infill = (int)surface_fill.region_id;
|
|
if (surface_fill.surface.surface_type != stInternalVoid)
|
|
region_some_infill = (int)surface_fill.region_id;
|
|
}
|
|
if (! voids.empty() && ! surfaces_polygons.empty()) {
|
|
// First clip voids by the printing polygons, as the voids were ignored by the loop above during mutual clipping.
|
|
voids = diff(voids, surfaces_polygons);
|
|
// Corners of infill regions, which would not be filled with an extrusion path with a radius of distance_between_surfaces/2
|
|
Polygons collapsed = diff(
|
|
surfaces_polygons,
|
|
opening(surfaces_polygons, float(distance_between_surfaces /2), float(distance_between_surfaces / 2 + ClipperSafetyOffset)));
|
|
//FIXME why the voids are added to collapsed here? First it is expensive, second the result may lead to some unwanted regions being
|
|
// added if two offsetted void regions merge.
|
|
// polygons_append(voids, collapsed);
|
|
ExPolygons extensions = intersection_ex(expand(collapsed, float(distance_between_surfaces)), voids, ApplySafetyOffset::Yes);
|
|
// Now find an internal infill SurfaceFill to add these extrusions to.
|
|
SurfaceFill *internal_solid_fill = nullptr;
|
|
unsigned int region_id = 0;
|
|
if (region_internal_infill != -1)
|
|
region_id = region_internal_infill;
|
|
else if (region_solid_infill != -1)
|
|
region_id = region_solid_infill;
|
|
else if (region_some_infill != -1)
|
|
region_id = region_some_infill;
|
|
const LayerRegion& layerm = *layer.regions()[region_id];
|
|
for (SurfaceFill &surface_fill : surface_fills)
|
|
if (surface_fill.surface.surface_type == stInternalSolid && std::abs(layer.height - surface_fill.params.flow.height()) < EPSILON) {
|
|
internal_solid_fill = &surface_fill;
|
|
break;
|
|
}
|
|
if (internal_solid_fill == nullptr) {
|
|
// Produce another solid fill.
|
|
params.extruder = layerm.region().extruder(frSolidInfill);
|
|
const auto top_pattern = layerm.region().config().top_surface_pattern;
|
|
if(top_pattern == ipMonotonic || top_pattern == ipMonotonicLine)
|
|
params.pattern = top_pattern;
|
|
else
|
|
params.pattern = ipRectilinear;
|
|
params.density = 100.f;
|
|
params.extrusion_role = erInternalInfill;
|
|
params.angle = float(Geometry::deg2rad(layerm.region().config().infill_direction.value));
|
|
// calculate the actual flow we'll be using for this infill
|
|
params.flow = layerm.flow(frSolidInfill);
|
|
params.spacing = params.flow.spacing();
|
|
surface_fills.emplace_back(params);
|
|
surface_fills.back().surface.surface_type = stInternalSolid;
|
|
surface_fills.back().surface.thickness = layer.height;
|
|
surface_fills.back().expolygons = std::move(extensions);
|
|
} else {
|
|
append(extensions, std::move(internal_solid_fill->expolygons));
|
|
internal_solid_fill->expolygons = union_ex(extensions);
|
|
}
|
|
}
|
|
}
|
|
|
|
// BBS: detect narrow internal solid infill area and use ipConcentricInternal pattern instead
|
|
if (layer.object()->config().detect_narrow_internal_solid_infill) {
|
|
size_t surface_fills_size = surface_fills.size();
|
|
for (size_t i = 0; i < surface_fills_size; i++) {
|
|
if (surface_fills[i].surface.surface_type != stInternalSolid)
|
|
continue;
|
|
|
|
ExPolygons normal_infill;
|
|
ExPolygons narrow_infill;
|
|
split_solid_surface(layer.id(), surface_fills[i], normal_infill, narrow_infill);
|
|
|
|
if (narrow_infill.empty()) {
|
|
// BBS: has no narrow expolygon
|
|
continue;
|
|
} else if (normal_infill.empty()) {
|
|
// BBS: all expolygons are narrow, directly change the fill pattern
|
|
surface_fills[i].params.pattern = ipConcentricInternal;
|
|
}
|
|
else {
|
|
// BBS: some expolygons are narrow, spilit surface_fills[i] and rearrange the expolygons
|
|
params = surface_fills[i].params;
|
|
params.pattern = ipConcentricInternal;
|
|
surface_fills.emplace_back(params);
|
|
surface_fills.back().region_id = surface_fills[i].region_id;
|
|
surface_fills.back().surface.surface_type = stInternalSolid;
|
|
surface_fills.back().surface.thickness = surface_fills[i].surface.thickness;
|
|
surface_fills.back().region_id_group = surface_fills[i].region_id_group;
|
|
surface_fills.back().no_overlap_expolygons = surface_fills[i].no_overlap_expolygons;
|
|
// BBS: move the narrow expolygons to new surface_fills.back();
|
|
surface_fills.back().expolygons = std::move(narrow_infill);
|
|
// BBS: delete the narrow expolygons from old surface_fills
|
|
surface_fills[i].expolygons = std::move(normal_infill);
|
|
}
|
|
}
|
|
}
|
|
|
|
return surface_fills;
|
|
}
|
|
|
|
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
|
void export_group_fills_to_svg(const char *path, const std::vector<SurfaceFill> &fills)
|
|
{
|
|
BoundingBox bbox;
|
|
for (const auto &fill : fills)
|
|
for (const auto &expoly : fill.expolygons)
|
|
bbox.merge(get_extents(expoly));
|
|
Point legend_size = export_surface_type_legend_to_svg_box_size();
|
|
Point legend_pos(bbox.min(0), bbox.max(1));
|
|
bbox.merge(Point(std::max(bbox.min(0) + legend_size(0), bbox.max(0)), bbox.max(1) + legend_size(1)));
|
|
|
|
SVG svg(path, bbox);
|
|
const float transparency = 0.5f;
|
|
for (const auto &fill : fills)
|
|
for (const auto &expoly : fill.expolygons)
|
|
svg.draw(expoly, surface_type_to_color_name(fill.surface.surface_type), transparency);
|
|
export_surface_type_legend_to_svg(svg, legend_pos);
|
|
svg.Close();
|
|
}
|
|
#endif
|
|
|
|
// friend to Layer
|
|
void Layer::make_fills(FillAdaptive::Octree* adaptive_fill_octree, FillAdaptive::Octree* support_fill_octree, FillLightning::Generator* lightning_generator)
|
|
{
|
|
for (LayerRegion *layerm : m_regions)
|
|
layerm->fills.clear();
|
|
|
|
|
|
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
|
// this->export_region_fill_surfaces_to_svg_debug("10_fill-initial");
|
|
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
|
|
|
std::vector<SurfaceFill> surface_fills = group_fills(*this);
|
|
const Slic3r::BoundingBox bbox = this->object()->bounding_box();
|
|
const auto resolution = this->object()->print()->config().resolution.value;
|
|
|
|
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
|
{
|
|
static int iRun = 0;
|
|
export_group_fills_to_svg(debug_out_path("Layer-fill_surfaces-10_fill-final-%d.svg", iRun ++).c_str(), surface_fills);
|
|
}
|
|
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
|
|
|
for (SurfaceFill &surface_fill : surface_fills) {
|
|
// Create the filler object.
|
|
std::unique_ptr<Fill> f = std::unique_ptr<Fill>(Fill::new_from_type(surface_fill.params.pattern));
|
|
f->set_bounding_box(bbox);
|
|
f->layer_id = this->id();
|
|
f->z = this->print_z;
|
|
f->angle = surface_fill.params.angle;
|
|
f->adapt_fill_octree = (surface_fill.params.pattern == ipSupportCubic) ? support_fill_octree : adaptive_fill_octree;
|
|
f->print_config = &this->object()->print()->config();
|
|
f->print_object_config = &this->object()->config();
|
|
|
|
if (surface_fill.params.pattern == ipLightning)
|
|
dynamic_cast<FillLightning::Filler*>(f.get())->generator = lightning_generator;
|
|
|
|
// calculate flow spacing for infill pattern generation
|
|
bool using_internal_flow = ! surface_fill.surface.is_solid() && ! surface_fill.params.bridge;
|
|
double link_max_length = 0.;
|
|
if (! surface_fill.params.bridge) {
|
|
#if 0
|
|
link_max_length = layerm.region()->config().get_abs_value(surface.is_external() ? "external_fill_link_max_length" : "fill_link_max_length", flow.spacing());
|
|
// printf("flow spacing: %f, is_external: %d, link_max_length: %lf\n", flow.spacing(), int(surface.is_external()), link_max_length);
|
|
#else
|
|
if (surface_fill.params.density > 80.) // 80%
|
|
link_max_length = 3. * f->spacing;
|
|
#endif
|
|
}
|
|
|
|
LayerRegion* layerm = this->m_regions[surface_fill.region_id];
|
|
|
|
// Maximum length of the perimeter segment linking two infill lines.
|
|
f->link_max_length = (coord_t)scale_(link_max_length);
|
|
// Used by the concentric infill pattern to clip the loops to create extrusion paths.
|
|
f->loop_clipping = coord_t(scale_(layerm->region().config().seam_gap.get_abs_value(surface_fill.params.flow.nozzle_diameter())));
|
|
|
|
// apply half spacing using this flow's own spacing and generate infill
|
|
FillParams params;
|
|
params.density = float(0.01 * surface_fill.params.density);
|
|
params.dont_adjust = false; // surface_fill.params.dont_adjust;
|
|
params.anchor_length = surface_fill.params.anchor_length;
|
|
params.anchor_length_max = surface_fill.params.anchor_length_max;
|
|
params.resolution = resolution;
|
|
params.use_arachne = surface_fill.params.pattern == ipConcentric || surface_fill.params.pattern == ipConcentricInternal;
|
|
params.layer_height = layerm->layer()->height;
|
|
|
|
// BBS
|
|
params.flow = surface_fill.params.flow;
|
|
params.extrusion_role = surface_fill.params.extrusion_role;
|
|
params.using_internal_flow = using_internal_flow;
|
|
params.no_extrusion_overlap = surface_fill.params.overlap;
|
|
params.config = &layerm->region().config();
|
|
if (surface_fill.params.pattern == ipGrid)
|
|
params.can_reverse = false;
|
|
for (ExPolygon& expoly : surface_fill.expolygons) {
|
|
f->no_overlap_expolygons = intersection_ex(surface_fill.no_overlap_expolygons, ExPolygons() = {expoly}, ApplySafetyOffset::Yes);
|
|
// Spacing is modified by the filler to indicate adjustments. Reset it for each expolygon.
|
|
f->spacing = surface_fill.params.spacing;
|
|
surface_fill.surface.expolygon = std::move(expoly);
|
|
|
|
if(surface_fill.params.bridge && surface_fill.surface.is_external() && surface_fill.params.density > 99.0){
|
|
params.density = layerm->region().config().bridge_density.get_abs_value(1.0);
|
|
params.dont_adjust = true;
|
|
}
|
|
// BBS: make fill
|
|
f->fill_surface_extrusion(&surface_fill.surface,
|
|
params,
|
|
m_regions[surface_fill.region_id]->fills.entities);
|
|
}
|
|
}
|
|
|
|
// add thin fill regions
|
|
// Unpacks the collection, creates multiple collections per path.
|
|
// The path type could be ExtrusionPath, ExtrusionLoop or ExtrusionEntityCollection.
|
|
// Why the paths are unpacked?
|
|
for (LayerRegion *layerm : m_regions)
|
|
for (const ExtrusionEntity *thin_fill : layerm->thin_fills.entities) {
|
|
ExtrusionEntityCollection &collection = *(new ExtrusionEntityCollection());
|
|
layerm->fills.entities.push_back(&collection);
|
|
collection.entities.push_back(thin_fill->clone());
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
for (LayerRegion *layerm : m_regions)
|
|
for (size_t i = 0; i < layerm->fills.entities.size(); ++ i)
|
|
assert(dynamic_cast<ExtrusionEntityCollection*>(layerm->fills.entities[i]) != nullptr);
|
|
#endif
|
|
}
|
|
|
|
Polylines Layer::generate_sparse_infill_polylines_for_anchoring(FillAdaptive::Octree* adaptive_fill_octree, FillAdaptive::Octree* support_fill_octree, FillLightning::Generator* lightning_generator) const
|
|
{
|
|
std::vector<SurfaceFill> surface_fills = group_fills(*this);
|
|
const Slic3r::BoundingBox bbox = this->object()->bounding_box();
|
|
const auto resolution = this->object()->print()->config().resolution.value;
|
|
|
|
Polylines sparse_infill_polylines{};
|
|
|
|
for (SurfaceFill &surface_fill : surface_fills) {
|
|
if (surface_fill.surface.surface_type != stInternal) {
|
|
continue;
|
|
}
|
|
|
|
switch (surface_fill.params.pattern) {
|
|
case ipCount: continue; break;
|
|
case ipSupportBase: continue; break;
|
|
case ipConcentricInternal: continue; break;
|
|
case ipLightning:
|
|
case ipAdaptiveCubic:
|
|
case ipSupportCubic:
|
|
case ipRectilinear:
|
|
case ipMonotonic:
|
|
case ipMonotonicLine:
|
|
case ipAlignedRectilinear:
|
|
case ipGrid:
|
|
case ipTriangles:
|
|
case ipStars:
|
|
case ipCubic:
|
|
case ipLine:
|
|
case ipConcentric:
|
|
case ipHoneycomb:
|
|
case ip3DHoneycomb:
|
|
case ipGyroid:
|
|
case ipHilbertCurve:
|
|
case ipArchimedeanChords:
|
|
case ipOctagramSpiral: break;
|
|
}
|
|
|
|
// Create the filler object.
|
|
std::unique_ptr<Fill> f = std::unique_ptr<Fill>(Fill::new_from_type(surface_fill.params.pattern));
|
|
f->set_bounding_box(bbox);
|
|
f->layer_id = this->id() - this->object()->get_layer(0)->id(); // We need to subtract raft layers.
|
|
f->z = this->print_z;
|
|
f->angle = surface_fill.params.angle;
|
|
f->adapt_fill_octree = (surface_fill.params.pattern == ipSupportCubic) ? support_fill_octree : adaptive_fill_octree;
|
|
f->print_config = &this->object()->print()->config();
|
|
f->print_object_config = &this->object()->config();
|
|
|
|
if (surface_fill.params.pattern == ipLightning)
|
|
dynamic_cast<FillLightning::Filler *>(f.get())->generator = lightning_generator;
|
|
|
|
// calculate flow spacing for infill pattern generation
|
|
double link_max_length = 0.;
|
|
if (!surface_fill.params.bridge) {
|
|
#if 0
|
|
link_max_length = layerm.region()->config().get_abs_value(surface.is_external() ? "external_fill_link_max_length" : "fill_link_max_length", flow.spacing());
|
|
// printf("flow spacing: %f, is_external: %d, link_max_length: %lf\n", flow.spacing(), int(surface.is_external()), link_max_length);
|
|
#else
|
|
if (surface_fill.params.density > 80.) // 80%
|
|
link_max_length = 3. * f->spacing;
|
|
#endif
|
|
}
|
|
|
|
LayerRegion &layerm = *m_regions[surface_fill.region_id];
|
|
|
|
// Maximum length of the perimeter segment linking two infill lines.
|
|
f->link_max_length = (coord_t) scale_(link_max_length);
|
|
// Used by the concentric infill pattern to clip the loops to create extrusion paths.
|
|
f->loop_clipping = coord_t(scale_(layerm.region().config().seam_gap.get_abs_value(surface_fill.params.flow.nozzle_diameter())));
|
|
|
|
// apply half spacing using this flow's own spacing and generate infill
|
|
FillParams params;
|
|
params.density = float(0.01 * surface_fill.params.density);
|
|
params.dont_adjust = false; // surface_fill.params.dont_adjust;
|
|
params.anchor_length = surface_fill.params.anchor_length;
|
|
params.anchor_length_max = surface_fill.params.anchor_length_max;
|
|
params.resolution = resolution;
|
|
params.use_arachne = false;
|
|
params.layer_height = layerm.layer()->height;
|
|
|
|
for (ExPolygon &expoly : surface_fill.expolygons) {
|
|
// Spacing is modified by the filler to indicate adjustments. Reset it for each expolygon.
|
|
f->spacing = surface_fill.params.spacing;
|
|
surface_fill.surface.expolygon = std::move(expoly);
|
|
try {
|
|
Polylines polylines = f->fill_surface(&surface_fill.surface, params);
|
|
sparse_infill_polylines.insert(sparse_infill_polylines.end(), polylines.begin(), polylines.end());
|
|
} catch (InfillFailedException &) {}
|
|
}
|
|
}
|
|
|
|
return sparse_infill_polylines;
|
|
}
|
|
|
|
// Create ironing extrusions over top surfaces.
|
|
void Layer::make_ironing()
|
|
{
|
|
// LayerRegion::slices contains surfaces marked with SurfaceType.
|
|
// Here we want to collect top surfaces extruded with the same extruder.
|
|
// A surface will be ironed with the same extruder to not contaminate the print with another material leaking from the nozzle.
|
|
|
|
// First classify regions based on the extruder used.
|
|
struct IroningParams {
|
|
InfillPattern pattern;
|
|
int extruder = -1;
|
|
bool just_infill = false;
|
|
// Spacing of the ironing lines, also to calculate the extrusion flow from.
|
|
double line_spacing;
|
|
// Height of the extrusion, to calculate the extrusion flow from.
|
|
double height;
|
|
double speed;
|
|
double angle;
|
|
|
|
bool operator<(const IroningParams &rhs) const {
|
|
if (this->extruder < rhs.extruder)
|
|
return true;
|
|
if (this->extruder > rhs.extruder)
|
|
return false;
|
|
if (int(this->just_infill) < int(rhs.just_infill))
|
|
return true;
|
|
if (int(this->just_infill) > int(rhs.just_infill))
|
|
return false;
|
|
if (this->line_spacing < rhs.line_spacing)
|
|
return true;
|
|
if (this->line_spacing > rhs.line_spacing)
|
|
return false;
|
|
if (this->height < rhs.height)
|
|
return true;
|
|
if (this->height > rhs.height)
|
|
return false;
|
|
if (this->speed < rhs.speed)
|
|
return true;
|
|
if (this->speed > rhs.speed)
|
|
return false;
|
|
if (this->angle < rhs.angle)
|
|
return true;
|
|
if (this->angle > rhs.angle)
|
|
return false;
|
|
return false;
|
|
}
|
|
|
|
bool operator==(const IroningParams &rhs) const {
|
|
return this->extruder == rhs.extruder && this->just_infill == rhs.just_infill &&
|
|
this->line_spacing == rhs.line_spacing && this->height == rhs.height && this->speed == rhs.speed && this->angle == rhs.angle && this->pattern == rhs.pattern;
|
|
}
|
|
|
|
LayerRegion *layerm = nullptr;
|
|
|
|
// IdeaMaker: ironing
|
|
// ironing flowrate (5% percent)
|
|
// ironing speed (10 mm/sec)
|
|
|
|
// Kisslicer:
|
|
// iron off, Sweep, Group
|
|
// ironing speed: 15 mm/sec
|
|
|
|
// Cura:
|
|
// Pattern (zig-zag / concentric)
|
|
// line spacing (0.1mm)
|
|
// flow: from normal layer height. 10%
|
|
// speed: 20 mm/sec
|
|
};
|
|
|
|
std::vector<IroningParams> by_extruder;
|
|
double default_layer_height = this->object()->config().layer_height;
|
|
|
|
for (LayerRegion *layerm : m_regions)
|
|
if (! layerm->slices.empty()) {
|
|
IroningParams ironing_params;
|
|
const PrintRegionConfig &config = layerm->region().config();
|
|
if (config.ironing_type != IroningType::NoIroning &&
|
|
(config.ironing_type == IroningType::AllSolid ||
|
|
(config.top_shell_layers > 0 &&
|
|
(config.ironing_type == IroningType::TopSurfaces ||
|
|
(config.ironing_type == IroningType::TopmostOnly && layerm->layer()->upper_layer == nullptr))))) {
|
|
if (config.wall_filament == config.solid_infill_filament || config.wall_loops == 0) {
|
|
// Iron the whole face.
|
|
ironing_params.extruder = config.solid_infill_filament;
|
|
} else {
|
|
// Iron just the infill.
|
|
ironing_params.extruder = config.solid_infill_filament;
|
|
}
|
|
}
|
|
if (ironing_params.extruder != -1) {
|
|
//TODO just_infill is currently not used.
|
|
ironing_params.just_infill = false;
|
|
ironing_params.line_spacing = config.ironing_spacing;
|
|
ironing_params.height = default_layer_height * 0.01 * config.ironing_flow;
|
|
ironing_params.speed = config.ironing_speed;
|
|
ironing_params.angle = (config.ironing_angle >= 0 ? config.ironing_angle : config.infill_direction) * M_PI / 180.;
|
|
ironing_params.pattern = config.ironing_pattern;
|
|
ironing_params.layerm = layerm;
|
|
by_extruder.emplace_back(ironing_params);
|
|
}
|
|
}
|
|
std::sort(by_extruder.begin(), by_extruder.end());
|
|
|
|
FillParams fill_params;
|
|
fill_params.density = 1.;
|
|
fill_params.monotonic = true;
|
|
InfillPattern f_pattern = ipRectilinear;
|
|
std::unique_ptr<Fill> f = std::unique_ptr<Fill>(Fill::new_from_type(f_pattern));
|
|
f->set_bounding_box(this->object()->bounding_box());
|
|
f->layer_id = this->id();
|
|
f->z = this->print_z;
|
|
f->overlap = 0;
|
|
for (size_t i = 0; i < by_extruder.size();) {
|
|
// Find span of regions equivalent to the ironing operation.
|
|
IroningParams &ironing_params = by_extruder[i];
|
|
// Create the filler object.
|
|
if( f_pattern != ironing_params.pattern )
|
|
{
|
|
f_pattern = ironing_params.pattern;
|
|
f = std::unique_ptr<Fill>(Fill::new_from_type(f_pattern));
|
|
f->set_bounding_box(this->object()->bounding_box());
|
|
f->layer_id = this->id();
|
|
f->z = this->print_z;
|
|
f->overlap = 0;
|
|
}
|
|
|
|
size_t j = i;
|
|
for (++ j; j < by_extruder.size() && ironing_params == by_extruder[j]; ++ j) ;
|
|
|
|
// Create the ironing extrusions for regions <i, j)
|
|
ExPolygons ironing_areas;
|
|
double nozzle_dmr = this->object()->print()->config().nozzle_diameter.get_at(ironing_params.extruder - 1);
|
|
if (ironing_params.just_infill) {
|
|
//TODO just_infill is currently not used.
|
|
// Just infill.
|
|
} else {
|
|
// Infill and perimeter.
|
|
// Merge top surfaces with the same ironing parameters.
|
|
Polygons polys;
|
|
Polygons infills;
|
|
for (size_t k = i; k < j; ++ k) {
|
|
const IroningParams &ironing_params = by_extruder[k];
|
|
const PrintRegionConfig ®ion_config = ironing_params.layerm->region().config();
|
|
bool iron_everything = region_config.ironing_type == IroningType::AllSolid;
|
|
bool iron_completely = iron_everything;
|
|
if (iron_everything) {
|
|
// Check whether there is any non-solid hole in the regions.
|
|
bool internal_infill_solid = region_config.sparse_infill_density.value > 95.;
|
|
for (const Surface &surface : ironing_params.layerm->fill_surfaces.surfaces)
|
|
if ((!internal_infill_solid && surface.surface_type == stInternal) || surface.surface_type == stInternalBridge || surface.surface_type == stInternalVoid) {
|
|
// Some fill region is not quite solid. Don't iron over the whole surface.
|
|
iron_completely = false;
|
|
break;
|
|
}
|
|
}
|
|
if (iron_completely) {
|
|
// Iron everything. This is likely only good for solid transparent objects.
|
|
for (const Surface &surface : ironing_params.layerm->slices.surfaces)
|
|
polygons_append(polys, surface.expolygon);
|
|
} else {
|
|
for (const Surface &surface : ironing_params.layerm->slices.surfaces)
|
|
if ((surface.surface_type == stTop && region_config.top_shell_layers > 0) || (iron_everything && surface.surface_type == stBottom && region_config.bottom_shell_layers > 0))
|
|
// stBottomBridge is not being ironed on purpose, as it would likely destroy the bridges.
|
|
polygons_append(polys, surface.expolygon);
|
|
}
|
|
if (iron_everything && ! iron_completely) {
|
|
// Add solid fill surfaces. This may not be ideal, as one will not iron perimeters touching these
|
|
// solid fill surfaces, but it is likely better than nothing.
|
|
for (const Surface &surface : ironing_params.layerm->fill_surfaces.surfaces)
|
|
if (surface.surface_type == stInternalSolid)
|
|
polygons_append(infills, surface.expolygon);
|
|
}
|
|
}
|
|
|
|
if (! infills.empty() || j > i + 1) {
|
|
// Ironing over more than a single region or over solid internal infill.
|
|
if (! infills.empty())
|
|
// For IroningType::AllSolid only:
|
|
// Add solid infill areas for layers, that contain some non-ironable infil (sparse infill, bridge infill).
|
|
append(polys, std::move(infills));
|
|
polys = union_safety_offset(polys);
|
|
}
|
|
// Trim the top surfaces with half the nozzle diameter.
|
|
ironing_areas = intersection_ex(polys, offset(this->lslices, - float(scale_(0.5 * nozzle_dmr))));
|
|
}
|
|
|
|
// Create the filler object.
|
|
f->spacing = ironing_params.line_spacing;
|
|
f->angle = float(ironing_params.angle + 0.25 * M_PI);
|
|
f->link_max_length = (coord_t) scale_(3. * f->spacing);
|
|
double extrusion_height = ironing_params.height * f->spacing / nozzle_dmr;
|
|
float extrusion_width = Flow::rounded_rectangle_extrusion_width_from_spacing(float(nozzle_dmr), float(extrusion_height));
|
|
double flow_mm3_per_mm = nozzle_dmr * extrusion_height;
|
|
Surface surface_fill(stTop, ExPolygon());
|
|
for (ExPolygon &expoly : ironing_areas) {
|
|
surface_fill.expolygon = std::move(expoly);
|
|
Polylines polylines;
|
|
try {
|
|
polylines = f->fill_surface(&surface_fill, fill_params);
|
|
} catch (InfillFailedException &) {
|
|
}
|
|
if (! polylines.empty()) {
|
|
// Save into layer.
|
|
ExtrusionEntityCollection *eec = nullptr;
|
|
ironing_params.layerm->fills.entities.push_back(eec = new ExtrusionEntityCollection());
|
|
// Don't sort the ironing infill lines as they are monotonicly ordered.
|
|
eec->no_sort = true;
|
|
extrusion_entities_append_paths(
|
|
eec->entities, std::move(polylines),
|
|
erIroning,
|
|
flow_mm3_per_mm, extrusion_width, float(extrusion_height));
|
|
}
|
|
}
|
|
|
|
// Regions up to j were processed.
|
|
i = j;
|
|
}
|
|
}
|
|
|
|
} // namespace Slic3r
|