mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-11-02 12:41:18 -07:00 
			
		
		
		
	
		
			
				
	
	
		
			394 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			394 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#include "sla_test_utils.hpp"
 | 
						|
 | 
						|
void test_support_model_collision(const std::string          &obj_filename,
 | 
						|
                                  const sla::SupportConfig   &input_supportcfg,
 | 
						|
                                  const sla::HollowingConfig &hollowingcfg,
 | 
						|
                                  const sla::DrainHoles      &drainholes)
 | 
						|
{
 | 
						|
    SupportByproducts byproducts;
 | 
						|
    
 | 
						|
    sla::SupportConfig supportcfg = input_supportcfg;
 | 
						|
    
 | 
						|
    // Set head penetration to a small negative value which should ensure that
 | 
						|
    // the supports will not touch the model body.
 | 
						|
    supportcfg.head_penetration_mm = -0.15;
 | 
						|
    
 | 
						|
    test_supports(obj_filename, supportcfg, hollowingcfg, drainholes, byproducts);
 | 
						|
    
 | 
						|
    // Slice the support mesh given the slice grid of the model.
 | 
						|
    std::vector<ExPolygons> support_slices =
 | 
						|
            byproducts.supporttree.slice(byproducts.slicegrid, CLOSING_RADIUS);
 | 
						|
    
 | 
						|
    // The slices originate from the same slice grid so the numbers must match
 | 
						|
    
 | 
						|
    bool support_mesh_is_empty =
 | 
						|
            byproducts.supporttree.retrieve_mesh(sla::MeshType::Pad).empty() &&
 | 
						|
            byproducts.supporttree.retrieve_mesh(sla::MeshType::Support).empty();
 | 
						|
    
 | 
						|
    if (support_mesh_is_empty)
 | 
						|
        REQUIRE(support_slices.empty());
 | 
						|
    else
 | 
						|
        REQUIRE(support_slices.size() == byproducts.model_slices.size());
 | 
						|
    
 | 
						|
    bool notouch = true;
 | 
						|
    for (size_t n = 0; notouch && n < support_slices.size(); ++n) {
 | 
						|
        const ExPolygons &sup_slice = support_slices[n];
 | 
						|
        const ExPolygons &mod_slice = byproducts.model_slices[n];
 | 
						|
        
 | 
						|
        Polygons intersections = intersection(sup_slice, mod_slice);
 | 
						|
        
 | 
						|
        notouch = notouch && intersections.empty();
 | 
						|
    }
 | 
						|
    
 | 
						|
    /*if (!notouch) */export_failed_case(support_slices, byproducts);
 | 
						|
    
 | 
						|
    REQUIRE(notouch);
 | 
						|
}
 | 
						|
 | 
						|
void export_failed_case(const std::vector<ExPolygons> &support_slices, const SupportByproducts &byproducts)
 | 
						|
{
 | 
						|
    for (size_t n = 0; n < support_slices.size(); ++n) {
 | 
						|
        const ExPolygons &sup_slice = support_slices[n];
 | 
						|
        const ExPolygons &mod_slice = byproducts.model_slices[n];
 | 
						|
        Polygons intersections = intersection(sup_slice, mod_slice);
 | 
						|
        
 | 
						|
        std::stringstream ss;
 | 
						|
        if (!intersections.empty()) {
 | 
						|
            ss << byproducts.obj_fname << std::setprecision(4) << n << ".svg";
 | 
						|
            SVG svg(ss.str());
 | 
						|
            svg.draw(sup_slice, "green");
 | 
						|
            svg.draw(mod_slice, "blue");
 | 
						|
            svg.draw(intersections, "red");
 | 
						|
            svg.Close();
 | 
						|
        }
 | 
						|
    }
 | 
						|
    
 | 
						|
    TriangleMesh m;
 | 
						|
    byproducts.supporttree.retrieve_full_mesh(m);
 | 
						|
    m.merge(byproducts.input_mesh);
 | 
						|
    m.repair();
 | 
						|
    m.require_shared_vertices();
 | 
						|
    m.WriteOBJFile(byproducts.obj_fname.c_str());
 | 
						|
}
 | 
						|
 | 
						|
void test_supports(const std::string          &obj_filename,
 | 
						|
                   const sla::SupportConfig   &supportcfg,
 | 
						|
                   const sla::HollowingConfig &hollowingcfg,
 | 
						|
                   const sla::DrainHoles      &drainholes,
 | 
						|
                   SupportByproducts          &out)
 | 
						|
{
 | 
						|
    using namespace Slic3r;
 | 
						|
    TriangleMesh mesh = load_model(obj_filename);
 | 
						|
    
 | 
						|
    REQUIRE_FALSE(mesh.empty());
 | 
						|
    
 | 
						|
    if (hollowingcfg.enabled) {
 | 
						|
        auto inside = sla::generate_interior(mesh, hollowingcfg);
 | 
						|
        REQUIRE(inside);
 | 
						|
        mesh.merge(*inside);
 | 
						|
        mesh.require_shared_vertices();
 | 
						|
    }
 | 
						|
    
 | 
						|
    TriangleMeshSlicer slicer{&mesh};
 | 
						|
    
 | 
						|
    auto   bb      = mesh.bounding_box();
 | 
						|
    double zmin    = bb.min.z();
 | 
						|
    double zmax    = bb.max.z();
 | 
						|
    double gnd     = zmin - supportcfg.object_elevation_mm;
 | 
						|
    auto   layer_h = 0.05f;
 | 
						|
    
 | 
						|
    out.slicegrid = grid(float(gnd), float(zmax), layer_h);
 | 
						|
    slicer.slice(out.slicegrid, SlicingMode::Regular, CLOSING_RADIUS, &out.model_slices, []{});
 | 
						|
    sla::cut_drainholes(out.model_slices, out.slicegrid, CLOSING_RADIUS, drainholes, []{});
 | 
						|
    
 | 
						|
    // Create the special index-triangle mesh with spatial indexing which
 | 
						|
    // is the input of the support point and support mesh generators
 | 
						|
    sla::EigenMesh3D emesh{mesh};
 | 
						|
    if (hollowingcfg.enabled) 
 | 
						|
        emesh.load_holes(drainholes);
 | 
						|
    
 | 
						|
    // Create the support point generator
 | 
						|
    sla::SupportPointGenerator::Config autogencfg;
 | 
						|
    autogencfg.head_diameter = float(2 * supportcfg.head_front_radius_mm);
 | 
						|
    sla::SupportPointGenerator point_gen{emesh, autogencfg, [] {}, [](int) {}};
 | 
						|
    
 | 
						|
    point_gen.seed(0); // Make the test repeatable
 | 
						|
    point_gen.execute(out.model_slices, out.slicegrid);
 | 
						|
    
 | 
						|
    // Get the calculated support points.
 | 
						|
    std::vector<sla::SupportPoint> support_points = point_gen.output();
 | 
						|
    
 | 
						|
    int validityflags = ASSUME_NO_REPAIR;
 | 
						|
    
 | 
						|
    // If there is no elevation, support points shall be removed from the
 | 
						|
    // bottom of the object.
 | 
						|
    if (std::abs(supportcfg.object_elevation_mm) < EPSILON) {
 | 
						|
        sla::remove_bottom_points(support_points, zmin,
 | 
						|
                                  supportcfg.base_height_mm);
 | 
						|
    } else {
 | 
						|
        // Should be support points at least on the bottom of the model
 | 
						|
        REQUIRE_FALSE(support_points.empty());
 | 
						|
        
 | 
						|
        // Also the support mesh should not be empty.
 | 
						|
        validityflags |= ASSUME_NO_EMPTY;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Generate the actual support tree
 | 
						|
    sla::SupportTreeBuilder treebuilder;
 | 
						|
    treebuilder.build(sla::SupportableMesh{emesh, support_points, supportcfg});
 | 
						|
    
 | 
						|
    check_support_tree_integrity(treebuilder, supportcfg);
 | 
						|
    
 | 
						|
    const TriangleMesh &output_mesh = treebuilder.retrieve_mesh();
 | 
						|
    
 | 
						|
    check_validity(output_mesh, validityflags);
 | 
						|
    
 | 
						|
    // Quick check if the dimensions and placement of supports are correct
 | 
						|
    auto obb = output_mesh.bounding_box();
 | 
						|
    
 | 
						|
    double allowed_zmin = zmin - supportcfg.object_elevation_mm;
 | 
						|
    
 | 
						|
    if (std::abs(supportcfg.object_elevation_mm) < EPSILON)
 | 
						|
        allowed_zmin = zmin - 2 * supportcfg.head_back_radius_mm;
 | 
						|
    
 | 
						|
    REQUIRE(obb.min.z() >= allowed_zmin);
 | 
						|
    REQUIRE(obb.max.z() <= zmax);
 | 
						|
    
 | 
						|
    // Move out the support tree into the byproducts, we can examine it further
 | 
						|
    // in various tests.
 | 
						|
    out.obj_fname   = std::move(obj_filename);
 | 
						|
    out.supporttree = std::move(treebuilder);
 | 
						|
    out.input_mesh  = std::move(mesh);
 | 
						|
}
 | 
						|
 | 
						|
void check_support_tree_integrity(const sla::SupportTreeBuilder &stree, 
 | 
						|
                                  const sla::SupportConfig &cfg)
 | 
						|
{
 | 
						|
    double gnd  = stree.ground_level;
 | 
						|
    double H1   = cfg.max_solo_pillar_height_mm;
 | 
						|
    double H2   = cfg.max_dual_pillar_height_mm;
 | 
						|
    
 | 
						|
    for (const sla::Head &head : stree.heads()) {
 | 
						|
        REQUIRE((!head.is_valid() || head.pillar_id != sla::ID_UNSET ||
 | 
						|
                head.bridge_id != sla::ID_UNSET));
 | 
						|
    }
 | 
						|
    
 | 
						|
    for (const sla::Pillar &pillar : stree.pillars()) {
 | 
						|
        if (std::abs(pillar.endpoint().z() - gnd) < EPSILON) {
 | 
						|
            double h = pillar.height;
 | 
						|
            
 | 
						|
            if (h > H1) REQUIRE(pillar.links >= 1);
 | 
						|
            else if(h > H2) { REQUIRE(pillar.links >= 2); }
 | 
						|
        }
 | 
						|
        
 | 
						|
        REQUIRE(pillar.links <= cfg.pillar_cascade_neighbors);
 | 
						|
        REQUIRE(pillar.bridges <= cfg.max_bridges_on_pillar);
 | 
						|
    }
 | 
						|
    
 | 
						|
    double max_bridgelen = 0.;
 | 
						|
    auto chck_bridge = [&cfg](const sla::Bridge &bridge, double &max_brlen) {
 | 
						|
        Vec3d n = bridge.endp - bridge.startp;
 | 
						|
        double d = sla::distance(n);
 | 
						|
        max_brlen = std::max(d, max_brlen);
 | 
						|
        
 | 
						|
        double z     = n.z();
 | 
						|
        double polar = std::acos(z / d);
 | 
						|
        double slope = -polar + PI / 2.;
 | 
						|
        REQUIRE(std::abs(slope) >= cfg.bridge_slope - EPSILON);
 | 
						|
    };
 | 
						|
    
 | 
						|
    for (auto &bridge : stree.bridges()) chck_bridge(bridge, max_bridgelen);
 | 
						|
    REQUIRE(max_bridgelen <= cfg.max_bridge_length_mm);
 | 
						|
    
 | 
						|
    max_bridgelen = 0;
 | 
						|
    for (auto &bridge : stree.crossbridges()) chck_bridge(bridge, max_bridgelen);
 | 
						|
    
 | 
						|
    double md = cfg.max_pillar_link_distance_mm / std::cos(-cfg.bridge_slope);
 | 
						|
    REQUIRE(max_bridgelen <= md);
 | 
						|
}
 | 
						|
 | 
						|
void test_pad(const std::string &obj_filename, const sla::PadConfig &padcfg, PadByproducts &out)
 | 
						|
{
 | 
						|
    REQUIRE(padcfg.validate().empty());
 | 
						|
    
 | 
						|
    TriangleMesh mesh = load_model(obj_filename);
 | 
						|
    
 | 
						|
    REQUIRE_FALSE(mesh.empty());
 | 
						|
    
 | 
						|
    // Create pad skeleton only from the model
 | 
						|
    Slic3r::sla::pad_blueprint(mesh, out.model_contours);
 | 
						|
    
 | 
						|
    test_concave_hull(out.model_contours);
 | 
						|
    
 | 
						|
    REQUIRE_FALSE(out.model_contours.empty());
 | 
						|
    
 | 
						|
    // Create the pad geometry for the model contours only
 | 
						|
    Slic3r::sla::create_pad({}, out.model_contours, out.mesh, padcfg);
 | 
						|
    
 | 
						|
    check_validity(out.mesh);
 | 
						|
    
 | 
						|
    auto bb = out.mesh.bounding_box();
 | 
						|
    REQUIRE(bb.max.z() - bb.min.z() == Approx(padcfg.full_height()));
 | 
						|
}
 | 
						|
 | 
						|
static void _test_concave_hull(const Polygons &hull, const ExPolygons &polys)
 | 
						|
{
 | 
						|
    REQUIRE(polys.size() >=hull.size());
 | 
						|
    
 | 
						|
    double polys_area = 0;
 | 
						|
    for (const ExPolygon &p : polys) polys_area += p.area();
 | 
						|
    
 | 
						|
    double cchull_area = 0;
 | 
						|
    for (const Slic3r::Polygon &p : hull) cchull_area += p.area();
 | 
						|
    
 | 
						|
    REQUIRE(cchull_area >= Approx(polys_area));
 | 
						|
    
 | 
						|
    size_t cchull_holes = 0;
 | 
						|
    for (const Slic3r::Polygon &p : hull)
 | 
						|
        cchull_holes += p.is_clockwise() ? 1 : 0;
 | 
						|
    
 | 
						|
    REQUIRE(cchull_holes == 0);
 | 
						|
    
 | 
						|
    Polygons intr = diff(to_polygons(polys), hull);
 | 
						|
    REQUIRE(intr.empty());
 | 
						|
}
 | 
						|
 | 
						|
void test_concave_hull(const ExPolygons &polys) {
 | 
						|
    sla::PadConfig pcfg;
 | 
						|
    
 | 
						|
    Slic3r::sla::ConcaveHull cchull{polys, pcfg.max_merge_dist_mm, []{}};
 | 
						|
    
 | 
						|
    _test_concave_hull(cchull.polygons(), polys);
 | 
						|
    
 | 
						|
    coord_t delta = scaled(pcfg.brim_size_mm + pcfg.wing_distance());
 | 
						|
    ExPolygons wafflex = sla::offset_waffle_style_ex(cchull, delta);
 | 
						|
    Polygons waffl = sla::offset_waffle_style(cchull, delta);
 | 
						|
    
 | 
						|
    _test_concave_hull(to_polygons(wafflex), polys);
 | 
						|
    _test_concave_hull(waffl, polys);
 | 
						|
}
 | 
						|
 | 
						|
void check_validity(const TriangleMesh &input_mesh, int flags)
 | 
						|
{
 | 
						|
    TriangleMesh mesh{input_mesh};
 | 
						|
    
 | 
						|
    if (flags & ASSUME_NO_EMPTY) {
 | 
						|
        REQUIRE_FALSE(mesh.empty());
 | 
						|
    } else if (mesh.empty())
 | 
						|
        return; // If it can be empty and it is, there is nothing left to do.
 | 
						|
    
 | 
						|
    REQUIRE(stl_validate(&mesh.stl));
 | 
						|
    
 | 
						|
    bool do_update_shared_vertices = false;
 | 
						|
    mesh.repair(do_update_shared_vertices);
 | 
						|
    
 | 
						|
    if (flags & ASSUME_NO_REPAIR) {
 | 
						|
        REQUIRE_FALSE(mesh.needed_repair());
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (flags & ASSUME_MANIFOLD) {
 | 
						|
        mesh.require_shared_vertices();
 | 
						|
        if (!mesh.is_manifold()) mesh.WriteOBJFile("non_manifold.obj");
 | 
						|
        REQUIRE(mesh.is_manifold());
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void check_raster_transformations(sla::Raster::Orientation o, sla::Raster::TMirroring mirroring)
 | 
						|
{
 | 
						|
    double disp_w = 120., disp_h = 68.;
 | 
						|
    sla::Raster::Resolution res{2560, 1440};
 | 
						|
    sla::Raster::PixelDim pixdim{disp_w / res.width_px, disp_h / res.height_px};
 | 
						|
    
 | 
						|
    auto bb = BoundingBox({0, 0}, {scaled(disp_w), scaled(disp_h)});
 | 
						|
    sla::Raster::Trafo trafo{o, mirroring};
 | 
						|
    trafo.origin_x = bb.center().x();
 | 
						|
    trafo.origin_y = bb.center().y();
 | 
						|
    
 | 
						|
    sla::Raster raster{res, pixdim, trafo};
 | 
						|
    
 | 
						|
    // create box of size 32x32 pixels (not 1x1 to avoid antialiasing errors)
 | 
						|
    coord_t pw = 32 * coord_t(std::ceil(scaled<double>(pixdim.w_mm)));
 | 
						|
    coord_t ph = 32 * coord_t(std::ceil(scaled<double>(pixdim.h_mm)));
 | 
						|
    ExPolygon box;
 | 
						|
    box.contour.points = {{-pw, -ph}, {pw, -ph}, {pw, ph}, {-pw, ph}};
 | 
						|
    
 | 
						|
    double tr_x = scaled<double>(20.), tr_y = tr_x;
 | 
						|
    
 | 
						|
    box.translate(tr_x, tr_y);
 | 
						|
    ExPolygon expected_box = box;
 | 
						|
    
 | 
						|
    // Now calculate the position of the translated box according to output
 | 
						|
    // trafo.
 | 
						|
    if (o == sla::Raster::Orientation::roPortrait) expected_box.rotate(PI / 2.);
 | 
						|
    
 | 
						|
    if (mirroring[X])
 | 
						|
        for (auto &p : expected_box.contour.points) p.x() = -p.x();
 | 
						|
    
 | 
						|
    if (mirroring[Y])
 | 
						|
        for (auto &p : expected_box.contour.points) p.y() = -p.y();
 | 
						|
    
 | 
						|
    raster.draw(box);
 | 
						|
    
 | 
						|
    Point expected_coords = expected_box.contour.bounding_box().center();
 | 
						|
    double rx = unscaled(expected_coords.x() + bb.center().x()) / pixdim.w_mm;
 | 
						|
    double ry = unscaled(expected_coords.y() + bb.center().y()) / pixdim.h_mm;
 | 
						|
    auto w = size_t(std::floor(rx));
 | 
						|
    auto h = res.height_px - size_t(std::floor(ry));
 | 
						|
    
 | 
						|
    REQUIRE((w < res.width_px && h < res.height_px));
 | 
						|
    
 | 
						|
    auto px = raster.read_pixel(w, h);
 | 
						|
    
 | 
						|
    if (px != FullWhite) {
 | 
						|
        sla::PNGImage img;
 | 
						|
        std::fstream outf("out.png", std::ios::out);
 | 
						|
        
 | 
						|
        outf << img.serialize(raster);
 | 
						|
    }
 | 
						|
    
 | 
						|
    REQUIRE(px == FullWhite);
 | 
						|
}
 | 
						|
 | 
						|
ExPolygon square_with_hole(double v)
 | 
						|
{
 | 
						|
    ExPolygon poly;
 | 
						|
    coord_t V = scaled(v / 2.);
 | 
						|
    
 | 
						|
    poly.contour.points = {{-V, -V}, {V, -V}, {V, V}, {-V, V}};
 | 
						|
    poly.holes.emplace_back();
 | 
						|
    V = V / 2;
 | 
						|
    poly.holes.front().points = {{-V, V}, {V, V}, {V, -V}, {-V, -V}};
 | 
						|
    return poly;
 | 
						|
}
 | 
						|
 | 
						|
double raster_white_area(const sla::Raster &raster)
 | 
						|
{
 | 
						|
    if (raster.empty()) return std::nan("");
 | 
						|
    
 | 
						|
    auto res = raster.resolution();
 | 
						|
    double a = 0;
 | 
						|
    
 | 
						|
    for (size_t x = 0; x < res.width_px; ++x)
 | 
						|
        for (size_t y = 0; y < res.height_px; ++y) {
 | 
						|
            auto px = raster.read_pixel(x, y);
 | 
						|
            a += pixel_area(px, raster.pixel_dimensions());
 | 
						|
        }
 | 
						|
    
 | 
						|
    return a;
 | 
						|
}
 | 
						|
 | 
						|
double predict_error(const ExPolygon &p, const sla::Raster::PixelDim &pd)
 | 
						|
{
 | 
						|
    auto lines = p.lines();
 | 
						|
    double pix_err = pixel_area(FullWhite, pd)  / 2.;
 | 
						|
    
 | 
						|
    // Worst case is when a line is parallel to the shorter axis of one pixel,
 | 
						|
    // when the line will be composed of the max number of pixels
 | 
						|
    double pix_l = std::min(pd.h_mm, pd.w_mm);
 | 
						|
    
 | 
						|
    double error = 0.;
 | 
						|
    for (auto &l : lines)
 | 
						|
        error += (unscaled(l.length()) / pix_l) * pix_err;
 | 
						|
    
 | 
						|
    return error;
 | 
						|
}
 |