mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-11-02 12:41:18 -07:00 
			
		
		
		
	
		
			
				
	
	
		
			224 lines
		
	
	
	
		
			8.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			224 lines
		
	
	
	
		
			8.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#include <iostream>
 | 
						|
#include <fstream>
 | 
						|
#include <string>
 | 
						|
 | 
						|
#include <libslic3r/TriangleMesh.hpp>
 | 
						|
#include <libslic3r/AABBTreeIndirect.hpp>
 | 
						|
#include <libslic3r/SLA/EigenMesh3D.hpp>
 | 
						|
 | 
						|
#include <Shiny/Shiny.h>
 | 
						|
 | 
						|
#ifdef _MSC_VER
 | 
						|
#pragma warning(push)
 | 
						|
#pragma warning(disable: 4244)
 | 
						|
#pragma warning(disable: 4267)
 | 
						|
#endif
 | 
						|
#include <igl/ray_mesh_intersect.h>
 | 
						|
#include <igl/point_mesh_squared_distance.h>
 | 
						|
#include <igl/remove_duplicate_vertices.h>
 | 
						|
#include <igl/signed_distance.h>
 | 
						|
#include <igl/random_dir.h>
 | 
						|
#ifdef _MSC_VER
 | 
						|
#pragma warning(pop)
 | 
						|
#endif
 | 
						|
 | 
						|
const std::string USAGE_STR = {
 | 
						|
    "Usage: aabb-evaluation stlfilename.stl"
 | 
						|
};
 | 
						|
 | 
						|
using namespace Slic3r;
 | 
						|
 | 
						|
void profile(const TriangleMesh &mesh)
 | 
						|
{
 | 
						|
    Eigen::MatrixXd V;
 | 
						|
    Eigen::MatrixXi F;
 | 
						|
    Eigen::MatrixXd vertex_normals;
 | 
						|
    sla::to_eigen_mesh(mesh, V, F);
 | 
						|
    igl::per_vertex_normals(V, F, vertex_normals);
 | 
						|
 | 
						|
    static constexpr int num_samples = 100;
 | 
						|
    const int num_vertices = std::min(10000, int(mesh.its.vertices.size()));
 | 
						|
    const Eigen::MatrixXd dirs = igl::random_dir_stratified(num_samples).cast<double>();
 | 
						|
 | 
						|
    Eigen::MatrixXd occlusion_output0;
 | 
						|
    {
 | 
						|
        AABBTreeIndirect::Tree3f tree;
 | 
						|
        {
 | 
						|
            PROFILE_BLOCK(AABBIndirect_Init);
 | 
						|
            tree = AABBTreeIndirect::build_aabb_tree_over_indexed_triangle_set(mesh.its.vertices, mesh.its.indices);
 | 
						|
        }
 | 
						|
        {
 | 
						|
            PROFILE_BLOCK(EigenMesh3D_AABBIndirectF_AmbientOcclusion);
 | 
						|
            occlusion_output0.resize(num_vertices, 1);
 | 
						|
            for (int ivertex = 0; ivertex < num_vertices; ++ ivertex) {
 | 
						|
                const Eigen::Vector3d origin = mesh.its.vertices[ivertex].template cast<double>();
 | 
						|
                const Eigen::Vector3d normal = vertex_normals.row(ivertex).template cast<double>();
 | 
						|
                int num_hits = 0;
 | 
						|
                for (int s = 0; s < num_samples; s++) {
 | 
						|
                    Eigen::Vector3d d = dirs.row(s);
 | 
						|
                    if(d.dot(normal) < 0) {
 | 
						|
                        // reverse ray
 | 
						|
                        d *= -1;
 | 
						|
                    }
 | 
						|
                    igl::Hit hit;
 | 
						|
                    if (AABBTreeIndirect::intersect_ray_first_hit(mesh.its.vertices, mesh.its.indices, tree, (origin + 1e-4 * d).eval(), d, hit))
 | 
						|
                        ++ num_hits;
 | 
						|
                }
 | 
						|
                occlusion_output0(ivertex) = (double)num_hits/(double)num_samples;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        {
 | 
						|
            PROFILE_BLOCK(EigenMesh3D_AABBIndirectFF_AmbientOcclusion);
 | 
						|
            occlusion_output0.resize(num_vertices, 1);
 | 
						|
            for (int ivertex = 0; ivertex < num_vertices; ++ ivertex) {
 | 
						|
                const Eigen::Vector3d origin = mesh.its.vertices[ivertex].template cast<double>();
 | 
						|
                const Eigen::Vector3d normal = vertex_normals.row(ivertex).template cast<double>();
 | 
						|
                int num_hits = 0;
 | 
						|
                for (int s = 0; s < num_samples; s++) {
 | 
						|
                    Eigen::Vector3d d = dirs.row(s);
 | 
						|
                    if(d.dot(normal) < 0) {
 | 
						|
                        // reverse ray
 | 
						|
                        d *= -1;
 | 
						|
                    }
 | 
						|
                    igl::Hit hit;
 | 
						|
                    if (AABBTreeIndirect::intersect_ray_first_hit(mesh.its.vertices, mesh.its.indices, tree, 
 | 
						|
                            Eigen::Vector3f((origin + 1e-4 * d).template cast<float>()),
 | 
						|
                            Eigen::Vector3f(d.template cast<float>()), hit))
 | 
						|
                        ++ num_hits;
 | 
						|
                }
 | 
						|
                occlusion_output0(ivertex) = (double)num_hits/(double)num_samples;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    Eigen::MatrixXd occlusion_output1;
 | 
						|
    {
 | 
						|
        std::vector<Vec3d> vertices;
 | 
						|
        std::vector<Vec3i> triangles;
 | 
						|
        for (int i = 0; i < V.rows(); ++ i)
 | 
						|
            vertices.emplace_back(V.row(i).transpose());
 | 
						|
        for (int i = 0; i < F.rows(); ++ i)
 | 
						|
            triangles.emplace_back(F.row(i).transpose());
 | 
						|
        AABBTreeIndirect::Tree3d tree;
 | 
						|
        {
 | 
						|
            PROFILE_BLOCK(AABBIndirectD_Init);
 | 
						|
            tree = AABBTreeIndirect::build_aabb_tree_over_indexed_triangle_set(vertices, triangles);
 | 
						|
        }
 | 
						|
 | 
						|
        {
 | 
						|
            PROFILE_BLOCK(EigenMesh3D_AABBIndirectD_AmbientOcclusion);
 | 
						|
            occlusion_output1.resize(num_vertices, 1);
 | 
						|
            for (int ivertex = 0; ivertex < num_vertices; ++ ivertex) {
 | 
						|
                const Eigen::Vector3d origin = V.row(ivertex).template cast<double>();
 | 
						|
                const Eigen::Vector3d normal = vertex_normals.row(ivertex).template cast<double>();
 | 
						|
                int num_hits = 0;
 | 
						|
                for (int s = 0; s < num_samples; s++) {
 | 
						|
                    Eigen::Vector3d d = dirs.row(s);
 | 
						|
                    if(d.dot(normal) < 0) {
 | 
						|
                        // reverse ray
 | 
						|
                        d *= -1;
 | 
						|
                    }
 | 
						|
                    igl::Hit hit;
 | 
						|
                    if (AABBTreeIndirect::intersect_ray_first_hit(vertices, triangles, tree, Eigen::Vector3d(origin + 1e-4 * d), d, hit))
 | 
						|
                        ++ num_hits;
 | 
						|
                }
 | 
						|
                occlusion_output1(ivertex) = (double)num_hits/(double)num_samples;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // Build the AABB accelaration tree
 | 
						|
 | 
						|
    Eigen::MatrixXd occlusion_output2;
 | 
						|
    {
 | 
						|
        igl::AABB<Eigen::MatrixXd, 3> AABB;
 | 
						|
        {
 | 
						|
            PROFILE_BLOCK(EigenMesh3D_AABB_Init);
 | 
						|
            AABB.init(V, F);
 | 
						|
        }
 | 
						|
        {
 | 
						|
            PROFILE_BLOCK(EigenMesh3D_AABB_AmbientOcclusion);
 | 
						|
            occlusion_output2.resize(num_vertices, 1);
 | 
						|
            for (int ivertex = 0; ivertex < num_vertices; ++ ivertex) {
 | 
						|
                const Eigen::Vector3d origin = V.row(ivertex).template cast<double>();
 | 
						|
                const Eigen::Vector3d normal = vertex_normals.row(ivertex).template cast<double>();
 | 
						|
                int num_hits = 0;
 | 
						|
                for (int s = 0; s < num_samples; s++) {
 | 
						|
                    Eigen::Vector3d d = dirs.row(s);
 | 
						|
                    if(d.dot(normal) < 0) {
 | 
						|
                        // reverse ray
 | 
						|
                        d *= -1;
 | 
						|
                    }
 | 
						|
                    igl::Hit hit;
 | 
						|
                    if (AABB.intersect_ray(V, F, origin + 1e-4 * d, d, hit))
 | 
						|
                        ++ num_hits;
 | 
						|
                }
 | 
						|
                occlusion_output2(ivertex) = (double)num_hits/(double)num_samples;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    Eigen::MatrixXd occlusion_output3;
 | 
						|
    {
 | 
						|
        typedef Eigen::Map<const Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor | Eigen::DontAlign>> MapMatrixXfUnaligned;
 | 
						|
        typedef Eigen::Map<const Eigen::Matrix<int, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor | Eigen::DontAlign>> MapMatrixXiUnaligned;
 | 
						|
        igl::AABB<MapMatrixXfUnaligned, 3> AABB;
 | 
						|
        auto vertices = MapMatrixXfUnaligned(mesh.its.vertices.front().data(), mesh.its.vertices.size(), 3);
 | 
						|
        auto faces = MapMatrixXiUnaligned(mesh.its.indices.front().data(), mesh.its.indices.size(), 3);
 | 
						|
        {
 | 
						|
            PROFILE_BLOCK(EigenMesh3D_AABBf_Init);
 | 
						|
            AABB.init(
 | 
						|
                vertices,
 | 
						|
                faces);
 | 
						|
        }
 | 
						|
 | 
						|
        {
 | 
						|
            PROFILE_BLOCK(EigenMesh3D_AABBf_AmbientOcclusion);
 | 
						|
            occlusion_output3.resize(num_vertices, 1);
 | 
						|
            for (int ivertex = 0; ivertex < num_vertices; ++ ivertex) {
 | 
						|
                const Eigen::Vector3d origin = mesh.its.vertices[ivertex].template cast<double>();
 | 
						|
                const Eigen::Vector3d normal = vertex_normals.row(ivertex).template cast<double>();
 | 
						|
                int num_hits = 0;
 | 
						|
                for (int s = 0; s < num_samples; s++) {
 | 
						|
                    Eigen::Vector3d d = dirs.row(s);
 | 
						|
                    if(d.dot(normal) < 0) {
 | 
						|
                        // reverse ray
 | 
						|
                        d *= -1;
 | 
						|
                    }
 | 
						|
                    igl::Hit hit;
 | 
						|
                    if (AABB.intersect_ray(vertices, faces, (origin + 1e-4 * d).eval().template cast<float>(), d.template cast<float>(), hit))
 | 
						|
                        ++ num_hits;
 | 
						|
                }
 | 
						|
                occlusion_output3(ivertex) = (double)num_hits/(double)num_samples;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    PROFILE_UPDATE();
 | 
						|
    PROFILE_OUTPUT(nullptr);
 | 
						|
}
 | 
						|
 | 
						|
int main(const int argc, const char *argv[])
 | 
						|
{
 | 
						|
    if(argc < 2) {
 | 
						|
        std::cout << USAGE_STR << std::endl;
 | 
						|
        return EXIT_SUCCESS;
 | 
						|
    }
 | 
						|
 | 
						|
    TriangleMesh mesh;
 | 
						|
    if (! mesh.ReadSTLFile(argv[1])) {
 | 
						|
        std::cerr << "Error loading " << argv[1] << std::endl;
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    mesh.repair();
 | 
						|
    if (mesh.facets_count() == 0) {
 | 
						|
        std::cerr << "Error loading " << argv[1] << " . It is empty." << std::endl;
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    profile(mesh);    
 | 
						|
 | 
						|
    return EXIT_SUCCESS;
 | 
						|
}
 |