OrcaSlicer/src/slic3r/GUI/3DScene.hpp
lane.wei 5a2b0e845e ENH: rendering: refine the rendering logic of GLVolume
1. set the unprintable volume to black even if it is mmu painted
2. add the bounding check logic when the object is partly inside of current plate

Change-Id: I69ce25eb85a71398ed8fb1d275136c5d943796d6
2022-09-02 12:52:18 +08:00

726 lines
34 KiB
C++

#ifndef slic3r_3DScene_hpp_
#define slic3r_3DScene_hpp_
#include "libslic3r/libslic3r.h"
#include "libslic3r/Point.hpp"
#include "libslic3r/Line.hpp"
#include "libslic3r/TriangleMesh.hpp"
#include "libslic3r/Utils.hpp"
#include "libslic3r/Geometry.hpp"
// BBS
#include "libslic3r/ObjectID.hpp"
#include "GLModel.hpp"
#include "GLShader.hpp"
#include <functional>
#include <optional>
#ifndef NDEBUG
#define HAS_GLSAFE
#endif // NDEBUG
#ifdef HAS_GLSAFE
extern void glAssertRecentCallImpl(const char *file_name, unsigned int line, const char *function_name);
inline void glAssertRecentCall() { glAssertRecentCallImpl(__FILE__, __LINE__, __FUNCTION__); }
#define glsafe(cmd) do { cmd; glAssertRecentCallImpl(__FILE__, __LINE__, __FUNCTION__); } while (false)
#define glcheck() do { glAssertRecentCallImpl(__FILE__, __LINE__, __FUNCTION__); } while (false)
#else // HAS_GLSAFE
inline void glAssertRecentCall() { }
#define glsafe(cmd) cmd
#define glcheck()
#endif // HAS_GLSAFE
extern std::vector<std::array<float, 4>> get_extruders_colors();
extern std::array<float, 4> adjust_color_for_rendering(const std::array<float, 4>& colors);
namespace Slic3r {
class SLAPrintObject;
enum SLAPrintObjectStep : unsigned int;
class BuildVolume;
class DynamicPrintConfig;
class ExtrusionPath;
class ExtrusionMultiPath;
class ExtrusionLoop;
class ExtrusionEntity;
class ExtrusionEntityCollection;
class ModelObject;
class ModelVolume;
class GLShaderProgram;
enum ModelInstanceEPrintVolumeState : unsigned char;
using ModelObjectPtrs = std::vector<ModelObject*>;
// Return appropriate color based on the ModelVolume.
std::array<float, 4> color_from_model_volume(const ModelVolume& model_volume);
// A container for interleaved arrays of 3D vertices and normals,
// possibly indexed by triangles and / or quads.
class GLIndexedVertexArray {
public:
// Only Eigen types of Nx16 size are vectorized. This bounding box will not be vectorized.
static_assert(sizeof(Eigen::AlignedBox<float, 3>) == 24, "Eigen::AlignedBox<float, 3> is not being vectorized, thus it does not need to be aligned");
using BoundingBox = Eigen::AlignedBox<float, 3>;
GLIndexedVertexArray() { m_bounding_box.setEmpty(); }
GLIndexedVertexArray(const GLIndexedVertexArray &rhs) :
vertices_and_normals_interleaved(rhs.vertices_and_normals_interleaved),
triangle_indices(rhs.triangle_indices),
quad_indices(rhs.quad_indices),
m_bounding_box(rhs.m_bounding_box)
{ assert(!rhs.has_VBOs()); m_bounding_box.setEmpty(); }
GLIndexedVertexArray(GLIndexedVertexArray &&rhs) :
vertices_and_normals_interleaved(std::move(rhs.vertices_and_normals_interleaved)),
triangle_indices(std::move(rhs.triangle_indices)),
quad_indices(std::move(rhs.quad_indices)),
m_bounding_box(rhs.m_bounding_box)
{ assert(! rhs.has_VBOs()); }
~GLIndexedVertexArray() { release_geometry(); }
GLIndexedVertexArray& operator=(const GLIndexedVertexArray &rhs)
{
assert(vertices_and_normals_interleaved_VBO_id == 0);
assert(triangle_indices_VBO_id == 0);
assert(quad_indices_VBO_id == 0);
assert(rhs.vertices_and_normals_interleaved_VBO_id == 0);
assert(rhs.triangle_indices_VBO_id == 0);
assert(rhs.quad_indices_VBO_id == 0);
this->vertices_and_normals_interleaved = rhs.vertices_and_normals_interleaved;
this->triangle_indices = rhs.triangle_indices;
this->quad_indices = rhs.quad_indices;
this->m_bounding_box = rhs.m_bounding_box;
this->vertices_and_normals_interleaved_size = rhs.vertices_and_normals_interleaved_size;
this->triangle_indices_size = rhs.triangle_indices_size;
this->quad_indices_size = rhs.quad_indices_size;
return *this;
}
GLIndexedVertexArray& operator=(GLIndexedVertexArray &&rhs)
{
assert(vertices_and_normals_interleaved_VBO_id == 0);
assert(triangle_indices_VBO_id == 0);
assert(quad_indices_VBO_id == 0);
assert(rhs.vertices_and_normals_interleaved_VBO_id == 0);
assert(rhs.triangle_indices_VBO_id == 0);
assert(rhs.quad_indices_VBO_id == 0);
this->vertices_and_normals_interleaved = std::move(rhs.vertices_and_normals_interleaved);
this->triangle_indices = std::move(rhs.triangle_indices);
this->quad_indices = std::move(rhs.quad_indices);
this->m_bounding_box = rhs.m_bounding_box;
this->vertices_and_normals_interleaved_size = rhs.vertices_and_normals_interleaved_size;
this->triangle_indices_size = rhs.triangle_indices_size;
this->quad_indices_size = rhs.quad_indices_size;
return *this;
}
// Vertices and their normals, interleaved to be used by void glInterleavedArrays(GL_N3F_V3F, 0, x)
std::vector<float> vertices_and_normals_interleaved;
std::vector<int> triangle_indices;
std::vector<int> quad_indices;
// When the geometry data is loaded into the graphics card as Vertex Buffer Objects,
// the above mentioned std::vectors are cleared and the following variables keep their original length.
size_t vertices_and_normals_interleaved_size{ 0 };
size_t triangle_indices_size{ 0 };
size_t quad_indices_size{ 0 };
// IDs of the Vertex Array Objects, into which the geometry has been loaded.
// Zero if the VBOs are not sent to GPU yet.
unsigned int vertices_and_normals_interleaved_VBO_id{ 0 };
unsigned int triangle_indices_VBO_id{ 0 };
unsigned int quad_indices_VBO_id{ 0 };
#if ENABLE_SMOOTH_NORMALS
void load_mesh_full_shading(const TriangleMesh& mesh, bool smooth_normals = false);
void load_mesh(const TriangleMesh& mesh, bool smooth_normals = false) { this->load_mesh_full_shading(mesh, smooth_normals); }
#else
void load_mesh_full_shading(const TriangleMesh& mesh);
void load_mesh(const TriangleMesh& mesh) { this->load_mesh_full_shading(mesh); }
#endif // ENABLE_SMOOTH_NORMALS
void load_its_flat_shading(const indexed_triangle_set &its);
inline bool has_VBOs() const { return vertices_and_normals_interleaved_VBO_id != 0; }
inline void reserve(size_t sz) {
this->vertices_and_normals_interleaved.reserve(sz * 6);
this->triangle_indices.reserve(sz * 3);
this->quad_indices.reserve(sz * 4);
}
inline void push_geometry(float x, float y, float z, float nx, float ny, float nz) {
assert(this->vertices_and_normals_interleaved_VBO_id == 0);
if (this->vertices_and_normals_interleaved_VBO_id != 0)
return;
if (this->vertices_and_normals_interleaved.size() + 6 > this->vertices_and_normals_interleaved.capacity())
this->vertices_and_normals_interleaved.reserve(next_highest_power_of_2(this->vertices_and_normals_interleaved.size() + 6));
this->vertices_and_normals_interleaved.emplace_back(nx);
this->vertices_and_normals_interleaved.emplace_back(ny);
this->vertices_and_normals_interleaved.emplace_back(nz);
this->vertices_and_normals_interleaved.emplace_back(x);
this->vertices_and_normals_interleaved.emplace_back(y);
this->vertices_and_normals_interleaved.emplace_back(z);
this->vertices_and_normals_interleaved_size = this->vertices_and_normals_interleaved.size();
m_bounding_box.extend(Vec3f(x, y, z));
};
inline void push_geometry(double x, double y, double z, double nx, double ny, double nz) {
push_geometry(float(x), float(y), float(z), float(nx), float(ny), float(nz));
}
template<typename Derived, typename Derived2>
inline void push_geometry(const Eigen::MatrixBase<Derived>& p, const Eigen::MatrixBase<Derived2>& n) {
push_geometry(float(p(0)), float(p(1)), float(p(2)), float(n(0)), float(n(1)), float(n(2)));
}
inline void push_triangle(int idx1, int idx2, int idx3) {
assert(this->vertices_and_normals_interleaved_VBO_id == 0);
if (this->vertices_and_normals_interleaved_VBO_id != 0)
return;
if (this->triangle_indices.size() + 3 > this->vertices_and_normals_interleaved.capacity())
this->triangle_indices.reserve(next_highest_power_of_2(this->triangle_indices.size() + 3));
this->triangle_indices.emplace_back(idx1);
this->triangle_indices.emplace_back(idx2);
this->triangle_indices.emplace_back(idx3);
this->triangle_indices_size = this->triangle_indices.size();
};
inline void push_quad(int idx1, int idx2, int idx3, int idx4) {
assert(this->vertices_and_normals_interleaved_VBO_id == 0);
if (this->vertices_and_normals_interleaved_VBO_id != 0)
return;
if (this->quad_indices.size() + 4 > this->vertices_and_normals_interleaved.capacity())
this->quad_indices.reserve(next_highest_power_of_2(this->quad_indices.size() + 4));
this->quad_indices.emplace_back(idx1);
this->quad_indices.emplace_back(idx2);
this->quad_indices.emplace_back(idx3);
this->quad_indices.emplace_back(idx4);
this->quad_indices_size = this->quad_indices.size();
};
// Finalize the initialization of the geometry & indices,
// upload the geometry and indices to OpenGL VBO objects
// and shrink the allocated data, possibly relasing it if it has been loaded into the VBOs.
void finalize_geometry(bool opengl_initialized);
// Release the geometry data, release OpenGL VBOs.
void release_geometry();
void render() const;
void render(const std::pair<size_t, size_t>& tverts_range, const std::pair<size_t, size_t>& qverts_range) const;
// Is there any geometry data stored?
bool empty() const { return vertices_and_normals_interleaved_size == 0; }
void clear() {
this->vertices_and_normals_interleaved.clear();
this->triangle_indices.clear();
this->quad_indices.clear();
vertices_and_normals_interleaved_size = 0;
triangle_indices_size = 0;
quad_indices_size = 0;
m_bounding_box.setEmpty();
}
// Shrink the internal storage to tighly fit the data stored.
void shrink_to_fit() {
this->vertices_and_normals_interleaved.shrink_to_fit();
this->triangle_indices.shrink_to_fit();
this->quad_indices.shrink_to_fit();
}
const BoundingBox& bounding_box() const { return m_bounding_box; }
// Return an estimate of the memory consumed by this class.
size_t cpu_memory_used() const { return sizeof(*this) + vertices_and_normals_interleaved.capacity() * sizeof(float) + triangle_indices.capacity() * sizeof(int) + quad_indices.capacity() * sizeof(int); }
// Return an estimate of the memory held by GPU vertex buffers.
size_t gpu_memory_used() const
{
size_t memsize = 0;
if (this->vertices_and_normals_interleaved_VBO_id != 0)
memsize += this->vertices_and_normals_interleaved_size * 4;
if (this->triangle_indices_VBO_id != 0)
memsize += this->triangle_indices_size * 4;
if (this->quad_indices_VBO_id != 0)
memsize += this->quad_indices_size * 4;
return memsize;
}
size_t total_memory_used() const { return this->cpu_memory_used() + this->gpu_memory_used(); }
private:
BoundingBox m_bounding_box;
};
class GLVolume {
public:
std::string name;
static std::array<float, 4> DISABLED_COLOR;
static std::array<float, 4> SLA_SUPPORT_COLOR;
static std::array<float, 4> SLA_PAD_COLOR;
static std::array<float, 4> NEUTRAL_COLOR;
static std::array<float, 4> UNPRINTABLE_COLOR;
static std::array<std::array<float, 4>, 5> MODEL_COLOR;
static std::array<float, 4> MODEL_MIDIFIER_COL;
static std::array<float, 4> MODEL_NEGTIVE_COL;
static std::array<float, 4> SUPPORT_ENFORCER_COL;
static std::array<float, 4> SUPPORT_BLOCKER_COL;
static void update_render_colors();
static void load_render_colors();
static float explosion_ratio;
static float last_explosion_ratio;
enum EHoverState : unsigned char
{
HS_None,
HS_Hover,
HS_Select,
HS_Deselect
};
GLVolume(float r = 1.f, float g = 1.f, float b = 1.f, float a = 1.f);
GLVolume(const std::array<float, 4>& rgba) : GLVolume(rgba[0], rgba[1], rgba[2], rgba[3]) {}
// BBS
protected:
Geometry::Transformation m_instance_transformation;
Geometry::Transformation m_volume_transformation;
// BBS
Vec3d m_offset_to_assembly{ 0.0, 0.0, 0.0 };
// Shift in z required by sla supports+pad
double m_sla_shift_z;
// Bounding box of this volume, in unscaled coordinates.
std::optional<BoundingBoxf3> m_transformed_bounding_box;
// Convex hull of the volume, if any.
std::shared_ptr<const TriangleMesh> m_convex_hull;
// Bounding box of this volume, in unscaled coordinates.
std::optional<BoundingBoxf3> m_transformed_convex_hull_bounding_box;
// Bounding box of the non sinking part of this volume, in unscaled coordinates.
std::optional<BoundingBoxf3> m_transformed_non_sinking_bounding_box;
class SinkingContours
{
static const float HalfWidth;
GLVolume& m_parent;
GUI::GLModel m_model;
BoundingBoxf3 m_old_box;
Vec3d m_shift{ Vec3d::Zero() };
public:
SinkingContours(GLVolume& volume) : m_parent(volume) {}
void render();
private:
void update();
};
SinkingContours m_sinking_contours;
public:
// Color of the triangles / quads held by this volume.
std::array<float, 4> color;
// Color used to render this volume.
std::array<float, 4> render_color;
struct CompositeID {
CompositeID(int object_id, int volume_id, int instance_id) : object_id(object_id), volume_id(volume_id), instance_id(instance_id) {}
CompositeID() : object_id(-1), volume_id(-1), instance_id(-1) {}
// Object ID, which is equal to the index of the respective ModelObject in Model.objects array.
int object_id;
// Volume ID, which is equal to the index of the respective ModelVolume in ModelObject.volumes array.
// If negative, it is an index of a geometry produced by the PrintObject for the respective ModelObject,
// and which has no associated ModelVolume in ModelObject.volumes. For example, SLA supports.
// Volume with a negative volume_id cannot be picked independently, it will pick the associated instance.
int volume_id;
// Instance ID, which is equal to the index of the respective ModelInstance in ModelObject.instances array.
int instance_id;
bool operator==(const CompositeID &rhs) const { return object_id == rhs.object_id && volume_id == rhs.volume_id && instance_id == rhs.instance_id; }
bool operator!=(const CompositeID &rhs) const { return ! (*this == rhs); }
bool operator< (const CompositeID &rhs) const
{ return object_id < rhs.object_id || (object_id == rhs.object_id && (volume_id < rhs.volume_id || (volume_id == rhs.volume_id && instance_id < rhs.instance_id))); }
};
CompositeID composite_id;
// Fingerprint of the source geometry. For ModelVolumes, it is the ModelVolume::ID and ModelInstanceID,
// for generated volumes it is the timestamp generated by PrintState::invalidate() or PrintState::set_done(),
// and the associated ModelInstanceID.
// Valid geometry_id should always be positive.
std::pair<size_t, size_t> geometry_id;
// An ID containing the extruder ID (used to select color).
int extruder_id;
// Various boolean flags.
struct {
// Is this object selected?
bool selected : 1;
// Is this object disabled from selection?
bool disabled : 1;
// Is this object printable?
bool printable : 1;
// Whether or not this volume is active for rendering
bool is_active : 1;
// Whether or not to use this volume when applying zoom_to_volumes()
bool zoom_to_volumes : 1;
// Wheter or not this volume is enabled for outside print volume detection in shader.
bool shader_outside_printer_detection_enabled : 1;
// Wheter or not this volume is outside print volume.
bool is_outside : 1;
bool partly_inside : 1;
// Wheter or not this volume has been generated from a modifier
bool is_modifier : 1;
// Wheter or not this volume has been generated from the wipe tower
bool is_wipe_tower : 1;
// Wheter or not this volume has been generated from an extrusion path
bool is_extrusion_path : 1;
// Wheter or not to always render this volume using its own alpha
bool force_transparent : 1;
// Whether or not always use the volume's own color (not using SELECTED/HOVER/DISABLED/OUTSIDE)
bool force_native_color : 1;
// Whether or not render this volume in neutral
bool force_neutral_color : 1;
// Whether or not to force rendering of sinking contours
bool force_sinking_contours : 1;
};
// Is mouse or rectangle selection over this object to select/deselect it ?
EHoverState hover;
// Interleaved triangles & normals with indexed triangles & quads.
GLIndexedVertexArray indexed_vertex_array;
// BBS
mutable std::vector<GLIndexedVertexArray> mmuseg_ivas;
mutable ObjectBase::Timestamp mmuseg_ts;
// Ranges of triangle and quad indices to be rendered.
std::pair<size_t, size_t> tverts_range;
std::pair<size_t, size_t> qverts_range;
// If the qverts or tverts contain thick extrusions, then offsets keeps pointers of the starts
// of the extrusions per layer.
std::vector<coordf_t> print_zs;
// Offset into qverts & tverts, or offsets into indices stored into an OpenGL name_index_buffer.
std::vector<size_t> offsets;
// Bounding box of this volume, in unscaled coordinates.
BoundingBoxf3 bounding_box() const {
BoundingBoxf3 out;
if (! this->indexed_vertex_array.bounding_box().isEmpty()) {
out.min = this->indexed_vertex_array.bounding_box().min().cast<double>();
out.max = this->indexed_vertex_array.bounding_box().max().cast<double>();
out.defined = true;
};
return out;
}
void set_color(const std::array<float, 4>& rgba);
void set_render_color(float r, float g, float b, float a);
void set_render_color(const std::array<float, 4>& rgba);
// Sets render color in dependence of current state
void set_render_color();
// set color according to model volume
void set_color_from_model_volume(const ModelVolume& model_volume);
const Geometry::Transformation& get_instance_transformation() const { return m_instance_transformation; }
void set_instance_transformation(const Geometry::Transformation& transformation) { m_instance_transformation = transformation; set_bounding_boxes_as_dirty(); }
const Vec3d& get_instance_offset() const { return m_instance_transformation.get_offset(); }
double get_instance_offset(Axis axis) const { return m_instance_transformation.get_offset(axis); }
void set_instance_offset(const Vec3d& offset) { m_instance_transformation.set_offset(offset); set_bounding_boxes_as_dirty(); }
void set_instance_offset(Axis axis, double offset) { m_instance_transformation.set_offset(axis, offset); set_bounding_boxes_as_dirty(); }
const Vec3d& get_instance_rotation() const { return m_instance_transformation.get_rotation(); }
double get_instance_rotation(Axis axis) const { return m_instance_transformation.get_rotation(axis); }
void set_instance_rotation(const Vec3d& rotation) { m_instance_transformation.set_rotation(rotation); set_bounding_boxes_as_dirty(); }
void set_instance_rotation(Axis axis, double rotation) { m_instance_transformation.set_rotation(axis, rotation); set_bounding_boxes_as_dirty(); }
Vec3d get_instance_scaling_factor() const { return m_instance_transformation.get_scaling_factor(); }
double get_instance_scaling_factor(Axis axis) const { return m_instance_transformation.get_scaling_factor(axis); }
void set_instance_scaling_factor(const Vec3d& scaling_factor) { m_instance_transformation.set_scaling_factor(scaling_factor); set_bounding_boxes_as_dirty(); }
void set_instance_scaling_factor(Axis axis, double scaling_factor) { m_instance_transformation.set_scaling_factor(axis, scaling_factor); set_bounding_boxes_as_dirty(); }
const Vec3d& get_instance_mirror() const { return m_instance_transformation.get_mirror(); }
double get_instance_mirror(Axis axis) const { return m_instance_transformation.get_mirror(axis); }
void set_instance_mirror(const Vec3d& mirror) { m_instance_transformation.set_mirror(mirror); set_bounding_boxes_as_dirty(); }
void set_instance_mirror(Axis axis, double mirror) { m_instance_transformation.set_mirror(axis, mirror); set_bounding_boxes_as_dirty(); }
const Geometry::Transformation& get_volume_transformation() const { return m_volume_transformation; }
void set_volume_transformation(const Geometry::Transformation& transformation) { m_volume_transformation = transformation; set_bounding_boxes_as_dirty(); }
const Vec3d& get_volume_offset() const { return m_volume_transformation.get_offset(); }
double get_volume_offset(Axis axis) const { return m_volume_transformation.get_offset(axis); }
void set_volume_offset(const Vec3d& offset) { m_volume_transformation.set_offset(offset); set_bounding_boxes_as_dirty(); }
void set_volume_offset(Axis axis, double offset) { m_volume_transformation.set_offset(axis, offset); set_bounding_boxes_as_dirty(); }
const Vec3d& get_volume_rotation() const { return m_volume_transformation.get_rotation(); }
double get_volume_rotation(Axis axis) const { return m_volume_transformation.get_rotation(axis); }
void set_volume_rotation(const Vec3d& rotation) { m_volume_transformation.set_rotation(rotation); set_bounding_boxes_as_dirty(); }
void set_volume_rotation(Axis axis, double rotation) { m_volume_transformation.set_rotation(axis, rotation); set_bounding_boxes_as_dirty(); }
const Vec3d& get_volume_scaling_factor() const { return m_volume_transformation.get_scaling_factor(); }
double get_volume_scaling_factor(Axis axis) const { return m_volume_transformation.get_scaling_factor(axis); }
void set_volume_scaling_factor(const Vec3d& scaling_factor) { m_volume_transformation.set_scaling_factor(scaling_factor); set_bounding_boxes_as_dirty(); }
void set_volume_scaling_factor(Axis axis, double scaling_factor) { m_volume_transformation.set_scaling_factor(axis, scaling_factor); set_bounding_boxes_as_dirty(); }
const Vec3d& get_volume_mirror() const { return m_volume_transformation.get_mirror(); }
double get_volume_mirror(Axis axis) const { return m_volume_transformation.get_mirror(axis); }
void set_volume_mirror(const Vec3d& mirror) { m_volume_transformation.set_mirror(mirror); set_bounding_boxes_as_dirty(); }
void set_volume_mirror(Axis axis, double mirror) { m_volume_transformation.set_mirror(axis, mirror); set_bounding_boxes_as_dirty(); }
double get_sla_shift_z() const { return m_sla_shift_z; }
void set_sla_shift_z(double z) { m_sla_shift_z = z; }
void set_convex_hull(std::shared_ptr<const TriangleMesh> convex_hull) { m_convex_hull = std::move(convex_hull); }
void set_convex_hull(const TriangleMesh &convex_hull) { m_convex_hull = std::make_shared<const TriangleMesh>(convex_hull); }
void set_convex_hull(TriangleMesh &&convex_hull) { m_convex_hull = std::make_shared<const TriangleMesh>(std::move(convex_hull)); }
void set_offset_to_assembly(const Vec3d& offset) { m_offset_to_assembly = offset; set_bounding_boxes_as_dirty(); }
Vec3d get_offset_to_assembly() { return m_offset_to_assembly; }
int object_idx() const { return this->composite_id.object_id; }
int volume_idx() const { return this->composite_id.volume_id; }
int instance_idx() const { return this->composite_id.instance_id; }
Transform3d world_matrix() const;
bool is_left_handed() const;
//BBS: world_matrix with scale factor
Transform3d world_matrix(float scale_factor) const;
const BoundingBoxf3& transformed_bounding_box() const;
// non-caching variant
BoundingBoxf3 transformed_convex_hull_bounding_box(const Transform3d &trafo) const;
// caching variant
const BoundingBoxf3& transformed_convex_hull_bounding_box() const;
// non-caching variant
BoundingBoxf3 transformed_non_sinking_bounding_box(const Transform3d& trafo) const;
// caching variant
const BoundingBoxf3& transformed_non_sinking_bounding_box() const;
// convex hull
const TriangleMesh* convex_hull() const { return m_convex_hull.get(); }
bool empty() const { return this->indexed_vertex_array.empty(); }
void set_range(double low, double high);
//BBS: add outline related logic and add virtual specifier
virtual void render(bool with_outline = false) const;
//BBS: add simple render function for thumbnail
void simple_render(GLShaderProgram* shader, ModelObjectPtrs& model_objects, std::vector<std::array<float, 4>>& extruder_colors) const;
void finalize_geometry(bool opengl_initialized) { this->indexed_vertex_array.finalize_geometry(opengl_initialized); }
void release_geometry() { this->indexed_vertex_array.release_geometry(); }
void set_bounding_boxes_as_dirty() {
m_transformed_bounding_box.reset();
m_transformed_convex_hull_bounding_box.reset();
m_transformed_non_sinking_bounding_box.reset();
}
bool is_sla_support() const;
bool is_sla_pad() const;
bool is_sinking() const;
bool is_below_printbed() const;
void render_sinking_contours();
// Return an estimate of the memory consumed by this class.
size_t cpu_memory_used() const {
//FIXME what to do wih m_convex_hull?
return sizeof(*this) - sizeof(this->indexed_vertex_array) + this->indexed_vertex_array.cpu_memory_used() + this->print_zs.capacity() * sizeof(coordf_t) + this->offsets.capacity() * sizeof(size_t);
}
// Return an estimate of the memory held by GPU vertex buffers.
size_t gpu_memory_used() const { return this->indexed_vertex_array.gpu_memory_used(); }
size_t total_memory_used() const { return this->cpu_memory_used() + this->gpu_memory_used(); }
};
// BBS
class GLWipeTowerVolume : public GLVolume {
public:
GLWipeTowerVolume(const std::vector<std::array<float, 4>>& colors);
virtual void render(bool with_outline = false) const;
std::vector<GLIndexedVertexArray> iva_per_colors;
private:
std::vector<std::array<float, 4>> m_colors;
};
typedef std::vector<GLVolume*> GLVolumePtrs;
typedef std::pair<GLVolume*, std::pair<unsigned int, double>> GLVolumeWithIdAndZ;
typedef std::vector<GLVolumeWithIdAndZ> GLVolumeWithIdAndZList;
class GLVolumeCollection
{
public:
enum class ERenderType : unsigned char
{
Opaque,
Transparent,
All
};
struct PrintVolume
{
// see: Bed3D::EShapeType
int type{ 0 };
// data contains:
// Rectangle:
// [0] = min.x, [1] = min.y, [2] = max.x, [3] = max.y
// Circle:
// [0] = center.x, [1] = center.y, [3] = radius
std::array<float, 4> data;
// [0] = min z, [1] = max z
std::array<float, 2> zs;
};
private:
PrintVolume m_print_volume;
PrintVolume m_render_volume;
// z range for clipping in shaders
float m_z_range[2];
// plane coeffs for clipping in shaders
float m_clipping_plane[4];
struct Slope
{
// toggle for slope rendering
bool active{ false };
float normal_z;
};
Slope m_slope;
bool m_show_sinking_contours = false;
public:
GLVolumePtrs volumes;
GLVolumeCollection() {
set_default_slope_normal_z();
//BBS init render volume
m_render_volume.type = -1;
}
~GLVolumeCollection() { clear(); }
std::vector<int> load_object(
const ModelObject *model_object,
int obj_idx,
const std::vector<int> &instance_idxs,
const std::string &color_by,
bool opengl_initialized);
int load_object_volume(
const ModelObject *model_object,
int obj_idx,
int volume_idx,
int instance_idx,
const std::string &color_by,
bool opengl_initialized);
// Load SLA auxiliary GLVolumes (for support trees or pad).
void load_object_auxiliary(
const SLAPrintObject *print_object,
int obj_idx,
// pairs of <instance_idx, print_instance_idx>
const std::vector<std::pair<size_t, size_t>>& instances,
SLAPrintObjectStep milestone,
// Timestamp of the last change of the milestone
size_t timestamp,
bool opengl_initialized);
int load_wipe_tower_preview(
int obj_idx, float pos_x, float pos_y, float width, float depth, float height, float rotation_angle, bool size_unknown, float brim_width, bool opengl_initialized);
GLVolume* new_toolpath_volume(const std::array<float, 4>& rgba, size_t reserve_vbo_floats = 0);
GLVolume* new_nontoolpath_volume(const std::array<float, 4>& rgba, size_t reserve_vbo_floats = 0);
// Render the volumes by OpenGL.
//BBS: add outline drawing logic
void render(ERenderType type, bool disable_cullface, const Transform3d& view_matrix, std::function<bool(const GLVolume&)> filter_func = std::function<bool(const GLVolume&)>(), bool with_outline = true) const;
// Finalize the initialization of the geometry & indices,
// upload the geometry and indices to OpenGL VBO objects
// and shrink the allocated data, possibly relasing it if it has been loaded into the VBOs.
void finalize_geometry(bool opengl_initialized) { for (auto* v : volumes) v->finalize_geometry(opengl_initialized); }
// Release the geometry data assigned to the volumes.
// If OpenGL VBOs were allocated, an OpenGL context has to be active to release them.
void release_geometry() { for (auto *v : volumes) v->release_geometry(); }
// Clear the geometry
void clear() { for (auto *v : volumes) delete v; volumes.clear(); }
bool empty() const { return volumes.empty(); }
void set_range(double low, double high) { for (GLVolume *vol : this->volumes) vol->set_range(low, high); }
void set_print_volume(const PrintVolume& print_volume) { m_print_volume = print_volume; }
void set_z_range(float min_z, float max_z) { m_z_range[0] = min_z; m_z_range[1] = max_z; }
void set_clipping_plane(const double* coeffs) { m_clipping_plane[0] = coeffs[0]; m_clipping_plane[1] = coeffs[1]; m_clipping_plane[2] = coeffs[2]; m_clipping_plane[3] = coeffs[3]; }
bool is_slope_active() const { return m_slope.active; }
void set_slope_active(bool active) { m_slope.active = active; }
float get_slope_normal_z() const { return m_slope.normal_z; }
void set_slope_normal_z(float normal_z) { m_slope.normal_z = normal_z; }
void set_default_slope_normal_z() { m_slope.normal_z = -::cos(Geometry::deg2rad(90.0f - 45.0f)); }
void set_show_sinking_contours(bool show) { m_show_sinking_contours = show; }
// returns true if all the volumes are completely contained in the print volume
// returns the containment state in the given out_state, if non-null
bool check_outside_state(const Slic3r::BuildVolume& build_volume, ModelInstanceEPrintVolumeState* out_state) const;
void reset_outside_state();
void update_colors_by_extruder(const DynamicPrintConfig* config);
// Returns a vector containing the sorted list of all the print_zs of the volumes contained in this collection
std::vector<double> get_current_print_zs(bool active_only) const;
// Return an estimate of the memory consumed by this class.
size_t cpu_memory_used() const;
// Return an estimate of the memory held by GPU vertex buffers.
size_t gpu_memory_used() const;
size_t total_memory_used() const { return this->cpu_memory_used() + this->gpu_memory_used(); }
// Return CPU, GPU and total memory log line.
std::string log_memory_info() const;
private:
GLVolumeCollection(const GLVolumeCollection &other);
GLVolumeCollection& operator=(const GLVolumeCollection &);
};
GLVolumeWithIdAndZList volumes_to_render(const GLVolumePtrs& volumes, GLVolumeCollection::ERenderType type, const Transform3d& view_matrix, std::function<bool(const GLVolume&)> filter_func = nullptr);
struct _3DScene
{
static void thick_lines_to_verts(const Lines& lines, const std::vector<double>& widths, const std::vector<double>& heights, bool closed, double top_z, GLVolume& volume);
static void thick_lines_to_verts(const Lines3& lines, const std::vector<double>& widths, const std::vector<double>& heights, bool closed, GLVolume& volume);
static void extrusionentity_to_verts(const Polyline &polyline, float width, float height, float print_z, GLVolume& volume);
static void extrusionentity_to_verts(const ExtrusionPath& extrusion_path, float print_z, GLVolume& volume);
static void extrusionentity_to_verts(const ExtrusionPath& extrusion_path, float print_z, const Point& copy, GLVolume& volume);
static void extrusionentity_to_verts(const ExtrusionLoop& extrusion_loop, float print_z, const Point& copy, GLVolume& volume);
static void extrusionentity_to_verts(const ExtrusionMultiPath& extrusion_multi_path, float print_z, const Point& copy, GLVolume& volume);
static void extrusionentity_to_verts(const ExtrusionEntityCollection& extrusion_entity_collection, float print_z, const Point& copy, GLVolume& volume);
static void extrusionentity_to_verts(const ExtrusionEntity* extrusion_entity, float print_z, const Point& copy, GLVolume& volume);
static void polyline3_to_verts(const Polyline3& polyline, double width, double height, GLVolume& volume);
static void point3_to_verts(const Vec3crd& point, double width, double height, GLVolume& volume);
};
}
#endif