OrcaSlicer/tests/libslic3r/test_geometry.cpp
coryrc 52c2a85d28
Fix tests (#10906)
* Get libslic3r tests closer to passing

I can't get geometry tests to do anything useful. I've added extra
output, but it hasn't helped me figure out why they don't work
yet. That's also probably the last broken 3mf test doesn't work.

The config tests were mostly broken because of config name changes.

The placeholder_parser tests have some things that may-or-may-not
still apply to Orca.

* Vendor a 3.x version of Catch2

Everything is surely broken at this point.

* Allow building tests separately from Orca with build_linux.sh

* Remove unnecessary log message screwing up ctest

Same solution as Prusaslicer

* Make 2 TriangleMesh methods const

Since they can be.

* Move method comment to the header where it belongsc

* Add indirectly-included header directly

Transform3d IIRC

* libslic3r tests converted to Catch2 v3

Still has 3 failing tests, but builds and runs.

* Disable 2D convex hull test and comment what I've learned

Not sure the best way to solve this yet.

* Add diff compare method for DynamicConfig

Help the unit test report errors better.

* Perl no longer used, remove comment line

* Clang-format Config.?pp

So difficult to work with ATM

* Remove cpp17 unit tests

Who gives a shit

* Don't need explicit "example" test

We have lots of tests to serve as examples.

* Leave breadcrumb to enable sla_print tests

* Fix serialization of DynamicConfig

Add comments to test, because these code paths might not be even used
anymore.

* Update run_unit_tests to run all the tests

By the time I'm done with the PR all tests will either excluded by
default or passing, so just do all.

* Update how-to-test now that build_linux.sh builds tests separately

* Update cmake regenerate instructions

Read this online; hopefully works.

* Enable slic3rutils test with Catch2 v3

* Port libnest2d and fff_print to Catch2 v3

They build. Many failing.

* Add slightly more info to Objects not fit on bed exception

* Disable failing fff_print tests from running

They're mostly failing for "objects don't fit on bed" for an
infinite-sized bed. Given infinite bed is probably only used in tests,
it probably was incidentally broken long ago.

* Must checkout tests directory in GH Actions

So we get the test data

* Missed a failing fff_print test

* Disable (most/all) broken libnest2d tests

Trying all, not checking yet though

* Fix Polygon convex/concave detection tests

Document the implementation too. Reorganize the tests to be cleaner.

* Update the test script to run tests in parallel

* Get sla_print tests to build

Probably not passing

* Don't cause full project rebuild when updating test CMakeLists.txts

* Revert "Clang-format Config.?pp"

This reverts commit 771e4c0ad2.

---------

Co-authored-by: SoftFever <softfeverever@gmail.com>
2025-12-08 22:42:11 +08:00

754 lines
27 KiB
C++

#include <catch2/catch_all.hpp>
#include "libslic3r/Point.hpp"
#include "libslic3r/BoundingBox.hpp"
#include "libslic3r/Polygon.hpp"
#include "libslic3r/Polyline.hpp"
#include "libslic3r/Line.hpp"
#include "libslic3r/Geometry.hpp"
#include "libslic3r/Geometry/Circle.hpp"
#include "libslic3r/Geometry/ConvexHull.hpp"
#include "libslic3r/ClipperUtils.hpp"
#include "libslic3r/ShortestPath.hpp"
//#include <random>
//#include "libnest2d/tools/benchmark.h"
#include "libslic3r/SVG.hpp"
#include "../libnest2d/printer_parts.hpp"
#include <unordered_set>
using namespace Slic3r;
TEST_CASE("Line::parallel_to", "[Geometry]"){
Line l{ { 100000, 0 }, { 0, 0 } };
Line l2{ { 200000, 0 }, { 0, 0 } };
REQUIRE(l.parallel_to(l));
REQUIRE(l.parallel_to(l2));
Line l3(l2);
l3.rotate(0.9 * EPSILON, { 0, 0 });
REQUIRE(l.parallel_to(l3));
Line l4(l2);
l4.rotate(1.1 * EPSILON, { 0, 0 });
REQUIRE_FALSE(l.parallel_to(l4));
// The angle epsilon is so low that vectors shorter than 100um rotated by epsilon radians are not rotated at all.
Line l5{ { 20000, 0 }, { 0, 0 } };
l5.rotate(1.1 * EPSILON, { 0, 0 });
REQUIRE(l.parallel_to(l5));
l.rotate(1., { 0, 0 });
Point offset{ 342876, 97636249 };
l.translate(offset);
l3.rotate(1., { 0, 0 });
l3.translate(offset);
l4.rotate(1., { 0, 0 });
l4.translate(offset);
REQUIRE(l.parallel_to(l3));
REQUIRE_FALSE(l.parallel_to(l4));
}
TEST_CASE("Line::perpendicular_to", "[Geometry]") {
Line l{ { 100000, 0 }, { 0, 0 } };
Line l2{ { 0, 200000 }, { 0, 0 } };
REQUIRE_FALSE(l.perpendicular_to(l));
REQUIRE(l.perpendicular_to(l2));
Line l3(l2);
l3.rotate(0.9 * EPSILON, { 0, 0 });
REQUIRE(l.perpendicular_to(l3));
Line l4(l2);
l4.rotate(1.1 * EPSILON, { 0, 0 });
REQUIRE_FALSE(l.perpendicular_to(l4));
// The angle epsilon is so low that vectors shorter than 100um rotated by epsilon radians are not rotated at all.
Line l5{ { 0, 20000 }, { 0, 0 } };
l5.rotate(1.1 * EPSILON, { 0, 0 });
REQUIRE(l.perpendicular_to(l5));
l.rotate(1., { 0, 0 });
Point offset{ 342876, 97636249 };
l.translate(offset);
l3.rotate(1., { 0, 0 });
l3.translate(offset);
l4.rotate(1., { 0, 0 });
l4.translate(offset);
REQUIRE(l.perpendicular_to(l3));
REQUIRE_FALSE(l.perpendicular_to(l4));
}
TEST_CASE("Polygon::contains works properly", "[Geometry]"){
// this test was failing on Windows (GH #1950)
Slic3r::Polygon polygon(Points({
Point(207802834,-57084522),
Point(196528149,-37556190),
Point(173626821,-25420928),
Point(171285751,-21366123),
Point(118673592,-21366123),
Point(116332562,-25420928),
Point(93431208,-37556191),
Point(82156517,-57084523),
Point(129714478,-84542120),
Point(160244873,-84542120)
}));
Point point(95706562, -57294774);
REQUIRE(polygon.contains(point));
}
SCENARIO("Intersections of line segments", "[Geometry]"){
GIVEN("Integer coordinates"){
Line line1(Point(5,15),Point(30,15));
Line line2(Point(10,20), Point(10,10));
THEN("The intersection is valid"){
Point point;
line1.intersection(line2,&point);
REQUIRE(Point(10,15) == point);
}
}
GIVEN("Scaled coordinates"){
Line line1(Point(73.6310778185108 / 0.00001, 371.74239268924 / 0.00001), Point(73.6310778185108 / 0.00001, 501.74239268924 / 0.00001));
Line line2(Point(75/0.00001, 437.9853/0.00001), Point(62.7484/0.00001, 440.4223/0.00001));
THEN("There is still an intersection"){
Point point;
REQUIRE(line1.intersection(line2,&point));
}
}
}
SCENARIO("polygon_is_convex works") {
GIVEN("A square of dimension 10") {
WHEN("Polygon is convex clockwise") {
Polygon cw_square { { {0, 0}, {0,10}, {10,10}, {10,0} } };
THEN("it is not convex") {
REQUIRE_FALSE(polygon_is_convex(cw_square));
}
}
WHEN("Polygon is convex counter-clockwise") {
Polygon ccw_square { { {0, 0}, {10,0}, {10,10}, {0,10} } };
THEN("it is convex") {
REQUIRE(polygon_is_convex(ccw_square));
}
}
}
GIVEN("A concave polygon") {
Polygon concave = { {0,0}, {10,0}, {10,10}, {0,10}, {0,6}, {4,6}, {4,4}, {0,4} };
THEN("It is not convex") {
REQUIRE_FALSE(polygon_is_convex(concave));
}
}
}
TEST_CASE("Creating a polyline generates the obvious lines", "[Geometry]"){
Slic3r::Polyline polyline;
polyline.points = Points({Point(0, 0), Point(10, 0), Point(20, 0)});
REQUIRE(polyline.lines().at(0).a == Point(0,0));
REQUIRE(polyline.lines().at(0).b == Point(10,0));
REQUIRE(polyline.lines().at(1).a == Point(10,0));
REQUIRE(polyline.lines().at(1).b == Point(20,0));
}
TEST_CASE("Splitting a Polygon generates a polyline correctly", "[Geometry]"){
Slic3r::Polygon polygon(Points({Point(0, 0), Point(10, 0), Point(5, 5)}));
Slic3r::Polyline split = polygon.split_at_index(1);
REQUIRE(split.points[0]==Point(10,0));
REQUIRE(split.points[1]==Point(5,5));
REQUIRE(split.points[2]==Point(0,0));
REQUIRE(split.points[3]==Point(10,0));
}
TEST_CASE("Bounding boxes are scaled appropriately", "[Geometry]"){
BoundingBox bb(Points({Point(0, 1), Point(10, 2), Point(20, 2)}));
bb.scale(2);
REQUIRE(bb.min == Point(0,2));
REQUIRE(bb.max == Point(40,4));
}
TEST_CASE("Offseting a line generates a polygon correctly", "[Geometry]"){
Slic3r::Polyline tmp = { Point(10,10), Point(20,10) };
Slic3r::Polygon area = offset(tmp,5).at(0);
REQUIRE(area.area() == Slic3r::Polygon(Points({Point(10,5),Point(20,5),Point(20,15),Point(10,15)})).area());
}
SCENARIO("Circle Fit, TaubinFit with Newton's method", "[Geometry]") {
GIVEN("A vector of Vec2ds arranged in a half-circle with approximately the same distance R from some point") {
Vec2d expected_center(-6, 0);
Vec2ds sample {Vec2d(6.0, 0), Vec2d(5.1961524, 3), Vec2d(3 ,5.1961524), Vec2d(0, 6.0), Vec2d(3, 5.1961524), Vec2d(-5.1961524, 3), Vec2d(-6.0, 0)};
std::transform(sample.begin(), sample.end(), sample.begin(), [expected_center] (const Vec2d& a) { return a + expected_center;});
WHEN("Circle fit is called on the entire array") {
Vec2d result_center(0,0);
result_center = Geometry::circle_center_taubin_newton(sample);
THEN("A center point of -6,0 is returned.") {
REQUIRE(is_approx(result_center, expected_center));
}
}
WHEN("Circle fit is called on the first four points") {
Vec2d result_center(0,0);
result_center = Geometry::circle_center_taubin_newton(sample.cbegin(), sample.cbegin()+4);
THEN("A center point of -6,0 is returned.") {
REQUIRE(is_approx(result_center, expected_center));
}
}
WHEN("Circle fit is called on the middle four points") {
Vec2d result_center(0,0);
result_center = Geometry::circle_center_taubin_newton(sample.cbegin()+2, sample.cbegin()+6);
THEN("A center point of -6,0 is returned.") {
REQUIRE(is_approx(result_center, expected_center));
}
}
}
GIVEN("A vector of Vec2ds arranged in a half-circle with approximately the same distance R from some point") {
Vec2d expected_center(-3, 9);
Vec2ds sample {Vec2d(6.0, 0), Vec2d(5.1961524, 3), Vec2d(3 ,5.1961524),
Vec2d(0, 6.0),
Vec2d(3, 5.1961524), Vec2d(-5.1961524, 3), Vec2d(-6.0, 0)};
std::transform(sample.begin(), sample.end(), sample.begin(), [expected_center] (const Vec2d& a) { return a + expected_center;});
WHEN("Circle fit is called on the entire array") {
Vec2d result_center(0,0);
result_center = Geometry::circle_center_taubin_newton(sample);
THEN("A center point of 3,9 is returned.") {
REQUIRE(is_approx(result_center, expected_center));
}
}
WHEN("Circle fit is called on the first four points") {
Vec2d result_center(0,0);
result_center = Geometry::circle_center_taubin_newton(sample.cbegin(), sample.cbegin()+4);
THEN("A center point of 3,9 is returned.") {
REQUIRE(is_approx(result_center, expected_center));
}
}
WHEN("Circle fit is called on the middle four points") {
Vec2d result_center(0,0);
result_center = Geometry::circle_center_taubin_newton(sample.cbegin()+2, sample.cbegin()+6);
THEN("A center point of 3,9 is returned.") {
REQUIRE(is_approx(result_center, expected_center));
}
}
}
GIVEN("A vector of Points arranged in a half-circle with approximately the same distance R from some point") {
Point expected_center { Point::new_scale(-3, 9)};
Points sample {Point::new_scale(6.0, 0), Point::new_scale(5.1961524, 3), Point::new_scale(3 ,5.1961524),
Point::new_scale(0, 6.0),
Point::new_scale(3, 5.1961524), Point::new_scale(-5.1961524, 3), Point::new_scale(-6.0, 0)};
std::transform(sample.begin(), sample.end(), sample.begin(), [expected_center] (const Point& a) { return a + expected_center;});
WHEN("Circle fit is called on the entire array") {
Point result_center(0,0);
result_center = Geometry::circle_center_taubin_newton(sample);
THEN("A center point of scaled 3,9 is returned.") {
REQUIRE(is_approx(result_center, expected_center));
}
}
WHEN("Circle fit is called on the first four points") {
Point result_center(0,0);
result_center = Geometry::circle_center_taubin_newton(sample.cbegin(), sample.cbegin()+4);
THEN("A center point of scaled 3,9 is returned.") {
REQUIRE(is_approx(result_center, expected_center));
}
}
WHEN("Circle fit is called on the middle four points") {
Point result_center(0,0);
result_center = Geometry::circle_center_taubin_newton(sample.cbegin()+2, sample.cbegin()+6);
THEN("A center point of scaled 3,9 is returned.") {
REQUIRE(is_approx(result_center, expected_center));
}
}
}
}
TEST_CASE("smallest_enclosing_circle_welzl", "[Geometry]") {
// Some random points in plane.
Points pts {
{ 89243, 4359 }, { 763465, 59687 }, { 3245, 734987 }, { 2459867, 987634 }, { 759866, 67843982 }, { 9754687, 9834658 }, { 87235089, 743984373 },
{ 65874456, 2987546 }, { 98234524, 657654873 }, { 786243598, 287934765 }, { 824356, 734265 }, { 82576449, 7864534 }, { 7826345, 3984765 }
};
const auto c = Slic3r::Geometry::smallest_enclosing_circle_welzl(pts);
// The radius returned is inflated by SCALED_EPSILON, thus all points should be inside.
bool all_inside = std::all_of(pts.begin(), pts.end(), [c](const Point &pt){ return c.contains(pt.cast<double>()); });
auto c2(c);
c2.radius -= SCALED_EPSILON * 2.1;
auto num_on_boundary = std::count_if(pts.begin(), pts.end(), [c2](const Point& pt) { return ! c2.contains(pt.cast<double>(), SCALED_EPSILON); });
REQUIRE(all_inside);
REQUIRE(num_on_boundary == 3);
}
SCENARIO("Path chaining", "[Geometry]") {
GIVEN("A path") {
Points points = { Point(26,26),Point(52,26),Point(0,26),Point(26,52),Point(26,0),Point(0,52),Point(52,52),Point(52,0) };
THEN("Chained with no diagonals (thus 26 units long)") {
std::vector<size_t> indices = chain_points(points);
for (size_t i = 0; i + 1 < indices.size(); ++ i) {
double dist = (points.at(indices.at(i)).cast<double>() - points.at(indices.at(i+1)).cast<double>()).norm();
REQUIRE(std::abs(dist-26) <= EPSILON);
}
}
}
GIVEN("Gyroid infill end points") {
Polylines polylines = {
{ {28122608, 3221037}, {27919139, 56036027} },
{ {33642863, 3400772}, {30875220, 56450360} },
{ {34579315, 3599827}, {35049758, 55971572} },
{ {26483070, 3374004}, {23971830, 55763598} },
{ {38931405, 4678879}, {38740053, 55077714} },
{ {20311895, 5015778}, {20079051, 54551952} },
{ {16463068, 6773342}, {18823514, 53992958} },
{ {44433771, 7424951}, {42629462, 53346059} },
{ {15697614, 7329492}, {15350896, 52089991} },
{ {48085792, 10147132}, {46435427, 50792118} },
{ {48828819, 10972330}, {49126582, 48368374} },
{ {9654526, 12656711}, {10264020, 47691584} },
{ {5726905, 18648632}, {8070762, 45082416} },
{ {54818187, 39579970}, {52974912, 43271272} },
{ {4464342, 37371742}, {5027890, 39106220} },
{ {54139746, 18417661}, {55177987, 38472580} },
{ {56527590, 32058461}, {56316456, 34067185} },
{ {3303988, 29215290}, {3569863, 32985633} },
{ {56255666, 25025857}, {56478310, 27144087} },
{ {4300034, 22805361}, {3667946, 25752601} },
{ {8266122, 14250611}, {6244813, 17751595} },
{ {12177955, 9886741}, {10703348, 11491900} }
};
Polylines chained = chain_polylines(polylines);
THEN("Chained taking the shortest path") {
double connection_length = 0.;
for (size_t i = 1; i < chained.size(); ++i) {
const Polyline &pl1 = chained[i - 1];
const Polyline &pl2 = chained[i];
connection_length += (pl2.first_point() - pl1.last_point()).cast<double>().norm();
}
REQUIRE(connection_length < 85206000.);
}
}
GIVEN("Loop pieces") {
Point a { 2185796, 19058485 };
Point b { 3957902, 18149382 };
Point c { 2912841, 18790564 };
Point d { 2831848, 18832390 };
Point e { 3179601, 18627769 };
Point f { 3137952, 18653370 };
Polylines polylines = { { a, b },
{ c, d },
{ e, f },
{ d, a },
{ f, c },
{ b, e } };
Polylines chained = chain_polylines(polylines, &a);
THEN("Connected without a gap") {
for (size_t i = 0; i < chained.size(); ++i) {
const Polyline &pl1 = (i == 0) ? chained.back() : chained[i - 1];
const Polyline &pl2 = chained[i];
REQUIRE(pl1.points.back() == pl2.points.front());
}
}
}
}
SCENARIO("Line distances", "[Geometry]"){
GIVEN("A line"){
Line line(Point(0, 0), Point(20, 0));
THEN("Points on the line segment have 0 distance"){
REQUIRE(line.distance_to(Point(0, 0)) == 0);
REQUIRE(line.distance_to(Point(20, 0)) == 0);
REQUIRE(line.distance_to(Point(10, 0)) == 0);
}
THEN("Points off the line have the appropriate distance"){
REQUIRE(line.distance_to(Point(10, 10)) == 10);
REQUIRE(line.distance_to(Point(50, 0)) == 30);
}
}
}
SCENARIO("Polygon convex/concave detection", "[Geometry]"){
GIVEN(("A Square with dimension 100")){
auto square = Slic3r::Polygon /*new_scale*/(Points({
Point(100,100),
Point(200,100),
Point(200,200),
Point(100,200)}));
WHEN("Angle threshold is not set") {
THEN("It has 4 convex points counterclockwise"){
auto cave_pts = square.concave_points();
auto vex_pts = square.convex_points();
CAPTURE(cave_pts);
CAPTURE(vex_pts);
REQUIRE(cave_pts.size() == 0);
REQUIRE(vex_pts.size() == 4);
}
THEN("It has 4 concave points clockwise"){
square.make_clockwise();
auto cave_pts = square.concave_points();
auto vex_pts = square.convex_points();
CAPTURE(cave_pts);
CAPTURE(vex_pts);
REQUIRE(cave_pts.size() == 4);
REQUIRE(vex_pts.size() == 0);
}
}
WHEN("Angle threshold is greater than right angle") {
double angle_threshold = M_PI*4/3;
THEN("It has no convex points counterclockwise"){
auto cave_pts = square.concave_points(angle_threshold);
auto vex_pts = square.convex_points(angle_threshold);
CAPTURE(cave_pts);
CAPTURE(vex_pts);
REQUIRE(cave_pts.size() == 0);
REQUIRE(vex_pts.size() == 0);
}
THEN("It has no concave points clockwise"){
square.make_clockwise();
auto cave_pts = square.concave_points(angle_threshold);
auto vex_pts = square.convex_points(angle_threshold);
CAPTURE(cave_pts);
CAPTURE(vex_pts);
REQUIRE(cave_pts.size() == 0);
REQUIRE(vex_pts.size() == 0);
}
}
WHEN("Angle threshold is less than right angle") {
double angle_threshold = M_PI/3;
THEN("It has 4 convex points counterclockwise"){
auto cave_pts = square.concave_points(angle_threshold);
auto vex_pts = square.convex_points(angle_threshold);
CAPTURE(cave_pts);
CAPTURE(vex_pts);
REQUIRE(cave_pts.size() == 0);
REQUIRE(vex_pts.size() == 4);
}
THEN("It has 4 concave points clockwise"){
square.make_clockwise();
auto cave_pts = square.concave_points(angle_threshold);
auto vex_pts = square.convex_points(angle_threshold);
CAPTURE(cave_pts);
CAPTURE(vex_pts);
REQUIRE(cave_pts.size() == 4);
REQUIRE(vex_pts.size() == 0);
}
}
WHEN("Angle threshold is equal to right angle") {
double angle_threshold = M_PI/2;
THEN("It has no convex points counterclockwise"){
auto cave_pts = square.concave_points(angle_threshold);
auto vex_pts = square.convex_points(angle_threshold);
CAPTURE(cave_pts);
CAPTURE(vex_pts);
REQUIRE(cave_pts.size() == 0);
REQUIRE(vex_pts.size() == 0);
}
}
}
GIVEN("A Square with an extra colinearvertex"){
auto square = Slic3r::Polygon /*new_scale*/(Points({
Point(150,100),
Point(200,100),
Point(200,200),
Point(100,200),
Point(100,100)}));
THEN("It has 4 convex points counterclockwise"){
REQUIRE(square.concave_points().size() == 0);
REQUIRE(square.convex_points().size() == 4);
}
}
GIVEN("A Square with an extra collinear vertex in different order"){
auto square = Slic3r::Polygon /*new_scale*/(Points({
Point(200,200),
Point(100,200),
Point(100,100),
Point(150,100),
Point(200,100)}));
THEN("It has 4 convex points counterclockwise"){
REQUIRE(square.concave_points().size() == 0);
REQUIRE(square.convex_points().size() == 4);
}
}
GIVEN("A triangle"){
auto triangle = Slic3r::Polygon(Points({
Point(16000170,26257364),
Point(714223,461012),
Point(31286371,461008)
}));
THEN("it has three convex vertices"){
REQUIRE(triangle.concave_points().size() == 0);
REQUIRE(triangle.convex_points().size() == 3);
}
}
GIVEN("A triangle with an extra collinear point"){
auto triangle = Slic3r::Polygon(Points({
Point(16000170,26257364),
Point(714223,461012),
Point(20000000,461012),
Point(31286371,461012)
}));
THEN("it has three convex vertices"){
REQUIRE(triangle.concave_points().size() == 0);
REQUIRE(triangle.convex_points().size() == 3);
}
}
}
TEST_CASE("Triangle Simplification does not result in less than 3 points", "[Geometry]"){
auto triangle = Slic3r::Polygon(Points({
Point(16000170,26257364), Point(714223,461012), Point(31286371,461008)
}));
REQUIRE(triangle.simplify(250000).at(0).points.size() == 3);
}
SCENARIO("Ported from xs/t/14_geometry.t", "[Geometry]"){
GIVEN(("square")){
Slic3r::Points points { { 100, 100 }, {100, 200 }, { 200, 200 }, { 200, 100 }, { 150, 150 } };
Slic3r::Polygon hull = Slic3r::Geometry::convex_hull(points);
SECTION("convex hull returns the correct number of points") { REQUIRE(hull.points.size() == 4); }
}
SECTION("arrange returns expected number of positions") {
Pointfs positions;
Slic3r::Geometry::arrange(4, Vec2d(20, 20), 5, nullptr, positions);
REQUIRE(positions.size() == 4);
}
SECTION("directions_parallel") {
REQUIRE(Slic3r::Geometry::directions_parallel(0, 0, 0));
REQUIRE(Slic3r::Geometry::directions_parallel(0, M_PI, 0));
REQUIRE(Slic3r::Geometry::directions_parallel(0, 0, M_PI / 180));
REQUIRE(Slic3r::Geometry::directions_parallel(0, M_PI, M_PI / 180));
REQUIRE_FALSE(Slic3r::Geometry::directions_parallel(M_PI /2, M_PI, 0));
REQUIRE_FALSE(Slic3r::Geometry::directions_parallel(M_PI /2, PI, M_PI /180));
}
}
TEST_CASE("Convex polygon intersection on two disjoint squares", "[Geometry][Rotcalip]") {
Polygon A{{0, 0}, {10, 0}, {10, 10}, {0, 10}};
A.scale(1. / SCALING_FACTOR);
Polygon B = A;
B.translate(20 / SCALING_FACTOR, 0);
bool is_inters = Geometry::convex_polygons_intersect(A, B);
REQUIRE(is_inters == false);
}
TEST_CASE("Convex polygon intersection on two intersecting squares", "[Geometry][Rotcalip]") {
Polygon A{{0, 0}, {10, 0}, {10, 10}, {0, 10}};
A.scale(1. / SCALING_FACTOR);
Polygon B = A;
B.translate(5 / SCALING_FACTOR, 5 / SCALING_FACTOR);
bool is_inters = Geometry::convex_polygons_intersect(A, B);
REQUIRE(is_inters == true);
}
TEST_CASE("Convex polygon intersection on two squares touching one edge", "[Geometry][Rotcalip]") {
Polygon A{{0, 0}, {10, 0}, {10, 10}, {0, 10}};
A.scale(1. / SCALING_FACTOR);
Polygon B = A;
B.translate(10 / SCALING_FACTOR, 0);
bool is_inters = Geometry::convex_polygons_intersect(A, B);
REQUIRE(is_inters == false);
}
TEST_CASE("Convex polygon intersection on two squares touching one vertex", "[Geometry][Rotcalip]") {
Polygon A{{0, 0}, {10, 0}, {10, 10}, {0, 10}};
A.scale(1. / SCALING_FACTOR);
Polygon B = A;
B.translate(10 / SCALING_FACTOR, 10 / SCALING_FACTOR);
SVG svg{std::string("one_vertex_touch") + ".svg"};
svg.draw(A, "blue");
svg.draw(B, "green");
svg.Close();
bool is_inters = Geometry::convex_polygons_intersect(A, B);
REQUIRE(is_inters == false);
}
TEST_CASE("Convex polygon intersection on two overlapping squares", "[Geometry][Rotcalip]") {
Polygon A{{0, 0}, {10, 0}, {10, 10}, {0, 10}};
A.scale(1. / SCALING_FACTOR);
Polygon B = A;
bool is_inters = Geometry::convex_polygons_intersect(A, B);
REQUIRE(is_inters == true);
}
//// Only for benchmarking
//static Polygon gen_convex_poly(std::mt19937_64 &rg, size_t point_cnt)
//{
// std::uniform_int_distribution<coord_t> dist(0, 100);
// Polygon out;
// out.points.reserve(point_cnt);
// coord_t tr = dist(rg) * 2 / SCALING_FACTOR;
// for (size_t i = 0; i < point_cnt; ++i)
// out.points.emplace_back(tr + dist(rg) / SCALING_FACTOR,
// tr + dist(rg) / SCALING_FACTOR);
// return Geometry::convex_hull(out.points);
//}
//TEST_CASE("Convex polygon intersection test on random polygons", "[Geometry]") {
// constexpr size_t TEST_CNT = 1000;
// constexpr size_t POINT_CNT = 1000;
// auto seed = std::random_device{}();
//// unsigned long seed = 2525634386;
// std::mt19937_64 rg{seed};
// Benchmark bench;
// auto tests = reserve_vector<std::pair<Polygon, Polygon>>(TEST_CNT);
// auto results = reserve_vector<bool>(TEST_CNT);
// auto expects = reserve_vector<bool>(TEST_CNT);
// for (size_t i = 0; i < TEST_CNT; ++i) {
// tests.emplace_back(gen_convex_poly(rg, POINT_CNT), gen_convex_poly(rg, POINT_CNT));
// }
// bench.start();
// for (const auto &test : tests)
// results.emplace_back(Geometry::convex_polygons_intersect(test.first, test.second));
// bench.stop();
// std::cout << "Test time: " << bench.getElapsedSec() << std::endl;
// bench.start();
// for (const auto &test : tests)
// expects.emplace_back(!intersection(test.first, test.second).empty());
// bench.stop();
// std::cout << "Clipper time: " << bench.getElapsedSec() << std::endl;
// REQUIRE(results.size() == expects.size());
// auto seedstr = std::to_string(seed);
// for (size_t i = 0; i < results.size(); ++i) {
// // std::cout << expects[i] << " ";
// if (results[i] != expects[i]) {
// SVG svg{std::string("fail_seed") + seedstr + "_" + std::to_string(i) + ".svg"};
// svg.draw(tests[i].first, "blue");
// svg.draw(tests[i].second, "green");
// svg.Close();
// // std::cout << std::endl;
// }
// REQUIRE(results[i] == expects[i]);
// }
// std::cout << std::endl;
//}
struct Pair
{
size_t first, second;
bool operator==(const Pair &b) const { return first == b.first && second == b.second; }
};
template<> struct std::hash<Pair> {
size_t operator()(const Pair &c) const
{
return c.first * PRINTER_PART_POLYGONS.size() + c.second;
}
};
TEST_CASE("Convex polygon intersection test prusa polygons", "[Geometry][Rotcalip]") {
// Overlap of the same polygon should always be an intersection
for (size_t i = 0; i < PRINTER_PART_POLYGONS.size(); ++i) {
Polygon P = PRINTER_PART_POLYGONS[i];
P = Geometry::convex_hull(P.points);
bool res = Geometry::convex_polygons_intersect(P, P);
if (!res) {
SVG svg{std::string("fail_self") + std::to_string(i) + ".svg"};
svg.draw(P, "green");
svg.Close();
}
REQUIRE(res == true);
}
std::unordered_set<Pair> combos;
for (size_t i = 0; i < PRINTER_PART_POLYGONS.size(); ++i) {
for (size_t j = 0; j < PRINTER_PART_POLYGONS.size(); ++j) {
if (i != j) {
size_t a = std::min(i, j), b = std::max(i, j);
combos.insert(Pair{a, b});
}
}
}
// All disjoint
for (const auto &combo : combos) {
Polygon A = PRINTER_PART_POLYGONS[combo.first], B = PRINTER_PART_POLYGONS[combo.second];
A = Geometry::convex_hull(A.points);
B = Geometry::convex_hull(B.points);
auto bba = A.bounding_box();
auto bbb = B.bounding_box();
A.translate(-bba.center());
B.translate(-bbb.center());
B.translate(bba.size() + bbb.size());
bool res = Geometry::convex_polygons_intersect(A, B);
bool ref = !intersection(A, B).empty();
if (res != ref) {
SVG svg{std::string("fail") + std::to_string(combo.first) + "_" + std::to_string(combo.second) + ".svg"};
svg.draw(A, "blue");
svg.draw(B, "green");
svg.Close();
}
REQUIRE(res == ref);
}
// All intersecting
for (const auto &combo : combos) {
Polygon A = PRINTER_PART_POLYGONS[combo.first], B = PRINTER_PART_POLYGONS[combo.second];
A = Geometry::convex_hull(A.points);
B = Geometry::convex_hull(B.points);
auto bba = A.bounding_box();
auto bbb = B.bounding_box();
A.translate(-bba.center());
B.translate(-bbb.center());
bool res = Geometry::convex_polygons_intersect(A, B);
bool ref = !intersection(A, B).empty();
if (res != ref) {
SVG svg{std::string("fail") + std::to_string(combo.first) + "_" + std::to_string(combo.second) + ".svg"};
svg.draw(A, "blue");
svg.draw(B, "green");
svg.Close();
}
REQUIRE(res == ref);
}
}