mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-10-31 04:31:15 -06:00 
			
		
		
		
	 9f598046d1
			
		
	
	
		9f598046d1
		
	
	
	
	
		
			
			# Conflicts: # bbl/i18n/OrcaSlicer.pot # bbl/i18n/de/OrcaSlicer_de.po # bbl/i18n/en/OrcaSlicer_en.po # bbl/i18n/es/OrcaSlicer_es.po # bbl/i18n/fr/OrcaSlicer_fr.po # bbl/i18n/hu/OrcaSlicer_hu.po # bbl/i18n/it/OrcaSlicer_it.po # bbl/i18n/ja/OrcaSlicer_ja.po # bbl/i18n/nl/OrcaSlicer_nl.po # bbl/i18n/sv/OrcaSlicer_sv.po # bbl/i18n/zh_cn/OrcaSlicer_zh_CN.po # resources/config.json # resources/i18n/de/BambuStudio.mo # resources/i18n/en/BambuStudio.mo # resources/i18n/es/BambuStudio.mo # resources/i18n/fr/BambuStudio.mo # resources/i18n/hu/BambuStudio.mo # resources/i18n/it/BambuStudio.mo # resources/i18n/ja/OrcaSlicer.mo # resources/i18n/nl/BambuStudio.mo # resources/i18n/sv/BambuStudio.mo # resources/i18n/zh_cn/BambuStudio.mo # resources/images/ams_humidity_2.svg # resources/images/ams_humidity_3.svg # resources/images/ams_humidity_4.svg # resources/images/ams_humidity_tips.svg # resources/images/monitor_state_on.svg # resources/images/sdcard_state_normal.svg # resources/profiles/BBL.json # resources/profiles/BBL/filament/Bambu PETG-CF @base.json # resources/profiles/BBL/filament/Generic PETG-CF @base.json # resources/profiles/BBL/machine/Bambu Lab P1P 0.4 nozzle.json # resources/web/data/text.js # resources/web/guide/3/index.html # resources/web/guide/31/index.html # src/BambuStudio.cpp # src/libslic3r/AABBTreeLines.hpp # src/libslic3r/Brim.cpp # src/libslic3r/CMakeLists.txt # src/libslic3r/ExPolygon.hpp # src/libslic3r/Fill/FillBase.hpp # src/libslic3r/Format/bbs_3mf.cpp # src/libslic3r/GCodeWriter.cpp # src/libslic3r/Line.hpp # src/libslic3r/PerimeterGenerator.cpp # src/libslic3r/Preset.cpp # src/libslic3r/Print.cpp # src/libslic3r/Print.hpp # src/libslic3r/PrintConfig.cpp # src/libslic3r/PrintConfig.hpp # src/libslic3r/TreeSupport.cpp # src/slic3r/GUI/AmsMappingPopup.cpp # src/slic3r/GUI/BackgroundSlicingProcess.cpp # src/slic3r/GUI/ConfigManipulation.cpp # src/slic3r/GUI/GCodeViewer.cpp # src/slic3r/GUI/GCodeViewer.hpp # src/slic3r/GUI/GLCanvas3D.cpp # src/slic3r/GUI/GUI_App.cpp # src/slic3r/GUI/MainFrame.cpp # src/slic3r/GUI/PartPlate.cpp # src/slic3r/GUI/Plater.cpp # src/slic3r/GUI/Preferences.cpp # src/slic3r/GUI/SelectMachine.cpp # src/slic3r/GUI/Widgets/AMSControl.cpp # src/slic3r/GUI/wxMediaCtrl2.cpp # src/slic3r/Utils/Process.cpp # version.inc
		
			
				
	
	
		
			283 lines
		
	
	
		
			No EOL
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			283 lines
		
	
	
		
			No EOL
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #ifndef slic3r_Line_hpp_
 | |
| #define slic3r_Line_hpp_
 | |
| 
 | |
| #include "libslic3r.h"
 | |
| #include "Point.hpp"
 | |
| 
 | |
| #include <type_traits>
 | |
| 
 | |
| namespace Slic3r {
 | |
| 
 | |
| class BoundingBox;
 | |
| class Line;
 | |
| class Line3;
 | |
| class Linef3;
 | |
| class Polyline;
 | |
| class ThickLine;
 | |
| typedef std::vector<Line> Lines;
 | |
| typedef std::vector<Line3> Lines3;
 | |
| typedef std::vector<ThickLine> ThickLines;
 | |
| 
 | |
| Linef3 transform(const Linef3& line, const Transform3d& t);
 | |
| 
 | |
| namespace line_alg {
 | |
| 
 | |
| template<class L, class En = void> struct Traits {
 | |
|     static constexpr int Dim = L::Dim;
 | |
|     using Scalar = typename L::Scalar;
 | |
| 
 | |
|     static Vec<Dim, Scalar>& get_a(L &l) { return l.a; }
 | |
|     static Vec<Dim, Scalar>& get_b(L &l) { return l.b; }
 | |
|     static const Vec<Dim, Scalar>& get_a(const L &l) { return l.a; }
 | |
|     static const Vec<Dim, Scalar>& get_b(const L &l) { return l.b; }
 | |
| };
 | |
| 
 | |
| template<class L> const constexpr int Dim = Traits<remove_cvref_t<L>>::Dim;
 | |
| template<class L> using Scalar = typename Traits<remove_cvref_t<L>>::Scalar;
 | |
| 
 | |
| template<class L> auto get_a(L &&l) { return Traits<remove_cvref_t<L>>::get_a(l); }
 | |
| template<class L> auto get_b(L &&l) { return Traits<remove_cvref_t<L>>::get_b(l); }
 | |
| 
 | |
| // Distance to the closest point of line.
 | |
| template<class L>
 | |
| double distance_to_squared(const L &line, const Vec<Dim<L>, Scalar<L>> &point, Vec<Dim<L>, Scalar<L>> *nearest_point)
 | |
| {
 | |
|     const Vec<Dim<L>, double>  v  = (get_b(line) - get_a(line)).template cast<double>();
 | |
|     const Vec<Dim<L>, double>  va = (point  - get_a(line)).template cast<double>();
 | |
|     const double  l2 = v.squaredNorm();  // avoid a sqrt
 | |
|     if (l2 == 0.0) {
 | |
|         // a == b case
 | |
|         *nearest_point = get_a(line);
 | |
|         return va.squaredNorm();
 | |
|     }
 | |
|     // Consider the line extending the segment, parameterized as a + t (b - a).
 | |
|     // We find projection of this point onto the line.
 | |
|     // It falls where t = [(this-a) . (b-a)] / |b-a|^2
 | |
|     const double t = va.dot(v) / l2;
 | |
|     if (t <= 0.0) {
 | |
|         // beyond the 'a' end of the segment
 | |
|         *nearest_point = get_a(line);
 | |
|         return va.squaredNorm();
 | |
|     } else if (t >= 1.0) {
 | |
|         // beyond the 'b' end of the segment
 | |
|         *nearest_point = get_b(line);
 | |
|         return (point - get_b(line)).template cast<double>().squaredNorm();
 | |
|     }
 | |
| 
 | |
|     *nearest_point = (get_a(line).template cast<double>() + t * v).template cast<Scalar<L>>();
 | |
|     return (t * v - va).squaredNorm();
 | |
| }
 | |
| 
 | |
| // Distance to the closest point of line.
 | |
| template<class L>
 | |
| double distance_to_squared(const L &line, const Vec<Dim<L>, Scalar<L>> &point)
 | |
| {
 | |
|     Vec<Dim<L>, Scalar<L>> nearest_point;
 | |
|     return distance_to_squared<L>(line, point, &nearest_point);
 | |
| }
 | |
| 
 | |
| template<class L>
 | |
| double distance_to(const L &line, const Vec<Dim<L>, Scalar<L>> &point)
 | |
| {
 | |
|     return std::sqrt(distance_to_squared(line, point));
 | |
| }
 | |
| 
 | |
| // Returns a squared distance to the closest point on the infinite.
 | |
| // Returned nearest_point (and returned squared distance to this point) could be beyond the 'a' and 'b' ends of the segment.
 | |
| template<class L>
 | |
| double distance_to_infinite_squared(const L &line, const Vec<Dim<L>, Scalar<L>> &point, Vec<Dim<L>, Scalar<L>> *closest_point)
 | |
| {
 | |
|     const Vec<Dim<L>, double> v  = (get_b(line) - get_a(line)).template cast<double>();
 | |
|     const Vec<Dim<L>, double> va = (point - get_a(line)).template cast<double>();
 | |
|     const double              l2 = v.squaredNorm(); // avoid a sqrt
 | |
|     if (l2 == 0.) {
 | |
|         // a == b case
 | |
|         *closest_point = get_a(line);
 | |
|         return va.squaredNorm();
 | |
|     }
 | |
|     // Consider the line extending the segment, parameterized as a + t (b - a).
 | |
|     // We find projection of this point onto the line.
 | |
|     // It falls where t = [(this-a) . (b-a)] / |b-a|^2
 | |
|     const double t = va.dot(v) / l2;
 | |
|     *closest_point = (get_a(line).template cast<double>() + t * v).template cast<Scalar<L>>();
 | |
|     return (t * v - va).squaredNorm();
 | |
| }
 | |
| 
 | |
| // Returns a squared distance to the closest point on the infinite.
 | |
| // Closest point (and returned squared distance to this point) could be beyond the 'a' and 'b' ends of the segment.
 | |
| template<class L>
 | |
| double distance_to_infinite_squared(const L &line, const Vec<Dim<L>, Scalar<L>> &point)
 | |
| {
 | |
|     Vec<Dim<L>, Scalar<L>> nearest_point;
 | |
|     return distance_to_infinite_squared<L>(line, point, &nearest_point);
 | |
| }
 | |
| 
 | |
| // Returns a distance to the closest point on the infinite.
 | |
| // Closest point (and returned squared distance to this point) could be beyond the 'a' and 'b' ends of the segment.
 | |
| template<class L>
 | |
| double distance_to_infinite(const L &line, const Vec<Dim<L>, Scalar<L>> &point)
 | |
| {
 | |
|     return std::sqrt(distance_to_infinite_squared(line, point));
 | |
| }
 | |
| 
 | |
| template<class L> bool intersection(const L &l1, const L &l2, Vec<Dim<L>, Scalar<L>> *intersection_pt)
 | |
| {
 | |
|     using Floating      = typename std::conditional<std::is_floating_point<Scalar<L>>::value, Scalar<L>, double>::type;
 | |
|     using VecType       = const Vec<Dim<L>, Floating>;
 | |
|     const VecType v1    = (l1.b - l1.a).template cast<Floating>();
 | |
|     const VecType v2    = (l2.b - l2.a).template cast<Floating>();
 | |
|     Floating      denom = cross2(v1, v2);
 | |
|     if (fabs(denom) < EPSILON)
 | |
| #if 0
 | |
|         // Lines are collinear. Return true if they are coincident (overlappign).
 | |
|         return ! (fabs(nume_a) < EPSILON && fabs(nume_b) < EPSILON);
 | |
| #else
 | |
|         return false;
 | |
| #endif
 | |
|     const VecType v12 = (l1.a - l2.a).template cast<Floating>();
 | |
|     Floating nume_a = cross2(v2, v12);
 | |
|     Floating nume_b = cross2(v1, v12);
 | |
|     Floating t1     = nume_a / denom;
 | |
|     Floating t2     = nume_b / denom;
 | |
|     if (t1 >= 0 && t1 <= 1.0f && t2 >= 0 && t2 <= 1.0f) {
 | |
|         // Get the intersection point.
 | |
|         (*intersection_pt) = (l1.a.template cast<Floating>() + t1 * v1).template cast<Scalar<L>>();
 | |
|         return true;
 | |
|     }
 | |
|     return false; // not intersecting
 | |
| }
 | |
| 
 | |
| } // namespace line_alg
 | |
| 
 | |
| class Line
 | |
| {
 | |
| public:
 | |
|     Line() {}
 | |
|     Line(const Point& _a, const Point& _b) : a(_a), b(_b) {}
 | |
|     explicit operator Lines() const { Lines lines; lines.emplace_back(*this); return lines; }
 | |
|     void   scale(double factor) { this->a *= factor; this->b *= factor; }
 | |
|     void   translate(const Point &v) { this->a += v; this->b += v; }
 | |
|     void   translate(double x, double y) { this->translate(Point(x, y)); }
 | |
|     void   rotate(double angle, const Point ¢er) { this->a.rotate(angle, center); this->b.rotate(angle, center); }
 | |
|     void   reverse() { std::swap(this->a, this->b); }
 | |
|     double length() const { return (b - a).cast<double>().norm(); }
 | |
|     Point  midpoint() const { return (this->a + this->b) / 2; }
 | |
|     bool   intersection_infinite(const Line &other, Point* point) const;
 | |
|     bool   operator==(const Line &rhs) const { return this->a == rhs.a && this->b == rhs.b; }
 | |
|     double distance_to_squared(const Point &point) const { return distance_to_squared(point, this->a, this->b); }
 | |
|     double distance_to_squared(const Point &point, Point *closest_point) const { return line_alg::distance_to_squared(*this, point, closest_point); }
 | |
|     double distance_to(const Point &point) const { return distance_to(point, this->a, this->b); }
 | |
|     double distance_to_infinite_squared(const Point &point, Point *closest_point) const { return line_alg::distance_to_infinite_squared(*this, point, closest_point); }
 | |
|     double perp_distance_to(const Point &point) const;
 | |
|     bool   parallel_to(double angle) const;
 | |
|     bool   parallel_to(const Line& line) const;
 | |
|     bool   perpendicular_to(double angle) const;
 | |
|     bool   perpendicular_to(const Line& line) const;
 | |
|     double atan2_() const { return atan2(this->b(1) - this->a(1), this->b(0) - this->a(0)); }
 | |
|     double orientation() const;
 | |
|     double direction() const;
 | |
|     Vector vector() const { return this->b - this->a; }
 | |
|     Vector normal() const { return Vector((this->b(1) - this->a(1)), -(this->b(0) - this->a(0))); }
 | |
|     bool   intersection(const Line& line, Point* intersection) const;
 | |
|     // Clip a line with a bounding box. Returns false if the line is completely outside of the bounding box.
 | |
| 	bool   clip_with_bbox(const BoundingBox &bbox);
 | |
|     // Extend the line from both sides by an offset.
 | |
|     void   extend(double offset);
 | |
| 
 | |
|     static inline double distance_to_squared(const Point &point, const Point &a, const Point &b) { return line_alg::distance_to_squared(Line{a, b}, Vec<2, coord_t>{point}); }
 | |
|     static double distance_to(const Point &point, const Point &a, const Point &b) { return sqrt(distance_to_squared(point, a, b)); }
 | |
| 
 | |
|     // Returns a distance to the closest point on the infinite.
 | |
|     // Closest point (and returned squared distance to this point) could be beyond the 'a' and 'b' ends of the segment.
 | |
|     static inline double distance_to_infinite_squared(const Point &point, const Point &a, const Point &b) { return line_alg::distance_to_infinite_squared(Line{a, b}, Vec<2, coord_t>{point}); }
 | |
|     static double distance_to_infinite(const Point &point, const Point &a, const Point &b) { return sqrt(distance_to_infinite_squared(point, a, b)); }
 | |
| 
 | |
|     Point a;
 | |
|     Point b;
 | |
| 
 | |
|     static const constexpr int Dim = 2;
 | |
|     using Scalar = Point::Scalar;
 | |
| };
 | |
| 
 | |
| class ThickLine : public Line
 | |
| {
 | |
| public:
 | |
|     ThickLine() : a_width(0), b_width(0) {}
 | |
|     ThickLine(const Point& a, const Point& b) : Line(a, b), a_width(0), b_width(0) {}
 | |
|     ThickLine(const Point& a, const Point& b, double wa, double wb) : Line(a, b), a_width(wa), b_width(wb) {}
 | |
| 
 | |
|     double a_width, b_width;
 | |
| };
 | |
| 
 | |
| class Line3
 | |
| {
 | |
| public:
 | |
|     Line3() : a(Vec3crd::Zero()), b(Vec3crd::Zero()) {}
 | |
|     Line3(const Vec3crd& _a, const Vec3crd& _b) : a(_a), b(_b) {}
 | |
| 
 | |
|     double  length() const { return (this->a - this->b).cast<double>().norm(); }
 | |
|     Vec3crd vector() const { return this->b - this->a; }
 | |
| 
 | |
|     Vec3crd a;
 | |
|     Vec3crd b;
 | |
| 
 | |
|     static const constexpr int Dim = 3;
 | |
|     using Scalar = Vec3crd::Scalar;
 | |
| };
 | |
| 
 | |
| class Linef
 | |
| {
 | |
| public:
 | |
|     Linef() : a(Vec2d::Zero()), b(Vec2d::Zero()) {}
 | |
|     Linef(const Vec2d& _a, const Vec2d& _b) : a(_a), b(_b) {}
 | |
| 
 | |
|     Vec2d a;
 | |
|     Vec2d b;
 | |
| 
 | |
|     static const constexpr int Dim = 2;
 | |
|     using Scalar = Vec2d::Scalar;
 | |
| };
 | |
| using Linesf = std::vector<Linef>;
 | |
| 
 | |
| class Linef3
 | |
| {
 | |
| public:
 | |
|     Linef3() : a(Vec3d::Zero()), b(Vec3d::Zero()) {}
 | |
|     Linef3(const Vec3d& _a, const Vec3d& _b) : a(_a), b(_b) {}
 | |
| 
 | |
|     Vec3d   intersect_plane(double z) const;
 | |
|     void    scale(double factor) { this->a *= factor; this->b *= factor; }
 | |
|     Vec3d   vector() const { return this->b - this->a; }
 | |
|     Vec3d   unit_vector() const { return (length() == 0.0) ? Vec3d::Zero() : vector().normalized(); }
 | |
|     double  length() const { return vector().norm(); }
 | |
| 
 | |
|     Vec3d a;
 | |
|     Vec3d b;
 | |
| 
 | |
|     static const constexpr int Dim = 3;
 | |
|     using Scalar = Vec3d::Scalar;
 | |
| };
 | |
| 
 | |
| BoundingBox get_extents(const Lines &lines);
 | |
| 
 | |
| } // namespace Slic3r
 | |
| 
 | |
| // start Boost
 | |
| #include <boost/polygon/polygon.hpp>
 | |
| namespace boost { namespace polygon {
 | |
|     template <>
 | |
|     struct geometry_concept<Slic3r::Line> { typedef segment_concept type; };
 | |
| 
 | |
|     template <>
 | |
|     struct segment_traits<Slic3r::Line> {
 | |
|         typedef coord_t coordinate_type;
 | |
|         typedef Slic3r::Point point_type;
 | |
|     
 | |
|         static inline point_type get(const Slic3r::Line& line, direction_1d dir) {
 | |
|             return dir.to_int() ? line.b : line.a;
 | |
|         }
 | |
|     };
 | |
| } }
 | |
| // end Boost
 | |
| 
 | |
| #endif // slic3r_Line_hpp_
 |