mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-10-31 04:31:15 -06:00 
			
		
		
		
	
		
			
				
	
	
		
			203 lines
		
	
	
		
			No EOL
		
	
	
		
			9.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			203 lines
		
	
	
		
			No EOL
		
	
	
		
			9.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "CurveAnalyzer.hpp"
 | |
| 
 | |
| #include <cmath>
 | |
| #include <cassert>
 | |
| 
 | |
| static const int curvatures_sampling_number = 6;
 | |
| static const double curvatures_densify_width = 1;           // mm
 | |
| static const double curvatures_sampling_width = 6;         // mm
 | |
| static const double curvatures_angle_best = PI/6;
 | |
| static const double curvatures_angle_worst = 5*PI/6;
 | |
| 
 | |
| static const double curvatures_best = (curvatures_angle_best * 1000 / curvatures_sampling_width);
 | |
| static const double curvatures_worst = (curvatures_angle_worst * 1000 / curvatures_sampling_width);
 | |
| 
 | |
| namespace Slic3r {
 | |
| 
 | |
| // This function is used to calculate curvature for paths.
 | |
| // Paths must be generated from a closed polygon.
 | |
| // Data in paths may be modify, and paths will be spilited and regenerated
 | |
| // arrording to different curve degree.
 | |
| void CurveAnalyzer::calculate_curvatures(ExtrusionPaths& paths, ECurveAnalyseMode mode)
 | |
| {
 | |
|     Polygon polygon;
 | |
|     std::vector<float> paths_length(paths.size(), 0.0);
 | |
|     for (size_t i = 0; i < paths.size(); i++) {
 | |
|         if (i == 0) {
 | |
|             paths_length[i] = paths[i].polyline.length();
 | |
|         }
 | |
|         else {
 | |
|             paths_length[i] = paths_length[i - 1] + paths[i].polyline.length();
 | |
|         }
 | |
|         polygon.points.insert(polygon.points.end(), paths[i].polyline.points.begin(), paths[i].polyline.points.end() - 1);
 | |
|     }
 | |
|     // 1 generate point series which is on the line of polygon, point distance along the polygon is smaller than 1mm
 | |
|     polygon.densify(scale_(curvatures_densify_width));
 | |
|     std::vector<float> polygon_length = polygon.parameter_by_length();
 | |
| 
 | |
|     // 2 calculate angle of every segment
 | |
|     size_t point_num = polygon.points.size();
 | |
|     std::vector<float> angles(point_num, 0.f);
 | |
|     for (size_t i = 0; i < point_num; i++) {
 | |
|         size_t curr = i;
 | |
|         size_t prev = (curr == 0) ? point_num - 1 : curr - 1;
 | |
|         size_t next = (curr == point_num - 1) ? 0 : curr + 1;
 | |
|         const Point  v1 = polygon.points[curr] - polygon.points[prev];
 | |
|         const Point  v2 = polygon.points[next] - polygon.points[curr];
 | |
|         int64_t dot = int64_t(v1(0)) * int64_t(v2(0)) + int64_t(v1(1)) * int64_t(v2(1));
 | |
|         int64_t cross = int64_t(v1(0)) * int64_t(v2(1)) - int64_t(v1(1)) * int64_t(v2(0));
 | |
|         if (mode == ECurveAnalyseMode::RelativeMode)
 | |
|             cross = abs(cross);
 | |
|         angles[curr] = float(atan2(double(cross), double(dot)));
 | |
|     }
 | |
| 
 | |
|     // 3 generate sum of angle and length of the adjacent segment for eveny point, range is approximately curvatures_sampling_width.
 | |
|     //   And then calculate the curvature
 | |
|     std::vector<float> sum_angles(point_num, 0.f);
 | |
|     std::vector<double> average_curvatures(point_num, 0.f);
 | |
|     if (paths_length.back() < scale_(curvatures_sampling_width)) {
 | |
|         // loop is too short, so the curvatures is max
 | |
|         double temp = 1000.0 * 2.0 * PI / ((double)(paths_length.back()) * SCALING_FACTOR);
 | |
|         for (size_t i = 0; i < point_num; i++) {
 | |
|             average_curvatures[i] = temp;
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         for (size_t i = 0; i < point_num; i++) {
 | |
|             // right segment
 | |
|             size_t j = i;
 | |
|             float right_length = 0;
 | |
|             while (right_length < scale_(curvatures_sampling_width / 2)) {
 | |
|                 int next_j = (j + 1 >= point_num) ? 0 : j + 1;
 | |
|                 sum_angles[i] += angles[j];
 | |
|                 right_length += (polygon.points[next_j] - polygon.points[j]).cast<float>().norm();
 | |
|                 j = next_j;
 | |
|             }
 | |
|             // left segment
 | |
|             size_t k = i;
 | |
|             float left_length = 0;
 | |
|             while (left_length < scale_(curvatures_sampling_width / 2)) {
 | |
|                 size_t next_k = (k < 1) ? point_num - 1 : k - 1;
 | |
|                 sum_angles[i] += angles[k];
 | |
|                 left_length += (polygon.points[k] - polygon.points[next_k]).cast<float>().norm();
 | |
|                 k = next_k;
 | |
|             }
 | |
|             sum_angles[i] = sum_angles[i] - angles[i];
 | |
|             average_curvatures[i] = (1000.0 * (double)abs(sum_angles[i]) / (double)curvatures_sampling_width);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // 4 calculate the degree of curve
 | |
|     //   For angle >= curvatures_angle_worst, we think it's enough to be worst. Should make the speed to be slowest.
 | |
|     //   For angle <= curvatures_angle_best, we thins it's enough to be best. Should make the speed to be fastest.
 | |
|     //   Use several steps [0 1 2...curvatures_sampling_number - 1] to describe the degree of curve. 0 is the flatest. curvatures_sampling_number - 1 is the sharpest
 | |
|     std::vector<int> curvatures_norm(point_num, 0.f);
 | |
|     std::vector<int> sampling_step(curvatures_sampling_number - 1, 0);
 | |
|     for (size_t i = 0; i < curvatures_sampling_number - 1; i++) {
 | |
|         sampling_step[i] = (2 * i + 1) * 50 / (curvatures_sampling_number - 1);
 | |
|     }
 | |
|     sampling_step[0] = 0;
 | |
|     sampling_step[curvatures_sampling_number - 2] = 100;
 | |
|     for (size_t i = 0; i < point_num; i++) {
 | |
|         curvatures_norm[i] = (int)(100 * (average_curvatures[i] - curvatures_best) / (curvatures_worst - curvatures_best));
 | |
|         if (curvatures_norm[i] >= 100)
 | |
|             curvatures_norm[i] = curvatures_sampling_number - 1;
 | |
|         else
 | |
|             for (size_t j = 0; j < curvatures_sampling_number - 1; j++) {
 | |
|                 if (curvatures_norm[i] < sampling_step[j]) {
 | |
|                     curvatures_norm[i] = j;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|     }
 | |
|     std::vector<std::pair<std::pair<Point, int>, int>> curvature_list;   // point, index, curve_degree
 | |
|     int last_curvature_norm = -1;
 | |
|     for (int i = 0; i < point_num; i++) {
 | |
|         if (curvatures_norm[i] != last_curvature_norm) {
 | |
|             last_curvature_norm = curvatures_norm[i];
 | |
|             curvature_list.push_back(std::pair<std::pair<Point, int>, int>(std::pair<Point, int>(polygon.points[i], i), last_curvature_norm));
 | |
|         }
 | |
|     }
 | |
|     curvature_list.push_back(std::pair<std::pair<Point, int>, int>(std::pair<Point, int>(polygon.points[0], point_num), curvatures_norm[0])); // the last point should be the first point
 | |
| 
 | |
|     //5 split and modify the path according to the degree of curve
 | |
|     if (curvature_list.size() == 2) {   // all paths has same curva_degree
 | |
|         for (size_t i = 0; i < paths.size(); i++) {
 | |
|             paths[i].set_curve_degree(curvature_list[0].second);
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         ExtrusionPaths out;
 | |
|         out.reserve(paths.size() + curvature_list.size() - 1);
 | |
|         size_t j = 1;
 | |
|         int current_curva_norm = curvature_list[0].second;
 | |
|         for (size_t i = 0; i < paths.size() && j < curvature_list.size(); i++) {
 | |
|             if (paths[i].last_point() == curvature_list[j].first.first) {
 | |
|                 paths[i].set_curve_degree(current_curva_norm);
 | |
|                 out.push_back(paths[i]);
 | |
|                 current_curva_norm = curvature_list[j].second;
 | |
|                 j++;
 | |
|                 continue;
 | |
|             }
 | |
|             else if (paths[i].first_point() == curvature_list[j].first.first) {
 | |
|                 if (paths[i].polyline.points.front() == paths[i].polyline.points.back()) {
 | |
|                     paths[i].set_curve_degree(current_curva_norm);
 | |
|                     out.push_back(paths[i]);
 | |
|                     current_curva_norm = curvature_list[j].second;
 | |
|                     j++;
 | |
|                     continue;
 | |
|                 }
 | |
|                 else {
 | |
|                     // should never happen
 | |
|                     assert(0);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if (paths_length[i] <= polygon_length[curvature_list[j].first.second] ||
 | |
|                 paths[i].last_point() == curvature_list[j].first.first) {
 | |
|                 // save paths[i] directly
 | |
|                 paths[i].set_curve_degree(current_curva_norm);
 | |
|                 out.push_back(paths[i]);
 | |
|                 if (paths[i].last_point() == curvature_list[j].first.first) {
 | |
|                     current_curva_norm = curvature_list[j].second;
 | |
|                     j++;
 | |
|                 }
 | |
|             }
 | |
|             else {
 | |
|                 //split paths[i]
 | |
|                 ExtrusionPath current_path = paths[i];
 | |
|                 while (j < curvature_list.size()) {
 | |
|                     Polyline left, right;
 | |
|                     current_path.polyline.split_at(curvature_list[j].first.first, &left, &right);
 | |
|                     ExtrusionPath left_path(left, current_path);
 | |
|                     left_path.set_curve_degree(current_curva_norm);
 | |
|                     out.push_back(left_path);
 | |
|                     ExtrusionPath right_path(right, current_path);
 | |
|                     current_path = right_path;
 | |
| 
 | |
|                     current_curva_norm = curvature_list[j].second;
 | |
|                     j++;
 | |
|                     if (j < curvature_list.size() &&
 | |
|                         (paths_length[i] <= polygon_length[curvature_list[j].first.second] ||
 | |
|                             paths[i].last_point() == curvature_list[j].first.first)) {
 | |
|                         current_path.set_curve_degree(current_curva_norm);
 | |
|                         out.push_back(current_path);
 | |
|                         if (current_path.last_point() == curvature_list[j].first.first) {
 | |
|                             current_curva_norm = curvature_list[j].second;
 | |
|                             j++;
 | |
|                         }
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         paths.clear();
 | |
|         paths.reserve(out.size());
 | |
|         for (int i = 0; i < out.size(); i++) {
 | |
|             paths.push_back(out[i]);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| } | 
