OrcaSlicer/src/libslic3r/Line.hpp
salt.wei aab8a12801 ENH: add arachne engine for narrow internal solid infill
ConcentricGapFill pattern was used for internal narrow
solid infill. Use arachne engine instead to remove
gap fill inside the pattern and improve the extrusion path

Signed-off-by: salt.wei <salt.wei@bambulab.com>
Change-Id: I758d7c72eb71cc37026b7cebf746cc345014c3f5
(cherry picked from commit 0b6bacd21a091afc13d7b36a69e5b10f155bc6f8)
2022-08-26 09:25:59 +08:00

256 lines
9.8 KiB
C++

#ifndef slic3r_Line_hpp_
#define slic3r_Line_hpp_
#include "libslic3r.h"
#include "Point.hpp"
#include <type_traits>
namespace Slic3r {
class BoundingBox;
class Line;
class Line3;
class Linef3;
class Polyline;
class ThickLine;
typedef std::vector<Line> Lines;
typedef std::vector<Line3> Lines3;
typedef std::vector<ThickLine> ThickLines;
Linef3 transform(const Linef3& line, const Transform3d& t);
namespace line_alg {
template<class L, class En = void> struct Traits {
static constexpr int Dim = L::Dim;
using Scalar = typename L::Scalar;
static Vec<Dim, Scalar>& get_a(L &l) { return l.a; }
static Vec<Dim, Scalar>& get_b(L &l) { return l.b; }
static const Vec<Dim, Scalar>& get_a(const L &l) { return l.a; }
static const Vec<Dim, Scalar>& get_b(const L &l) { return l.b; }
};
template<class L> const constexpr int Dim = Traits<remove_cvref_t<L>>::Dim;
template<class L> using Scalar = typename Traits<remove_cvref_t<L>>::Scalar;
template<class L> auto get_a(L &&l) { return Traits<remove_cvref_t<L>>::get_a(l); }
template<class L> auto get_b(L &&l) { return Traits<remove_cvref_t<L>>::get_b(l); }
// Distance to the closest point of line.
template<class L>
double distance_to_squared(const L &line, const Vec<Dim<L>, Scalar<L>> &point, Vec<Dim<L>, Scalar<L>> *nearest_point)
{
const Vec<Dim<L>, double> v = (get_b(line) - get_a(line)).template cast<double>();
const Vec<Dim<L>, double> va = (point - get_a(line)).template cast<double>();
const double l2 = v.squaredNorm(); // avoid a sqrt
if (l2 == 0.0) {
// a == b case
*nearest_point = get_a(line);
return va.squaredNorm();
}
// Consider the line extending the segment, parameterized as a + t (b - a).
// We find projection of this point onto the line.
// It falls where t = [(this-a) . (b-a)] / |b-a|^2
const double t = va.dot(v) / l2;
if (t < 0.0) {
// beyond the 'a' end of the segment
*nearest_point = get_a(line);
return va.squaredNorm();
} else if (t > 1.0) {
// beyond the 'b' end of the segment
*nearest_point = get_b(line);
return (point - get_b(line)).template cast<double>().squaredNorm();
}
*nearest_point = (get_a(line).template cast<double>() + t * v).template cast<Scalar<L>>();
return (t * v - va).squaredNorm();
}
// Distance to the closest point of line.
template<class L>
double distance_to_squared(const L &line, const Vec<Dim<L>, Scalar<L>> &point)
{
Vec<Dim<L>, Scalar<L>> nearest_point;
return distance_to_squared<L>(line, point, &nearest_point);
}
template<class L>
double distance_to(const L &line, const Vec<Dim<L>, Scalar<L>> &point)
{
return std::sqrt(distance_to_squared(line, point));
}
// Returns a squared distance to the closest point on the infinite.
// Returned nearest_point (and returned squared distance to this point) could be beyond the 'a' and 'b' ends of the segment.
template<class L>
double distance_to_infinite_squared(const L &line, const Vec<Dim<L>, Scalar<L>> &point, Vec<Dim<L>, Scalar<L>> *closest_point)
{
const Vec<Dim<L>, double> v = (get_b(line) - get_a(line)).template cast<double>();
const Vec<Dim<L>, double> va = (point - get_a(line)).template cast<double>();
const double l2 = v.squaredNorm(); // avoid a sqrt
if (l2 == 0.) {
// a == b case
*closest_point = get_a(line);
return va.squaredNorm();
}
// Consider the line extending the segment, parameterized as a + t (b - a).
// We find projection of this point onto the line.
// It falls where t = [(this-a) . (b-a)] / |b-a|^2
const double t = va.dot(v) / l2;
*closest_point = (get_a(line).template cast<double>() + t * v).template cast<Scalar<L>>();
return (t * v - va).squaredNorm();
}
// Returns a squared distance to the closest point on the infinite.
// Closest point (and returned squared distance to this point) could be beyond the 'a' and 'b' ends of the segment.
template<class L>
double distance_to_infinite_squared(const L &line, const Vec<Dim<L>, Scalar<L>> &point)
{
Vec<Dim<L>, Scalar<L>> nearest_point;
return distance_to_infinite_squared<L>(line, point, &nearest_point);
}
// Returns a distance to the closest point on the infinite.
// Closest point (and returned squared distance to this point) could be beyond the 'a' and 'b' ends of the segment.
template<class L>
double distance_to_infinite(const L &line, const Vec<Dim<L>, Scalar<L>> &point)
{
return std::sqrt(distance_to_infinite_squared(line, point));
}
} // namespace line_alg
class Line
{
public:
Line() {}
Line(const Point& _a, const Point& _b) : a(_a), b(_b) {}
explicit operator Lines() const { Lines lines; lines.emplace_back(*this); return lines; }
void scale(double factor) { this->a *= factor; this->b *= factor; }
void translate(const Point &v) { this->a += v; this->b += v; }
void translate(double x, double y) { this->translate(Point(x, y)); }
void rotate(double angle, const Point &center) { this->a.rotate(angle, center); this->b.rotate(angle, center); }
void reverse() { std::swap(this->a, this->b); }
double length() const { return (b - a).cast<double>().norm(); }
Point midpoint() const { return (this->a + this->b) / 2; }
bool intersection_infinite(const Line &other, Point* point) const;
bool operator==(const Line &rhs) const { return this->a == rhs.a && this->b == rhs.b; }
double distance_to_squared(const Point &point) const { return distance_to_squared(point, this->a, this->b); }
double distance_to_squared(const Point &point, Point *closest_point) const { return line_alg::distance_to_squared(*this, point, closest_point); }
double distance_to(const Point &point) const { return distance_to(point, this->a, this->b); }
double distance_to_infinite_squared(const Point &point, Point *closest_point) const { return line_alg::distance_to_infinite_squared(*this, point, closest_point); }
double perp_distance_to(const Point &point) const;
bool parallel_to(double angle) const;
bool parallel_to(const Line& line) const;
bool perpendicular_to(double angle) const;
bool perpendicular_to(const Line& line) const;
double atan2_() const { return atan2(this->b(1) - this->a(1), this->b(0) - this->a(0)); }
double orientation() const;
double direction() const;
Vector vector() const { return this->b - this->a; }
Vector normal() const { return Vector((this->b(1) - this->a(1)), -(this->b(0) - this->a(0))); }
bool intersection(const Line& line, Point* intersection) const;
double ccw(const Point& point) const { return point.ccw(*this); }
// Clip a line with a bounding box. Returns false if the line is completely outside of the bounding box.
bool clip_with_bbox(const BoundingBox &bbox);
// Extend the line from both sides by an offset.
void extend(double offset);
static inline double distance_to_squared(const Point &point, const Point &a, const Point &b) { return line_alg::distance_to_squared(Line{a, b}, Vec<2, coord_t>{point}); }
static double distance_to(const Point &point, const Point &a, const Point &b) { return sqrt(distance_to_squared(point, a, b)); }
// Returns a distance to the closest point on the infinite.
// Closest point (and returned squared distance to this point) could be beyond the 'a' and 'b' ends of the segment.
static inline double distance_to_infinite_squared(const Point &point, const Point &a, const Point &b) { return line_alg::distance_to_infinite_squared(Line{a, b}, Vec<2, coord_t>{point}); }
static double distance_to_infinite(const Point &point, const Point &a, const Point &b) { return sqrt(distance_to_infinite_squared(point, a, b)); }
Point a;
Point b;
static const constexpr int Dim = 2;
using Scalar = Point::Scalar;
};
class ThickLine : public Line
{
public:
ThickLine() : a_width(0), b_width(0) {}
ThickLine(const Point& a, const Point& b) : Line(a, b), a_width(0), b_width(0) {}
ThickLine(const Point& a, const Point& b, double wa, double wb) : Line(a, b), a_width(wa), b_width(wb) {}
double a_width, b_width;
};
class Line3
{
public:
Line3() : a(Vec3crd::Zero()), b(Vec3crd::Zero()) {}
Line3(const Vec3crd& _a, const Vec3crd& _b) : a(_a), b(_b) {}
double length() const { return (this->a - this->b).cast<double>().norm(); }
Vec3crd vector() const { return this->b - this->a; }
Vec3crd a;
Vec3crd b;
static const constexpr int Dim = 3;
using Scalar = Vec3crd::Scalar;
};
class Linef
{
public:
Linef() : a(Vec2d::Zero()), b(Vec2d::Zero()) {}
Linef(const Vec2d& _a, const Vec2d& _b) : a(_a), b(_b) {}
Vec2d a;
Vec2d b;
static const constexpr int Dim = 2;
using Scalar = Vec2d::Scalar;
};
class Linef3
{
public:
Linef3() : a(Vec3d::Zero()), b(Vec3d::Zero()) {}
Linef3(const Vec3d& _a, const Vec3d& _b) : a(_a), b(_b) {}
Vec3d intersect_plane(double z) const;
void scale(double factor) { this->a *= factor; this->b *= factor; }
Vec3d vector() const { return this->b - this->a; }
Vec3d unit_vector() const { return (length() == 0.0) ? Vec3d::Zero() : vector().normalized(); }
double length() const { return vector().norm(); }
Vec3d a;
Vec3d b;
static const constexpr int Dim = 3;
using Scalar = Vec3d::Scalar;
};
BoundingBox get_extents(const Lines &lines);
} // namespace Slic3r
// start Boost
#include <boost/polygon/polygon.hpp>
namespace boost { namespace polygon {
template <>
struct geometry_concept<Slic3r::Line> { typedef segment_concept type; };
template <>
struct segment_traits<Slic3r::Line> {
typedef coord_t coordinate_type;
typedef Slic3r::Point point_type;
static inline point_type get(const Slic3r::Line& line, direction_1d dir) {
return dir.to_int() ? line.b : line.a;
}
};
} }
// end Boost
#endif // slic3r_Line_hpp_