mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-07-11 00:37:51 -06:00
380 lines
11 KiB
C++
380 lines
11 KiB
C++
#ifndef NLOPTOPTIMIZER_HPP
|
|
#define NLOPTOPTIMIZER_HPP
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning(push)
|
|
#pragma warning(disable: 4244)
|
|
#pragma warning(disable: 4267)
|
|
#endif
|
|
#include <nlopt.h>
|
|
#ifdef _MSC_VER
|
|
#pragma warning(pop)
|
|
#endif
|
|
|
|
#include <utility>
|
|
#include <tuple>
|
|
#include <array>
|
|
#include <cmath>
|
|
#include <functional>
|
|
#include <limits>
|
|
#include <cassert>
|
|
|
|
namespace Slic3r { namespace opt {
|
|
|
|
// A type to hold the complete result of the optimization.
|
|
template<size_t N> struct Result {
|
|
int resultcode;
|
|
std::array<double, N> optimum;
|
|
double score;
|
|
};
|
|
|
|
// An interval of possible input values for optimization
|
|
class Bound {
|
|
double m_min, m_max;
|
|
|
|
public:
|
|
Bound(double min = std::numeric_limits<double>::min(),
|
|
double max = std::numeric_limits<double>::max())
|
|
: m_min(min), m_max(max)
|
|
{}
|
|
|
|
double min() const noexcept { return m_min; }
|
|
double max() const noexcept { return m_max; }
|
|
};
|
|
|
|
// Helper types for optimization function input and bounds
|
|
template<size_t N> using Input = std::array<double, N>;
|
|
template<size_t N> using Bounds = std::array<Bound, N>;
|
|
|
|
// A type for specifying the stop criteria. Setter methods can be concatenated
|
|
class StopCriteria {
|
|
|
|
// If the absolute value difference between two scores.
|
|
double m_abs_score_diff = std::nan("");
|
|
|
|
// If the relative value difference between two scores.
|
|
double m_rel_score_diff = std::nan("");
|
|
|
|
// Stop if this value or better is found.
|
|
double m_stop_score = std::nan("");
|
|
|
|
// A predicate that if evaluates to true, the optimization should terminate
|
|
// and the best result found prior to termination should be returned.
|
|
std::function<bool()> m_stop_condition = [] { return false; };
|
|
|
|
// The max allowed number of iterations.
|
|
unsigned m_max_iterations = 0;
|
|
|
|
public:
|
|
|
|
StopCriteria & abs_score_diff(double val)
|
|
{
|
|
m_abs_score_diff = val; return *this;
|
|
}
|
|
|
|
double abs_score_diff() const { return m_abs_score_diff; }
|
|
|
|
StopCriteria & rel_score_diff(double val)
|
|
{
|
|
m_rel_score_diff = val; return *this;
|
|
}
|
|
|
|
double rel_score_diff() const { return m_rel_score_diff; }
|
|
|
|
StopCriteria & stop_score(double val)
|
|
{
|
|
m_stop_score = val; return *this;
|
|
}
|
|
|
|
double stop_score() const { return m_stop_score; }
|
|
|
|
StopCriteria & max_iterations(double val)
|
|
{
|
|
m_max_iterations = val; return *this;
|
|
}
|
|
|
|
double max_iterations() const { return m_max_iterations; }
|
|
|
|
template<class Fn> StopCriteria & stop_condition(Fn &&cond)
|
|
{
|
|
m_stop_condition = cond; return *this;
|
|
}
|
|
|
|
bool stop_condition() { return m_stop_condition(); }
|
|
};
|
|
|
|
// Helper class to use optimization methods involving gradient.
|
|
template<size_t N> struct ScoreGradient {
|
|
double score;
|
|
std::optional<std::array<double, N>> gradient;
|
|
|
|
ScoreGradient(double s, const std::array<double, N> &grad)
|
|
: score{s}, gradient{grad}
|
|
{}
|
|
};
|
|
|
|
// Helper to be used in static_assert.
|
|
template<class T> struct always_false { enum { value = false }; };
|
|
|
|
// Basic interface to optimizer object
|
|
template<class Method, class Enable = void> class Optimizer {
|
|
public:
|
|
|
|
Optimizer(const StopCriteria &)
|
|
{
|
|
static_assert (always_false<Method>::value,
|
|
"Optimizer unimplemented for given method!");
|
|
}
|
|
|
|
Optimizer<Method> &to_min() { return *this; }
|
|
Optimizer<Method> &to_max() { return *this; }
|
|
Optimizer<Method> &set_criteria(const StopCriteria &) { return *this; }
|
|
StopCriteria get_criteria() const { return {}; };
|
|
|
|
template<class Func, size_t N>
|
|
Result<N> optimize(Func&& func,
|
|
const Input<N> &initvals,
|
|
const Bounds<N>& bounds) { return {}; }
|
|
|
|
// optional for randomized methods:
|
|
void seed(long /*s*/) {}
|
|
};
|
|
|
|
namespace detail {
|
|
|
|
// Helper types for NLopt algorithm selection in template contexts
|
|
template<nlopt_algorithm alg> struct NLoptAlg {};
|
|
|
|
// NLopt can combine multiple algorithms if one is global an other is a local
|
|
// method. This is how template specializations can be informed about this fact.
|
|
template<nlopt_algorithm gl_alg, nlopt_algorithm lc_alg = NLOPT_LN_NELDERMEAD>
|
|
struct NLoptAlgComb {};
|
|
|
|
template<class M> struct IsNLoptAlg {
|
|
static const constexpr bool value = false;
|
|
};
|
|
|
|
template<nlopt_algorithm a> struct IsNLoptAlg<NLoptAlg<a>> {
|
|
static const constexpr bool value = true;
|
|
};
|
|
|
|
template<nlopt_algorithm a1, nlopt_algorithm a2>
|
|
struct IsNLoptAlg<NLoptAlgComb<a1, a2>> {
|
|
static const constexpr bool value = true;
|
|
};
|
|
|
|
template<class M, class T = void>
|
|
using NLoptOnly = std::enable_if_t<IsNLoptAlg<M>::value, T>;
|
|
|
|
// Helper to convert C style array to std::array. The copy should be optimized
|
|
// away with modern compilers.
|
|
template<size_t N, class T> auto to_arr(const T *a)
|
|
{
|
|
std::array<T, N> r;
|
|
std::copy(a, a + N, std::begin(r));
|
|
return r;
|
|
}
|
|
|
|
template<size_t N, class T> auto to_arr(const T (&a) [N])
|
|
{
|
|
return to_arr<N>(static_cast<const T *>(a));
|
|
}
|
|
|
|
enum class OptDir { MIN, MAX }; // Where to optimize
|
|
|
|
struct NLopt { // Helper RAII class for nlopt_opt
|
|
nlopt_opt ptr = nullptr;
|
|
|
|
template<class...A> explicit NLopt(A&&...a)
|
|
{
|
|
ptr = nlopt_create(std::forward<A>(a)...);
|
|
}
|
|
|
|
NLopt(const NLopt&) = delete;
|
|
NLopt(NLopt&&) = delete;
|
|
NLopt& operator=(const NLopt&) = delete;
|
|
NLopt& operator=(NLopt&&) = delete;
|
|
|
|
~NLopt() { nlopt_destroy(ptr); }
|
|
};
|
|
|
|
template<class Method> class NLoptOpt {};
|
|
|
|
// Optimizers based on NLopt.
|
|
template<nlopt_algorithm alg> class NLoptOpt<NLoptAlg<alg>> {
|
|
protected:
|
|
StopCriteria m_stopcr;
|
|
OptDir m_dir;
|
|
|
|
template<class Fn> using TOptData =
|
|
std::tuple<std::remove_reference_t<Fn>*, NLoptOpt*, nlopt_opt>;
|
|
|
|
template<class Fn, size_t N>
|
|
static double optfunc(unsigned n, const double *params,
|
|
double *gradient,
|
|
void *data)
|
|
{
|
|
assert(n >= N);
|
|
|
|
auto tdata = static_cast<TOptData<Fn>*>(data);
|
|
|
|
if (std::get<1>(*tdata)->m_stopcr.stop_condition())
|
|
nlopt_force_stop(std::get<2>(*tdata));
|
|
|
|
auto fnptr = std::get<0>(*tdata);
|
|
auto funval = to_arr<N>(params);
|
|
|
|
double scoreval = 0.;
|
|
using RetT = decltype((*fnptr)(funval));
|
|
if constexpr (std::is_convertible_v<RetT, ScoreGradient<N>>) {
|
|
ScoreGradient<N> score = (*fnptr)(funval);
|
|
for (size_t i = 0; i < n; ++i) gradient[i] = (*score.gradient)[i];
|
|
scoreval = score.score;
|
|
} else {
|
|
scoreval = (*fnptr)(funval);
|
|
}
|
|
|
|
return scoreval;
|
|
}
|
|
|
|
template<size_t N>
|
|
void set_up(NLopt &nl, const Bounds<N>& bounds)
|
|
{
|
|
std::array<double, N> lb, ub;
|
|
|
|
for (size_t i = 0; i < N; ++i) {
|
|
lb[i] = bounds[i].min();
|
|
ub[i] = bounds[i].max();
|
|
}
|
|
|
|
nlopt_set_lower_bounds(nl.ptr, lb.data());
|
|
nlopt_set_upper_bounds(nl.ptr, ub.data());
|
|
|
|
double abs_diff = m_stopcr.abs_score_diff();
|
|
double rel_diff = m_stopcr.rel_score_diff();
|
|
double stopval = m_stopcr.stop_score();
|
|
if(!std::isnan(abs_diff)) nlopt_set_ftol_abs(nl.ptr, abs_diff);
|
|
if(!std::isnan(rel_diff)) nlopt_set_ftol_rel(nl.ptr, rel_diff);
|
|
if(!std::isnan(stopval)) nlopt_set_stopval(nl.ptr, stopval);
|
|
|
|
if(this->m_stopcr.max_iterations() > 0)
|
|
nlopt_set_maxeval(nl.ptr, this->m_stopcr.max_iterations());
|
|
}
|
|
|
|
template<class Fn, size_t N>
|
|
Result<N> optimize(NLopt &nl, Fn &&fn, const Input<N> &initvals)
|
|
{
|
|
Result<N> r;
|
|
|
|
TOptData<Fn> data = std::make_tuple(&fn, this, nl.ptr);
|
|
|
|
switch(m_dir) {
|
|
case OptDir::MIN:
|
|
nlopt_set_min_objective(nl.ptr, optfunc<Fn, N>, &data); break;
|
|
case OptDir::MAX:
|
|
nlopt_set_max_objective(nl.ptr, optfunc<Fn, N>, &data); break;
|
|
}
|
|
|
|
r.optimum = initvals;
|
|
r.resultcode = nlopt_optimize(nl.ptr, r.optimum.data(), &r.score);
|
|
|
|
return r;
|
|
}
|
|
|
|
public:
|
|
|
|
template<class Func, size_t N>
|
|
Result<N> optimize(Func&& func,
|
|
const Input<N> &initvals,
|
|
const Bounds<N>& bounds)
|
|
{
|
|
NLopt nl{alg, N};
|
|
set_up(nl, bounds);
|
|
|
|
return optimize(nl, std::forward<Func>(func), initvals);
|
|
}
|
|
|
|
explicit NLoptOpt(StopCriteria stopcr = {}) : m_stopcr(stopcr) {}
|
|
|
|
void set_criteria(const StopCriteria &cr) { m_stopcr = cr; }
|
|
const StopCriteria &get_criteria() const noexcept { return m_stopcr; }
|
|
void set_dir(OptDir dir) noexcept { m_dir = dir; }
|
|
|
|
void seed(long s) { nlopt_srand(s); }
|
|
};
|
|
|
|
template<nlopt_algorithm glob, nlopt_algorithm loc>
|
|
class NLoptOpt<NLoptAlgComb<glob, loc>>: public NLoptOpt<NLoptAlg<glob>>
|
|
{
|
|
using Base = NLoptOpt<NLoptAlg<glob>>;
|
|
public:
|
|
|
|
template<class Fn, size_t N>
|
|
Result<N> optimize(Fn&& f,
|
|
const Input<N> &initvals,
|
|
const Bounds<N>& bounds)
|
|
{
|
|
NLopt nl_glob{glob, N}, nl_loc{loc, N};
|
|
|
|
Base::set_up(nl_glob, bounds);
|
|
Base::set_up(nl_loc, bounds);
|
|
nlopt_set_local_optimizer(nl_glob.ptr, nl_loc.ptr);
|
|
|
|
return Base::optimize(nl_glob, std::forward<Fn>(f), initvals);
|
|
}
|
|
|
|
explicit NLoptOpt(StopCriteria stopcr = {}) : Base{stopcr} {}
|
|
};
|
|
|
|
} // namespace detail;
|
|
|
|
// Optimizers based on NLopt.
|
|
template<class M> class Optimizer<M, detail::NLoptOnly<M>> {
|
|
detail::NLoptOpt<M> m_opt;
|
|
|
|
public:
|
|
|
|
Optimizer& to_max() { m_opt.set_dir(detail::OptDir::MAX); return *this; }
|
|
Optimizer& to_min() { m_opt.set_dir(detail::OptDir::MIN); return *this; }
|
|
|
|
template<class Func, size_t N>
|
|
Result<N> optimize(Func&& func,
|
|
const Input<N> &initvals,
|
|
const Bounds<N>& bounds)
|
|
{
|
|
return m_opt.optimize(std::forward<Func>(func), initvals, bounds);
|
|
}
|
|
|
|
explicit Optimizer(StopCriteria stopcr = {}) : m_opt(stopcr) {}
|
|
|
|
Optimizer &set_criteria(const StopCriteria &cr)
|
|
{
|
|
m_opt.set_criteria(cr); return *this;
|
|
}
|
|
|
|
const StopCriteria &get_criteria() const { return m_opt.get_criteria(); }
|
|
|
|
void seed(long s) { m_opt.seed(s); }
|
|
};
|
|
|
|
template<size_t N> Bounds<N> bounds(const Bound (&b) [N]) { return detail::to_arr(b); }
|
|
template<size_t N> Input<N> initvals(const double (&a) [N]) { return detail::to_arr(a); }
|
|
template<size_t N> auto score_gradient(double s, const double (&grad)[N])
|
|
{
|
|
return ScoreGradient<N>(s, detail::to_arr(grad));
|
|
}
|
|
|
|
// Predefinded NLopt algorithms that are used in the codebase
|
|
using AlgNLoptGenetic = detail::NLoptAlgComb<NLOPT_GN_ESCH>;
|
|
using AlgNLoptSubplex = detail::NLoptAlg<NLOPT_LN_SBPLX>;
|
|
using AlgNLoptSimplex = detail::NLoptAlg<NLOPT_LN_NELDERMEAD>;
|
|
|
|
// TODO: define others if needed...
|
|
|
|
// Helper defs for pre-crafted global and local optimizers that work well.
|
|
using DefaultGlobalOptimizer = Optimizer<AlgNLoptGenetic>;
|
|
using DefaultLocalOptimizer = Optimizer<AlgNLoptSubplex>;
|
|
|
|
}} // namespace Slic3r::opt
|
|
|
|
#endif // NLOPTOPTIMIZER_HPP
|