mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-10-31 04:31:15 -06:00 
			
		
		
		
	 0af11c51e3
			
		
	
	
		0af11c51e3
		
	
	
	
	
		
			
			Fixed update of the layer height profile on PrintObject when changing profiles. Fixed crash due to the layer height editing refactoring & wipe tower.
		
			
				
	
	
		
			2251 lines
		
	
	
	
		
			121 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2251 lines
		
	
	
	
		
			121 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "Print.hpp"
 | ||
| #include "BoundingBox.hpp"
 | ||
| #include "ClipperUtils.hpp"
 | ||
| #include "Geometry.hpp"
 | ||
| #include "SupportMaterial.hpp"
 | ||
| #include "Surface.hpp"
 | ||
| #include "Slicing.hpp"
 | ||
| #include "Utils.hpp"
 | ||
| 
 | ||
| #include <utility>
 | ||
| #include <boost/log/trivial.hpp>
 | ||
| #include <float.h>
 | ||
| 
 | ||
| #include <tbb/task_scheduler_init.h>
 | ||
| #include <tbb/parallel_for.h>
 | ||
| #include <tbb/atomic.h>
 | ||
| 
 | ||
| #include <Shiny/Shiny.h>
 | ||
| 
 | ||
| #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | ||
| #define SLIC3R_DEBUG
 | ||
| #endif
 | ||
| 
 | ||
| // #define SLIC3R_DEBUG
 | ||
| 
 | ||
| // Make assert active if SLIC3R_DEBUG
 | ||
| #ifdef SLIC3R_DEBUG
 | ||
|     #undef NDEBUG
 | ||
|     #define DEBUG
 | ||
|     #define _DEBUG
 | ||
|     #include "SVG.hpp"
 | ||
|     #undef assert 
 | ||
|     #include <cassert>
 | ||
| #endif
 | ||
| 
 | ||
| namespace Slic3r {
 | ||
| 
 | ||
| PrintObject::PrintObject(Print* print, ModelObject* model_object, bool add_instances) :
 | ||
|     PrintObjectBaseWithState(print, model_object),
 | ||
|     typed_slices(false),
 | ||
|     size(Vec3crd::Zero())
 | ||
| {
 | ||
|     // Compute the translation to be applied to our meshes so that we work with smaller coordinates
 | ||
|     {
 | ||
|         // Translate meshes so that our toolpath generation algorithms work with smaller
 | ||
|         // XY coordinates; this translation is an optimization and not strictly required.
 | ||
|         // A cloned mesh will be aligned to 0 before slicing in _slice_region() since we
 | ||
|         // don't assume it's already aligned and we don't alter the original position in model.
 | ||
|         // We store the XY translation so that we can place copies correctly in the output G-code
 | ||
|         // (copies are expressed in G-code coordinates and this translation is not publicly exposed).
 | ||
|         const BoundingBoxf3 modobj_bbox = model_object->raw_bounding_box();
 | ||
|         m_copies_shift = Point::new_scale(modobj_bbox.min(0), modobj_bbox.min(1));
 | ||
|         // Scale the object size and store it
 | ||
|         this->size = (modobj_bbox.size() * (1. / SCALING_FACTOR)).cast<coord_t>();
 | ||
|     }
 | ||
|     
 | ||
|     if (add_instances) {
 | ||
|         Points copies;
 | ||
|         copies.reserve(m_model_object->instances.size());
 | ||
|         for (const ModelInstance *mi : m_model_object->instances) {
 | ||
|             assert(mi->is_printable());
 | ||
|             const Vec3d& offset = mi->get_offset();
 | ||
|             copies.emplace_back(Point::new_scale(offset(0), offset(1)));
 | ||
|         }
 | ||
|         this->set_copies(copies);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| PrintBase::ApplyStatus PrintObject::set_copies(const Points &points)
 | ||
| {
 | ||
|     // Order copies with a nearest-neighbor search.
 | ||
|     std::vector<Point> copies;
 | ||
|     {
 | ||
|         std::vector<Points::size_type> ordered_copies;
 | ||
|         Slic3r::Geometry::chained_path(points, ordered_copies);
 | ||
|         copies.reserve(ordered_copies.size());
 | ||
|         for (size_t point_idx : ordered_copies)
 | ||
|             copies.emplace_back(points[point_idx] + m_copies_shift);
 | ||
|     }
 | ||
|     // Invalidate and set copies.
 | ||
|     PrintBase::ApplyStatus status = PrintBase::APPLY_STATUS_UNCHANGED;
 | ||
|     if (copies != m_copies) {
 | ||
|         status = PrintBase::APPLY_STATUS_CHANGED;
 | ||
|         if (m_print->invalidate_steps({ psSkirt, psBrim, psGCodeExport }) ||
 | ||
|             (copies.size() != m_copies.size() && m_print->invalidate_step(psWipeTower)))
 | ||
|             status = PrintBase::APPLY_STATUS_INVALIDATED;
 | ||
|         m_copies = copies;
 | ||
|     }
 | ||
|     return status;
 | ||
| }
 | ||
| 
 | ||
| // 1) Decides Z positions of the layers,
 | ||
| // 2) Initializes layers and their regions
 | ||
| // 3) Slices the object meshes
 | ||
| // 4) Slices the modifier meshes and reclassifies the slices of the object meshes by the slices of the modifier meshes
 | ||
| // 5) Applies size compensation (offsets the slices in XY plane)
 | ||
| // 6) Replaces bad slices by the slices reconstructed from the upper/lower layer
 | ||
| // Resulting expolygons of layer regions are marked as Internal.
 | ||
| //
 | ||
| // this should be idempotent
 | ||
| void PrintObject::slice()
 | ||
| {
 | ||
|     if (! this->set_started(posSlice))
 | ||
|         return;
 | ||
|     m_print->set_status(10, "Processing triangulated mesh");
 | ||
|     std::vector<coordf_t> layer_height_profile;
 | ||
|     this->update_layer_height_profile(*this->model_object(), this->slicing_parameters(), layer_height_profile);
 | ||
|     m_print->throw_if_canceled();
 | ||
|     this->_slice(layer_height_profile);
 | ||
|     m_print->throw_if_canceled();
 | ||
|     // Fix the model.
 | ||
|     //FIXME is this the right place to do? It is done repeateadly at the UI and now here at the backend.
 | ||
|     std::string warning = this->_fix_slicing_errors();
 | ||
|     m_print->throw_if_canceled();
 | ||
|     if (! warning.empty())
 | ||
|         BOOST_LOG_TRIVIAL(info) << warning;
 | ||
|     // Simplify slices if required.
 | ||
|     if (m_print->config().resolution)
 | ||
|         this->_simplify_slices(scale_(this->print()->config().resolution));
 | ||
|     if (m_layers.empty())
 | ||
|         throw std::runtime_error("No layers were detected. You might want to repair your STL file(s) or check their size or thickness and retry.\n");    
 | ||
|     this->set_done(posSlice);
 | ||
| }
 | ||
| 
 | ||
| // 1) Merges typed region slices into stInternal type.
 | ||
| // 2) Increases an "extra perimeters" counter at region slices where needed.
 | ||
| // 3) Generates perimeters, gap fills and fill regions (fill regions of type stInternal).
 | ||
| void PrintObject::make_perimeters()
 | ||
| {
 | ||
|     // prerequisites
 | ||
|     this->slice();
 | ||
| 
 | ||
|     if (! this->set_started(posPerimeters))
 | ||
|         return;
 | ||
| 
 | ||
|     m_print->set_status(20, "Generating perimeters");
 | ||
|     BOOST_LOG_TRIVIAL(info) << "Generating perimeters..." << log_memory_info();
 | ||
|     
 | ||
|     // merge slices if they were split into types
 | ||
|     if (this->typed_slices) {
 | ||
|         for (Layer *layer : m_layers) {
 | ||
|             layer->merge_slices();
 | ||
|             m_print->throw_if_canceled();
 | ||
|         }
 | ||
|         this->typed_slices = false;
 | ||
|     }
 | ||
|     
 | ||
|     // compare each layer to the one below, and mark those slices needing
 | ||
|     // one additional inner perimeter, like the top of domed objects-
 | ||
|     
 | ||
|     // this algorithm makes sure that at least one perimeter is overlapping
 | ||
|     // but we don't generate any extra perimeter if fill density is zero, as they would be floating
 | ||
|     // inside the object - infill_only_where_needed should be the method of choice for printing
 | ||
|     // hollow objects
 | ||
|     for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
 | ||
|         const PrintRegion ®ion = *m_print->regions()[region_id];
 | ||
|         if (! region.config().extra_perimeters || region.config().perimeters == 0 || region.config().fill_density == 0 || this->layer_count() < 2)
 | ||
|             continue;
 | ||
|         
 | ||
|         BOOST_LOG_TRIVIAL(debug) << "Generating extra perimeters for region " << region_id << " in parallel - start";
 | ||
|         tbb::parallel_for(
 | ||
|             tbb::blocked_range<size_t>(0, m_layers.size() - 1),
 | ||
|             [this, ®ion, region_id](const tbb::blocked_range<size_t>& range) {
 | ||
|                 for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
 | ||
|                     m_print->throw_if_canceled();
 | ||
|                     LayerRegion &layerm                     = *m_layers[layer_idx]->m_regions[region_id];
 | ||
|                     const LayerRegion &upper_layerm         = *m_layers[layer_idx+1]->m_regions[region_id];
 | ||
|                     const Polygons upper_layerm_polygons    = upper_layerm.slices;
 | ||
|                     // Filter upper layer polygons in intersection_ppl by their bounding boxes?
 | ||
|                     // my $upper_layerm_poly_bboxes= [ map $_->bounding_box, @{$upper_layerm_polygons} ];
 | ||
|                     const double total_loop_length      = total_length(upper_layerm_polygons);
 | ||
|                     const coord_t perimeter_spacing     = layerm.flow(frPerimeter).scaled_spacing();
 | ||
|                     const Flow ext_perimeter_flow       = layerm.flow(frExternalPerimeter);
 | ||
|                     const coord_t ext_perimeter_width   = ext_perimeter_flow.scaled_width();
 | ||
|                     const coord_t ext_perimeter_spacing = ext_perimeter_flow.scaled_spacing();
 | ||
| 
 | ||
|                     for (Surface &slice : layerm.slices.surfaces) {
 | ||
|                         for (;;) {
 | ||
|                             // compute the total thickness of perimeters
 | ||
|                             const coord_t perimeters_thickness = ext_perimeter_width/2 + ext_perimeter_spacing/2
 | ||
|                                 + (region.config().perimeters-1 + slice.extra_perimeters) * perimeter_spacing;
 | ||
|                             // define a critical area where we don't want the upper slice to fall into
 | ||
|                             // (it should either lay over our perimeters or outside this area)
 | ||
|                             const coord_t critical_area_depth = coord_t(perimeter_spacing * 1.5);
 | ||
|                             const Polygons critical_area = diff(
 | ||
|                                 offset(slice.expolygon, float(- perimeters_thickness)),
 | ||
|                                 offset(slice.expolygon, float(- perimeters_thickness - critical_area_depth))
 | ||
|                             );
 | ||
|                             // check whether a portion of the upper slices falls inside the critical area
 | ||
|                             const Polylines intersection = intersection_pl(to_polylines(upper_layerm_polygons), critical_area);
 | ||
|                             // only add an additional loop if at least 30% of the slice loop would benefit from it
 | ||
|                             if (total_length(intersection) <=  total_loop_length*0.3)
 | ||
|                                 break;
 | ||
|                             /*
 | ||
|                             if (0) {
 | ||
|                                 require "Slic3r/SVG.pm";
 | ||
|                                 Slic3r::SVG::output(
 | ||
|                                     "extra.svg",
 | ||
|                                     no_arrows   => 1,
 | ||
|                                     expolygons  => union_ex($critical_area),
 | ||
|                                     polylines   => [ map $_->split_at_first_point, map $_->p, @{$upper_layerm->slices} ],
 | ||
|                                 );
 | ||
|                             }
 | ||
|                             */
 | ||
|                             ++ slice.extra_perimeters;
 | ||
|                         }
 | ||
|                         #ifdef DEBUG
 | ||
|                             if (slice.extra_perimeters > 0)
 | ||
|                                 printf("  adding %d more perimeter(s) at layer %zu\n", slice.extra_perimeters, layer_idx);
 | ||
|                         #endif
 | ||
|                     }
 | ||
|                 }
 | ||
|             });
 | ||
|         m_print->throw_if_canceled();
 | ||
|         BOOST_LOG_TRIVIAL(debug) << "Generating extra perimeters for region " << region_id << " in parallel - end";
 | ||
|     }
 | ||
| 
 | ||
|     BOOST_LOG_TRIVIAL(debug) << "Generating perimeters in parallel - start";
 | ||
|     tbb::parallel_for(
 | ||
|         tbb::blocked_range<size_t>(0, m_layers.size()),
 | ||
|         [this](const tbb::blocked_range<size_t>& range) {
 | ||
|             for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
 | ||
|                 m_print->throw_if_canceled();
 | ||
|                 m_layers[layer_idx]->make_perimeters();
 | ||
|             }
 | ||
|         }
 | ||
|     );
 | ||
|     m_print->throw_if_canceled();
 | ||
|     BOOST_LOG_TRIVIAL(debug) << "Generating perimeters in parallel - end";
 | ||
| 
 | ||
|     /*
 | ||
|         simplify slices (both layer and region slices),
 | ||
|         we only need the max resolution for perimeters
 | ||
|     ### This makes this method not-idempotent, so we keep it disabled for now.
 | ||
|     ###$self->_simplify_slices(&Slic3r::SCALED_RESOLUTION);
 | ||
|     */
 | ||
|     
 | ||
|     this->set_done(posPerimeters);
 | ||
| }
 | ||
| 
 | ||
| void PrintObject::prepare_infill()
 | ||
| {
 | ||
|     if (! this->set_started(posPrepareInfill))
 | ||
|         return;
 | ||
| 
 | ||
|     m_print->set_status(30, "Preparing infill");
 | ||
| 
 | ||
|     // This will assign a type (top/bottom/internal) to $layerm->slices.
 | ||
|     // Then the classifcation of $layerm->slices is transfered onto 
 | ||
|     // the $layerm->fill_surfaces by clipping $layerm->fill_surfaces
 | ||
|     // by the cummulative area of the previous $layerm->fill_surfaces.
 | ||
|     this->detect_surfaces_type();
 | ||
|     m_print->throw_if_canceled();
 | ||
|     
 | ||
|     // Decide what surfaces are to be filled.
 | ||
|     // Here the S_TYPE_TOP / S_TYPE_BOTTOMBRIDGE / S_TYPE_BOTTOM infill is turned to just S_TYPE_INTERNAL if zero top / bottom infill layers are configured.
 | ||
|     // Also tiny S_TYPE_INTERNAL surfaces are turned to S_TYPE_INTERNAL_SOLID.
 | ||
|     BOOST_LOG_TRIVIAL(info) << "Preparing fill surfaces..." << log_memory_info();
 | ||
|     for (auto *layer : m_layers)
 | ||
|         for (auto *region : layer->m_regions) {
 | ||
|             region->prepare_fill_surfaces();
 | ||
|             m_print->throw_if_canceled();
 | ||
|         }
 | ||
| 
 | ||
|     // this will detect bridges and reverse bridges
 | ||
|     // and rearrange top/bottom/internal surfaces
 | ||
|     // It produces enlarged overlapping bridging areas.
 | ||
|     //
 | ||
|     // 1) S_TYPE_BOTTOMBRIDGE / S_TYPE_BOTTOM infill is grown by 3mm and clipped by the total infill area. Bridges are detected. The areas may overlap.
 | ||
|     // 2) S_TYPE_TOP is grown by 3mm and clipped by the grown bottom areas. The areas may overlap.
 | ||
|     // 3) Clip the internal surfaces by the grown top/bottom surfaces.
 | ||
|     // 4) Merge surfaces with the same style. This will mostly get rid of the overlaps.
 | ||
|     //FIXME This does not likely merge surfaces, which are supported by a material with different colors, but same properties.
 | ||
|     this->process_external_surfaces();
 | ||
|     m_print->throw_if_canceled();
 | ||
| 
 | ||
|     // Add solid fills to ensure the shell vertical thickness.
 | ||
|     this->discover_vertical_shells();
 | ||
|     m_print->throw_if_canceled();
 | ||
| 
 | ||
|     // Debugging output.
 | ||
| #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | ||
|     for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
 | ||
|         for (const Layer *layer : m_layers) {
 | ||
|             LayerRegion *layerm = layer->m_regions[region_id];
 | ||
|             layerm->export_region_slices_to_svg_debug("6_discover_vertical_shells-final");
 | ||
|             layerm->export_region_fill_surfaces_to_svg_debug("6_discover_vertical_shells-final");
 | ||
|         } // for each layer
 | ||
|     } // for each region
 | ||
| #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | ||
| 
 | ||
|     // Detect, which fill surfaces are near external layers.
 | ||
|     // They will be split in internal and internal-solid surfaces.
 | ||
|     // The purpose is to add a configurable number of solid layers to support the TOP surfaces
 | ||
|     // and to add a configurable number of solid layers above the BOTTOM / BOTTOMBRIDGE surfaces
 | ||
|     // to close these surfaces reliably.
 | ||
|     //FIXME Vojtech: Is this a good place to add supporting infills below sloping perimeters?
 | ||
|     this->discover_horizontal_shells();
 | ||
|     m_print->throw_if_canceled();
 | ||
| 
 | ||
| #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | ||
|     for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
 | ||
|         for (const Layer *layer : m_layers) {
 | ||
|             LayerRegion *layerm = layer->m_regions[region_id];
 | ||
|             layerm->export_region_slices_to_svg_debug("7_discover_horizontal_shells-final");
 | ||
|             layerm->export_region_fill_surfaces_to_svg_debug("7_discover_horizontal_shells-final");
 | ||
|         } // for each layer
 | ||
|     } // for each region
 | ||
| #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | ||
| 
 | ||
|     // Only active if config->infill_only_where_needed. This step trims the sparse infill,
 | ||
|     // so it acts as an internal support. It maintains all other infill types intact.
 | ||
|     // Here the internal surfaces and perimeters have to be supported by the sparse infill.
 | ||
|     //FIXME The surfaces are supported by a sparse infill, but the sparse infill is only as large as the area to support.
 | ||
|     // Likely the sparse infill will not be anchored correctly, so it will not work as intended.
 | ||
|     // Also one wishes the perimeters to be supported by a full infill.
 | ||
|     this->clip_fill_surfaces();
 | ||
|     m_print->throw_if_canceled();
 | ||
| 
 | ||
| #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | ||
|     for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
 | ||
|         for (const Layer *layer : m_layers) {
 | ||
|             LayerRegion *layerm = layer->m_regions[region_id];
 | ||
|             layerm->export_region_slices_to_svg_debug("8_clip_surfaces-final");
 | ||
|             layerm->export_region_fill_surfaces_to_svg_debug("8_clip_surfaces-final");
 | ||
|         } // for each layer
 | ||
|     } // for each region
 | ||
| #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | ||
|     
 | ||
|     // the following step needs to be done before combination because it may need
 | ||
|     // to remove only half of the combined infill
 | ||
|     this->bridge_over_infill();
 | ||
|     m_print->throw_if_canceled();
 | ||
| 
 | ||
|     // combine fill surfaces to honor the "infill every N layers" option
 | ||
|     this->combine_infill();
 | ||
|     m_print->throw_if_canceled();
 | ||
| 
 | ||
| #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | ||
|     for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
 | ||
|         for (const Layer *layer : m_layers) {
 | ||
|             LayerRegion *layerm = layer->m_regions[region_id];
 | ||
|             layerm->export_region_slices_to_svg_debug("9_prepare_infill-final");
 | ||
|             layerm->export_region_fill_surfaces_to_svg_debug("9_prepare_infill-final");
 | ||
|         } // for each layer
 | ||
|     } // for each region
 | ||
|     for (const Layer *layer : m_layers) {
 | ||
|         layer->export_region_slices_to_svg_debug("9_prepare_infill-final");
 | ||
|         layer->export_region_fill_surfaces_to_svg_debug("9_prepare_infill-final");
 | ||
|     } // for each layer
 | ||
| #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | ||
| 
 | ||
|     this->set_done(posPrepareInfill);
 | ||
| }
 | ||
| 
 | ||
| void PrintObject::infill()
 | ||
| {
 | ||
|     // prerequisites
 | ||
|     this->prepare_infill();
 | ||
| 
 | ||
|     if (this->set_started(posInfill)) {
 | ||
|         BOOST_LOG_TRIVIAL(debug) << "Filling layers in parallel - start";
 | ||
|         tbb::parallel_for(
 | ||
|             tbb::blocked_range<size_t>(0, m_layers.size()),
 | ||
|             [this](const tbb::blocked_range<size_t>& range) {
 | ||
|                 for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
 | ||
|                     m_print->throw_if_canceled();
 | ||
|                     m_layers[layer_idx]->make_fills();
 | ||
|                 }
 | ||
|             }
 | ||
|         );
 | ||
|         m_print->throw_if_canceled();
 | ||
|         BOOST_LOG_TRIVIAL(debug) << "Filling layers in parallel - end";
 | ||
|         /*  we could free memory now, but this would make this step not idempotent
 | ||
|         ### $_->fill_surfaces->clear for map @{$_->regions}, @{$object->layers};
 | ||
|         */
 | ||
|         this->set_done(posInfill);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void PrintObject::generate_support_material()
 | ||
| {
 | ||
|     if (this->set_started(posSupportMaterial)) {
 | ||
|         this->clear_support_layers();
 | ||
|         if ((m_config.support_material || m_config.raft_layers > 0) && m_layers.size() > 1) {
 | ||
|             m_print->set_status(85, "Generating support material");    
 | ||
|             this->_generate_support_material();
 | ||
|             m_print->throw_if_canceled();
 | ||
|         } else {
 | ||
| #if 0
 | ||
|             // Printing without supports. Empty layer means some objects or object parts are levitating,
 | ||
|             // therefore they cannot be printed without supports.
 | ||
|             for (const Layer *layer : m_layers)
 | ||
|                 if (layer->empty())
 | ||
|                     throw std::runtime_error("Levitating objects cannot be printed without supports.");
 | ||
| #endif
 | ||
|         }
 | ||
|         this->set_done(posSupportMaterial);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void PrintObject::clear_layers()
 | ||
| {
 | ||
|     for (Layer *l : m_layers)
 | ||
|         delete l;
 | ||
|     m_layers.clear();
 | ||
| }
 | ||
| 
 | ||
| Layer* PrintObject::add_layer(int id, coordf_t height, coordf_t print_z, coordf_t slice_z)
 | ||
| {
 | ||
|     m_layers.emplace_back(new Layer(id, this, height, print_z, slice_z));
 | ||
|     return m_layers.back();
 | ||
| }
 | ||
| 
 | ||
| void PrintObject::clear_support_layers()
 | ||
| {
 | ||
|     for (Layer *l : m_support_layers)
 | ||
|         delete l;
 | ||
|     m_support_layers.clear();
 | ||
| }
 | ||
| 
 | ||
| SupportLayer* PrintObject::add_support_layer(int id, coordf_t height, coordf_t print_z)
 | ||
| {
 | ||
|     m_support_layers.emplace_back(new SupportLayer(id, this, height, print_z, -1));
 | ||
|     return m_support_layers.back();
 | ||
| }
 | ||
| 
 | ||
| SupportLayerPtrs::const_iterator PrintObject::insert_support_layer(SupportLayerPtrs::const_iterator pos, int id, coordf_t height, coordf_t print_z, coordf_t slice_z)
 | ||
| {
 | ||
|     return m_support_layers.insert(pos, new SupportLayer(id, this, height, print_z, slice_z));
 | ||
| }
 | ||
| 
 | ||
| // Called by Print::apply_config().
 | ||
| // This method only accepts PrintObjectConfig and PrintRegionConfig option keys.
 | ||
| bool PrintObject::invalidate_state_by_config_options(const std::vector<t_config_option_key> &opt_keys)
 | ||
| {
 | ||
|     if (opt_keys.empty())
 | ||
|         return false;
 | ||
| 
 | ||
|     std::vector<PrintObjectStep> steps;
 | ||
|     bool invalidated = false;
 | ||
|     for (const t_config_option_key &opt_key : opt_keys) {
 | ||
|         if (   opt_key == "perimeters"
 | ||
|             || opt_key == "extra_perimeters"
 | ||
|             || opt_key == "gap_fill_speed"
 | ||
|             || opt_key == "overhangs"
 | ||
|             || opt_key == "first_layer_extrusion_width"
 | ||
|             || opt_key == "perimeter_extrusion_width"
 | ||
|             || opt_key == "infill_overlap"
 | ||
|             || opt_key == "thin_walls"
 | ||
|             || opt_key == "external_perimeters_first") {
 | ||
|             steps.emplace_back(posPerimeters);
 | ||
|         } else if (
 | ||
|                opt_key == "layer_height"
 | ||
|             || opt_key == "first_layer_height"
 | ||
|             || opt_key == "raft_layers") {
 | ||
|             steps.emplace_back(posSlice);
 | ||
| 		}
 | ||
| 		else if (
 | ||
|                opt_key == "clip_multipart_objects"
 | ||
|             || opt_key == "elefant_foot_compensation"
 | ||
|             || opt_key == "support_material_contact_distance" 
 | ||
|             || opt_key == "xy_size_compensation") {
 | ||
|             steps.emplace_back(posSlice);
 | ||
|         } else if (
 | ||
|                opt_key == "support_material"
 | ||
|             || opt_key == "support_material_auto"
 | ||
|             || opt_key == "support_material_angle"
 | ||
|             || opt_key == "support_material_buildplate_only"
 | ||
|             || opt_key == "support_material_enforce_layers"
 | ||
|             || opt_key == "support_material_extruder"
 | ||
|             || opt_key == "support_material_extrusion_width"
 | ||
|             || opt_key == "support_material_interface_layers"
 | ||
|             || opt_key == "support_material_interface_contact_loops"
 | ||
|             || opt_key == "support_material_interface_extruder"
 | ||
|             || opt_key == "support_material_interface_spacing"
 | ||
|             || opt_key == "support_material_pattern"
 | ||
|             || opt_key == "support_material_xy_spacing"
 | ||
|             || opt_key == "support_material_spacing"
 | ||
|             || opt_key == "support_material_synchronize_layers"
 | ||
|             || opt_key == "support_material_threshold"
 | ||
|             || opt_key == "support_material_with_sheath"
 | ||
|             || opt_key == "dont_support_bridges"
 | ||
|             || opt_key == "first_layer_extrusion_width") {
 | ||
|             steps.emplace_back(posSupportMaterial);
 | ||
|         } else if (
 | ||
|                opt_key == "interface_shells"
 | ||
|             || opt_key == "infill_only_where_needed"
 | ||
|             || opt_key == "infill_every_layers"
 | ||
|             || opt_key == "solid_infill_every_layers"
 | ||
|             || opt_key == "bottom_solid_layers"
 | ||
|             || opt_key == "top_solid_layers"
 | ||
|             || opt_key == "solid_infill_below_area"
 | ||
|             || opt_key == "infill_extruder"
 | ||
|             || opt_key == "solid_infill_extruder"
 | ||
|             || opt_key == "infill_extrusion_width"
 | ||
|             || opt_key == "ensure_vertical_shell_thickness"
 | ||
|             || opt_key == "bridge_angle") {
 | ||
|             steps.emplace_back(posPrepareInfill);
 | ||
|         } else if (
 | ||
|                opt_key == "external_fill_pattern"
 | ||
|             || opt_key == "external_fill_link_max_length"
 | ||
|             || opt_key == "fill_angle"
 | ||
|             || opt_key == "fill_pattern"
 | ||
|             || opt_key == "fill_link_max_length"
 | ||
|             || opt_key == "top_infill_extrusion_width"
 | ||
|             || opt_key == "first_layer_extrusion_width") {
 | ||
|             steps.emplace_back(posInfill);
 | ||
|         } else if (
 | ||
|                opt_key == "fill_density"
 | ||
|             || opt_key == "solid_infill_extrusion_width") {
 | ||
|             steps.emplace_back(posPerimeters);
 | ||
|             steps.emplace_back(posPrepareInfill);
 | ||
|         } else if (
 | ||
|                opt_key == "external_perimeter_extrusion_width"
 | ||
|             || opt_key == "perimeter_extruder") {
 | ||
|             steps.emplace_back(posPerimeters);
 | ||
|             steps.emplace_back(posSupportMaterial);
 | ||
|         } else if (opt_key == "bridge_flow_ratio") {
 | ||
|             steps.emplace_back(posPerimeters);
 | ||
|             steps.emplace_back(posInfill);
 | ||
|         } else if (
 | ||
|                opt_key == "seam_position"
 | ||
|             || opt_key == "seam_preferred_direction"
 | ||
|             || opt_key == "seam_preferred_direction_jitter"
 | ||
|             || opt_key == "support_material_speed"
 | ||
|             || opt_key == "support_material_interface_speed"
 | ||
|             || opt_key == "bridge_speed"
 | ||
|             || opt_key == "external_perimeter_speed"
 | ||
|             || opt_key == "infill_speed"
 | ||
|             || opt_key == "perimeter_speed"
 | ||
|             || opt_key == "small_perimeter_speed"
 | ||
|             || opt_key == "solid_infill_speed"
 | ||
|             || opt_key == "top_solid_infill_speed") {
 | ||
|             invalidated |= m_print->invalidate_step(psGCodeExport);
 | ||
|         } else if (
 | ||
|                opt_key == "wipe_into_infill"
 | ||
|             || opt_key == "wipe_into_objects") {
 | ||
|             invalidated |= m_print->invalidate_step(psWipeTower);
 | ||
|             invalidated |= m_print->invalidate_step(psGCodeExport);
 | ||
|         } else {
 | ||
|             // for legacy, if we can't handle this option let's invalidate all steps
 | ||
|             this->invalidate_all_steps();
 | ||
|             invalidated = true;
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     sort_remove_duplicates(steps);
 | ||
|     for (PrintObjectStep step : steps)
 | ||
|         invalidated |= this->invalidate_step(step);
 | ||
|     return invalidated;
 | ||
| }
 | ||
| 
 | ||
| bool PrintObject::invalidate_step(PrintObjectStep step)
 | ||
| {
 | ||
| 	bool invalidated = Inherited::invalidate_step(step);
 | ||
|     
 | ||
|     // propagate to dependent steps
 | ||
|     if (step == posPerimeters) {
 | ||
| 		invalidated |= this->invalidate_steps({ posPrepareInfill, posInfill });
 | ||
|         invalidated |= m_print->invalidate_steps({ psSkirt, psBrim });
 | ||
|     } else if (step == posPrepareInfill) {
 | ||
|         invalidated |= this->invalidate_step(posInfill);
 | ||
|     } else if (step == posInfill) {
 | ||
|         invalidated |= m_print->invalidate_steps({ psSkirt, psBrim });
 | ||
|     } else if (step == posSlice) {
 | ||
| 		invalidated |= this->invalidate_steps({ posPerimeters, posPrepareInfill, posInfill, posSupportMaterial });
 | ||
| 		invalidated |= m_print->invalidate_steps({ psSkirt, psBrim });
 | ||
|     } else if (step == posSupportMaterial)
 | ||
|         invalidated |= m_print->invalidate_steps({ psSkirt, psBrim });
 | ||
| 
 | ||
|     // Wipe tower depends on the ordering of extruders, which in turn depends on everything.
 | ||
|     // It also decides about what the wipe_into_infill / wipe_into_object features will do,
 | ||
|     // and that too depends on many of the settings.
 | ||
|     invalidated |= m_print->invalidate_step(psWipeTower);
 | ||
|     // Invalidate G-code export in any case.
 | ||
|     invalidated |= m_print->invalidate_step(psGCodeExport);
 | ||
|     return invalidated;
 | ||
| }
 | ||
| 
 | ||
| bool PrintObject::invalidate_all_steps()
 | ||
| {
 | ||
|     return Inherited::invalidate_all_steps() | m_print->invalidate_all_steps();
 | ||
| }
 | ||
| 
 | ||
| bool PrintObject::has_support_material() const
 | ||
| {
 | ||
|     return m_config.support_material
 | ||
|         || m_config.raft_layers > 0
 | ||
|         || m_config.support_material_enforce_layers > 0;
 | ||
| }
 | ||
| 
 | ||
| // This function analyzes slices of a region (SurfaceCollection slices).
 | ||
| // Each region slice (instance of Surface) is analyzed, whether it is supported or whether it is the top surface.
 | ||
| // Initially all slices are of type stInternal.
 | ||
| // Slices are compared against the top / bottom slices and regions and classified to the following groups:
 | ||
| // stTop          - Part of a region, which is not covered by any upper layer. This surface will be filled with a top solid infill.
 | ||
| // stBottomBridge - Part of a region, which is not fully supported, but it hangs in the air, or it hangs losely on a support or a raft.
 | ||
| // stBottom       - Part of a region, which is not supported by the same region, but it is supported either by another region, or by a soluble interface layer.
 | ||
| // stInternal     - Part of a region, which is supported by the same region type.
 | ||
| // If a part of a region is of stBottom and stTop, the stBottom wins.
 | ||
| void PrintObject::detect_surfaces_type()
 | ||
| {
 | ||
|     BOOST_LOG_TRIVIAL(info) << "Detecting solid surfaces..." << log_memory_info();
 | ||
| 
 | ||
|     // Interface shells: the intersecting parts are treated as self standing objects supporting each other.
 | ||
|     // Each of the objects will have a full number of top / bottom layers, even if these top / bottom layers
 | ||
|     // are completely hidden inside a collective body of intersecting parts.
 | ||
|     // This is useful if one of the parts is to be dissolved, or if it is transparent and the internal shells
 | ||
|     // should be visible.
 | ||
|     bool interface_shells = m_config.interface_shells.value;
 | ||
| 
 | ||
|     for (int idx_region = 0; idx_region < this->region_volumes.size(); ++ idx_region) {
 | ||
|         BOOST_LOG_TRIVIAL(debug) << "Detecting solid surfaces for region " << idx_region << " in parallel - start";
 | ||
| #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | ||
|         for (Layer *layer : m_layers)
 | ||
|             layer->m_regions[idx_region]->export_region_fill_surfaces_to_svg_debug("1_detect_surfaces_type-initial");
 | ||
| #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | ||
| 
 | ||
|         // If interface shells are allowed, the region->surfaces cannot be overwritten as they may be used by other threads.
 | ||
|         // Cache the result of the following parallel_loop.
 | ||
|         std::vector<Surfaces> surfaces_new;
 | ||
|         if (interface_shells)
 | ||
|             surfaces_new.assign(m_layers.size(), Surfaces());
 | ||
| 
 | ||
|         tbb::parallel_for(
 | ||
|             tbb::blocked_range<size_t>(0, m_layers.size()),
 | ||
|             [this, idx_region, interface_shells, &surfaces_new](const tbb::blocked_range<size_t>& range) {
 | ||
|                 // If we have raft layers, consider bottom layer as a bridge just like any other bottom surface lying on the void.
 | ||
|                 SurfaceType surface_type_bottom_1st =
 | ||
|                     (m_config.raft_layers.value > 0 && m_config.support_material_contact_distance.value > 0) ?
 | ||
|                     stBottomBridge : stBottom;
 | ||
|                 // If we have soluble support material, don't bridge. The overhang will be squished against a soluble layer separating
 | ||
|                 // the support from the print.
 | ||
|                 SurfaceType surface_type_bottom_other =
 | ||
|                     (m_config.support_material.value && m_config.support_material_contact_distance.value == 0) ?
 | ||
|                     stBottom : stBottomBridge;
 | ||
|                 for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
 | ||
|                     m_print->throw_if_canceled();
 | ||
|                     // BOOST_LOG_TRIVIAL(trace) << "Detecting solid surfaces for region " << idx_region << " and layer " << layer->print_z;
 | ||
|                     Layer       *layer  = m_layers[idx_layer];
 | ||
|                     LayerRegion *layerm = layer->get_region(idx_region);
 | ||
|                     // comparison happens against the *full* slices (considering all regions)
 | ||
|                     // unless internal shells are requested
 | ||
|                     Layer       *upper_layer = (idx_layer + 1 < this->layer_count()) ? m_layers[idx_layer + 1] : nullptr;
 | ||
|                     Layer       *lower_layer = (idx_layer > 0) ? m_layers[idx_layer - 1] : nullptr;
 | ||
|                     // collapse very narrow parts (using the safety offset in the diff is not enough)
 | ||
|                     float        offset = layerm->flow(frExternalPerimeter).scaled_width() / 10.f;
 | ||
| 
 | ||
|                     Polygons     layerm_slices_surfaces = to_polygons(layerm->slices.surfaces);
 | ||
| 
 | ||
|                     // find top surfaces (difference between current surfaces
 | ||
|                     // of current layer and upper one)
 | ||
|                     Surfaces top;
 | ||
|                     if (upper_layer) {
 | ||
|                         Polygons upper_slices = interface_shells ? 
 | ||
|                             to_polygons(upper_layer->get_region(idx_region)->slices.surfaces) : 
 | ||
|                             to_polygons(upper_layer->slices);
 | ||
|                         surfaces_append(top,
 | ||
|                             //FIXME implement offset2_ex working over ExPolygons, that should be a bit more efficient than calling offset_ex twice.
 | ||
|                             offset_ex(offset_ex(diff_ex(layerm_slices_surfaces, upper_slices, true), -offset), offset),
 | ||
|                             stTop);
 | ||
|                     } else {
 | ||
|                         // if no upper layer, all surfaces of this one are solid
 | ||
|                         // we clone surfaces because we're going to clear the slices collection
 | ||
|                         top = layerm->slices.surfaces;
 | ||
|                         for (Surface &surface : top)
 | ||
|                             surface.surface_type = stTop;
 | ||
|                     }
 | ||
|                     
 | ||
|                     // Find bottom surfaces (difference between current surfaces of current layer and lower one).
 | ||
|                     Surfaces bottom;
 | ||
|                     if (lower_layer) {
 | ||
| #if 0
 | ||
|                         //FIXME Why is this branch failing t\multi.t ?
 | ||
|                         Polygons lower_slices = interface_shells ? 
 | ||
|                             to_polygons(lower_layer->get_region(idx_region)->slices.surfaces) : 
 | ||
|                             to_polygons(lower_layer->slices);
 | ||
|                         surfaces_append(bottom,
 | ||
|                             offset2_ex(diff(layerm_slices_surfaces, lower_slices, true), -offset, offset),
 | ||
|                             surface_type_bottom_other);
 | ||
| #else
 | ||
|                         // Any surface lying on the void is a true bottom bridge (an overhang)
 | ||
|                         surfaces_append(
 | ||
|                             bottom,
 | ||
|                             offset2_ex(
 | ||
|                                 diff(layerm_slices_surfaces, to_polygons(lower_layer->slices), true), 
 | ||
|                                 -offset, offset),
 | ||
|                             surface_type_bottom_other);
 | ||
|                         // if user requested internal shells, we need to identify surfaces
 | ||
|                         // lying on other slices not belonging to this region
 | ||
|                         if (interface_shells) {
 | ||
|                             // non-bridging bottom surfaces: any part of this layer lying 
 | ||
|                             // on something else, excluding those lying on our own region
 | ||
|                             surfaces_append(
 | ||
|                                 bottom,
 | ||
|                                 offset2_ex(
 | ||
|                                     diff(
 | ||
|                                         intersection(layerm_slices_surfaces, to_polygons(lower_layer->slices)), // supported
 | ||
|                                         to_polygons(lower_layer->get_region(idx_region)->slices.surfaces), 
 | ||
|                                         true), 
 | ||
|                                     -offset, offset),
 | ||
|                                 stBottom);
 | ||
|                         }
 | ||
| #endif
 | ||
|                     } else {
 | ||
|                         // if no lower layer, all surfaces of this one are solid
 | ||
|                         // we clone surfaces because we're going to clear the slices collection
 | ||
|                         bottom = layerm->slices.surfaces;
 | ||
|                         for (Surface &surface : bottom)
 | ||
|                             surface.surface_type = surface_type_bottom_1st;
 | ||
|                     }
 | ||
|                     
 | ||
|                     // now, if the object contained a thin membrane, we could have overlapping bottom
 | ||
|                     // and top surfaces; let's do an intersection to discover them and consider them
 | ||
|                     // as bottom surfaces (to allow for bridge detection)
 | ||
|                     if (! top.empty() && ! bottom.empty()) {
 | ||
|         //                Polygons overlapping = intersection(to_polygons(top), to_polygons(bottom));
 | ||
|         //                Slic3r::debugf "  layer %d contains %d membrane(s)\n", $layerm->layer->id, scalar(@$overlapping)
 | ||
|         //                    if $Slic3r::debug;
 | ||
|                         Polygons top_polygons = to_polygons(std::move(top));
 | ||
|                         top.clear();
 | ||
|                         surfaces_append(top,
 | ||
|                             diff_ex(top_polygons, to_polygons(bottom), false),
 | ||
|                             stTop);
 | ||
|                     }
 | ||
| 
 | ||
|         #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | ||
|                     {
 | ||
|                         static int iRun = 0;
 | ||
|                         std::vector<std::pair<Slic3r::ExPolygons, SVG::ExPolygonAttributes>> expolygons_with_attributes;
 | ||
|                         expolygons_with_attributes.emplace_back(std::make_pair(union_ex(top),                           SVG::ExPolygonAttributes("green")));
 | ||
|                         expolygons_with_attributes.emplace_back(std::make_pair(union_ex(bottom),                        SVG::ExPolygonAttributes("brown")));
 | ||
|                         expolygons_with_attributes.emplace_back(std::make_pair(to_expolygons(layerm->slices.surfaces),  SVG::ExPolygonAttributes("black")));
 | ||
|                         SVG::export_expolygons(debug_out_path("1_detect_surfaces_type_%d_region%d-layer_%f.svg", iRun ++, idx_region, layer->print_z).c_str(), expolygons_with_attributes);
 | ||
|                     }
 | ||
|         #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | ||
|                     
 | ||
|                     // save surfaces to layer
 | ||
|                     Surfaces &surfaces_out = interface_shells ? surfaces_new[idx_layer] : layerm->slices.surfaces;
 | ||
|                     surfaces_out.clear();
 | ||
| 
 | ||
|                     // find internal surfaces (difference between top/bottom surfaces and others)
 | ||
|                     {
 | ||
|                         Polygons topbottom = to_polygons(top);
 | ||
|                         polygons_append(topbottom, to_polygons(bottom));
 | ||
|                         surfaces_append(surfaces_out,
 | ||
|                             diff_ex(layerm_slices_surfaces, topbottom, false),
 | ||
|                             stInternal);
 | ||
|                     }
 | ||
| 
 | ||
|                     surfaces_append(surfaces_out, std::move(top));
 | ||
|                     surfaces_append(surfaces_out, std::move(bottom));
 | ||
|                     
 | ||
|         //            Slic3r::debugf "  layer %d has %d bottom, %d top and %d internal surfaces\n",
 | ||
|         //                $layerm->layer->id, scalar(@bottom), scalar(@top), scalar(@internal) if $Slic3r::debug;
 | ||
| 
 | ||
|         #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | ||
|                     layerm->export_region_slices_to_svg_debug("detect_surfaces_type-final");
 | ||
|         #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | ||
|                 }
 | ||
|             }
 | ||
|         ); // for each layer of a region
 | ||
|         m_print->throw_if_canceled();
 | ||
| 
 | ||
|         if (interface_shells) {
 | ||
|             // Move surfaces_new to layerm->slices.surfaces
 | ||
|             for (size_t idx_layer = 0; idx_layer < m_layers.size(); ++ idx_layer)
 | ||
|                 m_layers[idx_layer]->get_region(idx_region)->slices.surfaces = std::move(surfaces_new[idx_layer]);
 | ||
|         }
 | ||
| 
 | ||
|         BOOST_LOG_TRIVIAL(debug) << "Detecting solid surfaces for region " << idx_region << " - clipping in parallel - start";
 | ||
|         // Fill in layerm->fill_surfaces by trimming the layerm->slices by the cummulative layerm->fill_surfaces.
 | ||
|         tbb::parallel_for(
 | ||
|             tbb::blocked_range<size_t>(0, m_layers.size()),
 | ||
|             [this, idx_region, interface_shells, &surfaces_new](const tbb::blocked_range<size_t>& range) {
 | ||
|                 for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
 | ||
|                     m_print->throw_if_canceled();
 | ||
|                     LayerRegion *layerm = m_layers[idx_layer]->get_region(idx_region);
 | ||
|                     layerm->slices_to_fill_surfaces_clipped();
 | ||
| #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | ||
|                     layerm->export_region_fill_surfaces_to_svg_debug("1_detect_surfaces_type-final");
 | ||
| #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | ||
|                 } // for each layer of a region
 | ||
|             });
 | ||
|         m_print->throw_if_canceled();
 | ||
|         BOOST_LOG_TRIVIAL(debug) << "Detecting solid surfaces for region " << idx_region << " - clipping in parallel - end";
 | ||
|     } // for each this->print->region_count
 | ||
| 
 | ||
|     // Mark the object to have the region slices classified (typed, which also means they are split based on whether they are supported, bridging, top layers etc.)
 | ||
|     this->typed_slices = true;
 | ||
| }
 | ||
| 
 | ||
| void PrintObject::process_external_surfaces()
 | ||
| {
 | ||
|     BOOST_LOG_TRIVIAL(info) << "Processing external surfaces..." << log_memory_info();
 | ||
| 
 | ||
| 	for (size_t region_id = 0; region_id < this->region_volumes.size(); ++region_id) {
 | ||
|         const PrintRegion ®ion = *m_print->regions()[region_id];
 | ||
|         
 | ||
|         BOOST_LOG_TRIVIAL(debug) << "Processing external surfaces for region " << region_id << " in parallel - start";
 | ||
|         tbb::parallel_for(
 | ||
|             tbb::blocked_range<size_t>(0, m_layers.size()),
 | ||
|             [this, region_id](const tbb::blocked_range<size_t>& range) {
 | ||
|                 for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
 | ||
|                     m_print->throw_if_canceled();
 | ||
|                     // BOOST_LOG_TRIVIAL(trace) << "Processing external surface, layer" << m_layers[layer_idx]->print_z;
 | ||
|                     m_layers[layer_idx]->get_region(region_id)->process_external_surfaces((layer_idx == 0) ? NULL : m_layers[layer_idx - 1]);
 | ||
|                 }
 | ||
|             }
 | ||
|         );
 | ||
|         m_print->throw_if_canceled();
 | ||
|         BOOST_LOG_TRIVIAL(debug) << "Processing external surfaces for region " << region_id << " in parallel - end";
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void PrintObject::discover_vertical_shells()
 | ||
| {
 | ||
|     PROFILE_FUNC();
 | ||
| 
 | ||
|     BOOST_LOG_TRIVIAL(info) << "Discovering vertical shells..." << log_memory_info();
 | ||
| 
 | ||
|     struct DiscoverVerticalShellsCacheEntry
 | ||
|     {
 | ||
|         // Collected polygons, offsetted
 | ||
|         Polygons    top_surfaces;
 | ||
|         Polygons    bottom_surfaces;
 | ||
|         Polygons    holes;
 | ||
|     };
 | ||
|     std::vector<DiscoverVerticalShellsCacheEntry> cache_top_botom_regions(m_layers.size(), DiscoverVerticalShellsCacheEntry());
 | ||
|     bool top_bottom_surfaces_all_regions = this->region_volumes.size() > 1 && ! m_config.interface_shells.value;
 | ||
|     if (top_bottom_surfaces_all_regions) {
 | ||
|         // This is a multi-material print and interface_shells are disabled, meaning that the vertical shell thickness
 | ||
|         // is calculated over all materials.
 | ||
|         // Is the "ensure vertical wall thickness" applicable to any region?
 | ||
|         bool has_extra_layers = false;
 | ||
|         for (size_t idx_region = 0; idx_region < this->region_volumes.size(); ++ idx_region) {
 | ||
|             const PrintRegion ®ion = *m_print->get_region(idx_region);
 | ||
|             if (region.config().ensure_vertical_shell_thickness.value && 
 | ||
|                 (region.config().top_solid_layers.value > 1 || region.config().bottom_solid_layers.value > 1)) {
 | ||
|                 has_extra_layers = true;
 | ||
|             }
 | ||
|         }
 | ||
|         if (! has_extra_layers)
 | ||
|             // The "ensure vertical wall thickness" feature is not applicable to any of the regions. Quit.
 | ||
|             return;
 | ||
|         BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells in parallel - start : cache top / bottom";
 | ||
|         //FIXME Improve the heuristics for a grain size.
 | ||
|         size_t grain_size = std::max(m_layers.size() / 16, size_t(1));
 | ||
|         tbb::parallel_for(
 | ||
|             tbb::blocked_range<size_t>(0, m_layers.size(), grain_size),
 | ||
|             [this, &cache_top_botom_regions](const tbb::blocked_range<size_t>& range) {
 | ||
|                 const SurfaceType surfaces_bottom[2] = { stBottom, stBottomBridge };
 | ||
|                 const size_t num_regions = this->region_volumes.size();
 | ||
|                 for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
 | ||
|                     m_print->throw_if_canceled();
 | ||
|                     const Layer                      &layer = *m_layers[idx_layer];
 | ||
|                     DiscoverVerticalShellsCacheEntry &cache = cache_top_botom_regions[idx_layer];
 | ||
|                     // Simulate single set of perimeters over all merged regions.
 | ||
|                     float                             perimeter_offset = 0.f;
 | ||
|                     float                             perimeter_min_spacing = FLT_MAX;
 | ||
| #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | ||
|                     static size_t debug_idx = 0;
 | ||
|                     ++ debug_idx;
 | ||
| #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | ||
|                     for (size_t idx_region = 0; idx_region < num_regions; ++ idx_region) {
 | ||
|                         LayerRegion &layerm                       = *layer.m_regions[idx_region];
 | ||
|                         float        min_perimeter_infill_spacing = float(layerm.flow(frSolidInfill).scaled_spacing()) * 1.05f;
 | ||
|                         // Top surfaces.
 | ||
|                         append(cache.top_surfaces, offset(to_expolygons(layerm.slices.filter_by_type(stTop)), min_perimeter_infill_spacing));
 | ||
|                         append(cache.top_surfaces, offset(to_expolygons(layerm.fill_surfaces.filter_by_type(stTop)), min_perimeter_infill_spacing));
 | ||
|                         // Bottom surfaces.
 | ||
|                         append(cache.bottom_surfaces, offset(to_expolygons(layerm.slices.filter_by_types(surfaces_bottom, 2)), min_perimeter_infill_spacing));
 | ||
|                         append(cache.bottom_surfaces, offset(to_expolygons(layerm.fill_surfaces.filter_by_types(surfaces_bottom, 2)), min_perimeter_infill_spacing));
 | ||
|                         // Calculate the maximum perimeter offset as if the slice was extruded with a single extruder only.
 | ||
|                         // First find the maxium number of perimeters per region slice.
 | ||
|                         unsigned int perimeters = 0;
 | ||
|                         for (Surface &s : layerm.slices.surfaces)
 | ||
|                             perimeters = std::max<unsigned int>(perimeters, s.extra_perimeters);
 | ||
|                         perimeters += layerm.region()->config().perimeters.value;
 | ||
|                         // Then calculate the infill offset.
 | ||
|                         if (perimeters > 0) {
 | ||
|                             Flow extflow = layerm.flow(frExternalPerimeter);
 | ||
|                             Flow flow    = layerm.flow(frPerimeter);
 | ||
|                             perimeter_offset = std::max(perimeter_offset,
 | ||
|                                 0.5f * float(extflow.scaled_width() + extflow.scaled_spacing()) + (float(perimeters) - 1.f) * flow.scaled_spacing());
 | ||
|                             perimeter_min_spacing = std::min(perimeter_min_spacing, float(std::min(extflow.scaled_spacing(), flow.scaled_spacing())));
 | ||
|                         }
 | ||
|                         polygons_append(cache.holes, to_polygons(layerm.fill_expolygons));
 | ||
|                     }
 | ||
|                     // Save some computing time by reducing the number of polygons.
 | ||
|                     cache.top_surfaces    = union_(cache.top_surfaces,    false);
 | ||
|                     cache.bottom_surfaces = union_(cache.bottom_surfaces, false);
 | ||
|                     // For a multi-material print, simulate perimeter / infill split as if only a single extruder has been used for the whole print.
 | ||
|                     if (perimeter_offset > 0.) {
 | ||
|                         // The layer.slices are forced to merge by expanding them first.
 | ||
|                         polygons_append(cache.holes, offset(offset_ex(layer.slices, 0.3f * perimeter_min_spacing), - perimeter_offset - 0.3f * perimeter_min_spacing));
 | ||
| #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | ||
|                         {
 | ||
|                             Slic3r::SVG svg(debug_out_path("discover_vertical_shells-extra-holes-%d.svg", debug_idx), get_extents(layer.slices.expolygons));
 | ||
|                             svg.draw(layer.slices.expolygons, "blue");
 | ||
|                             svg.draw(union_ex(cache.holes), "red");
 | ||
|                             svg.draw_outline(union_ex(cache.holes), "black", "blue", scale_(0.05));
 | ||
|                             svg.Close(); 
 | ||
|                         }
 | ||
| #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | ||
|                     }
 | ||
|                     cache.holes = union_(cache.holes, false);
 | ||
|                 }
 | ||
|             });
 | ||
|         m_print->throw_if_canceled();
 | ||
|         BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells in parallel - end : cache top / bottom";
 | ||
|     }
 | ||
| 
 | ||
|     for (size_t idx_region = 0; idx_region < this->region_volumes.size(); ++ idx_region) {
 | ||
|         PROFILE_BLOCK(discover_vertical_shells_region);
 | ||
| 
 | ||
|         const PrintRegion ®ion = *m_print->get_region(idx_region);
 | ||
|         if (! region.config().ensure_vertical_shell_thickness.value)
 | ||
|             // This region will be handled by discover_horizontal_shells().
 | ||
|             continue;
 | ||
|         int n_extra_top_layers    = std::max(0, region.config().top_solid_layers.value - 1);
 | ||
|         int n_extra_bottom_layers = std::max(0, region.config().bottom_solid_layers.value - 1);
 | ||
|         if (n_extra_top_layers + n_extra_bottom_layers == 0)
 | ||
|             // Zero or 1 layer, there is no additional vertical wall thickness enforced.
 | ||
|             continue;
 | ||
| 
 | ||
|         //FIXME Improve the heuristics for a grain size.
 | ||
|         size_t grain_size = std::max(m_layers.size() / 16, size_t(1));
 | ||
| 
 | ||
|         if (! top_bottom_surfaces_all_regions) {
 | ||
|             // This is either a single material print, or a multi-material print and interface_shells are enabled, meaning that the vertical shell thickness
 | ||
|             // is calculated over a single material.
 | ||
|             BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells for region " << idx_region << " in parallel - start : cache top / bottom";
 | ||
|             tbb::parallel_for(
 | ||
|                 tbb::blocked_range<size_t>(0, m_layers.size(), grain_size),
 | ||
|                 [this, idx_region, &cache_top_botom_regions](const tbb::blocked_range<size_t>& range) {
 | ||
|                     const SurfaceType surfaces_bottom[2] = { stBottom, stBottomBridge };
 | ||
|                     for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
 | ||
|                         m_print->throw_if_canceled();
 | ||
|                         Layer       &layer                        = *m_layers[idx_layer];
 | ||
|                         LayerRegion &layerm                       = *layer.m_regions[idx_region];
 | ||
|                         float        min_perimeter_infill_spacing = float(layerm.flow(frSolidInfill).scaled_spacing()) * 1.05f;
 | ||
|                         // Top surfaces.
 | ||
|                         auto &cache = cache_top_botom_regions[idx_layer];
 | ||
|                         cache.top_surfaces = offset(to_expolygons(layerm.slices.filter_by_type(stTop)), min_perimeter_infill_spacing);
 | ||
|                         append(cache.top_surfaces, offset(to_expolygons(layerm.fill_surfaces.filter_by_type(stTop)), min_perimeter_infill_spacing));
 | ||
|                         // Bottom surfaces.
 | ||
|                         cache.bottom_surfaces = offset(to_expolygons(layerm.slices.filter_by_types(surfaces_bottom, 2)), min_perimeter_infill_spacing);
 | ||
|                         append(cache.bottom_surfaces, offset(to_expolygons(layerm.fill_surfaces.filter_by_types(surfaces_bottom, 2)), min_perimeter_infill_spacing));
 | ||
|                         // Holes over all regions. Only collect them once, they are valid for all idx_region iterations.
 | ||
|                         if (cache.holes.empty()) {
 | ||
|                             for (size_t idx_region = 0; idx_region < layer.regions().size(); ++ idx_region)
 | ||
|                                 polygons_append(cache.holes, to_polygons(layer.regions()[idx_region]->fill_expolygons));
 | ||
|                         }
 | ||
|                     }
 | ||
|                 });
 | ||
|             m_print->throw_if_canceled();
 | ||
|             BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells for region " << idx_region << " in parallel - end : cache top / bottom";
 | ||
|         }
 | ||
| 
 | ||
|         BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells for region " << idx_region << " in parallel - start : ensure vertical wall thickness";
 | ||
|         tbb::parallel_for(
 | ||
|             tbb::blocked_range<size_t>(0, m_layers.size(), grain_size),
 | ||
|             [this, idx_region, n_extra_top_layers, n_extra_bottom_layers, &cache_top_botom_regions]
 | ||
|             (const tbb::blocked_range<size_t>& range) {
 | ||
|                 // printf("discover_vertical_shells from %d to %d\n", range.begin(), range.end());
 | ||
|                 for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
 | ||
|                     PROFILE_BLOCK(discover_vertical_shells_region_layer);
 | ||
|                     m_print->throw_if_canceled();
 | ||
| #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | ||
|         			static size_t debug_idx = 0;
 | ||
|         			++ debug_idx;
 | ||
| #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | ||
| 
 | ||
|                     Layer       *layer               = m_layers[idx_layer];
 | ||
|                     LayerRegion *layerm              = layer->m_regions[idx_region];
 | ||
| 
 | ||
| #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | ||
|                     layerm->export_region_slices_to_svg_debug("4_discover_vertical_shells-initial");
 | ||
|                     layerm->export_region_fill_surfaces_to_svg_debug("4_discover_vertical_shells-initial");
 | ||
| #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | ||
| 
 | ||
|                     Flow         solid_infill_flow   = layerm->flow(frSolidInfill);
 | ||
|                     coord_t      infill_line_spacing = solid_infill_flow.scaled_spacing(); 
 | ||
|                     // Find a union of perimeters below / above this surface to guarantee a minimum shell thickness.
 | ||
|                     Polygons shell;
 | ||
|                     Polygons holes;
 | ||
| #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | ||
|                     ExPolygons shell_ex;
 | ||
| #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | ||
|                     float min_perimeter_infill_spacing = float(infill_line_spacing) * 1.05f;
 | ||
|                     {
 | ||
|                         PROFILE_BLOCK(discover_vertical_shells_region_layer_collect);
 | ||
| #if 0
 | ||
| // #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | ||
|                         {
 | ||
|         					Slic3r::SVG svg_cummulative(debug_out_path("discover_vertical_shells-perimeters-before-union-run%d.svg", debug_idx), this->bounding_box());
 | ||
|                             for (int n = (int)idx_layer - n_extra_bottom_layers; n <= (int)idx_layer + n_extra_top_layers; ++ n) {
 | ||
|                                 if (n < 0 || n >= (int)m_layers.size())
 | ||
|                                     continue;
 | ||
|                                 ExPolygons &expolys = m_layers[n]->perimeter_expolygons;
 | ||
|                                 for (size_t i = 0; i < expolys.size(); ++ i) {
 | ||
|         							Slic3r::SVG svg(debug_out_path("discover_vertical_shells-perimeters-before-union-run%d-layer%d-expoly%d.svg", debug_idx, n, i), get_extents(expolys[i]));
 | ||
|                                     svg.draw(expolys[i]);
 | ||
|                                     svg.draw_outline(expolys[i].contour, "black", scale_(0.05));
 | ||
|                                     svg.draw_outline(expolys[i].holes, "blue", scale_(0.05));
 | ||
|                                     svg.Close();
 | ||
| 
 | ||
|                                     svg_cummulative.draw(expolys[i]);
 | ||
|                                     svg_cummulative.draw_outline(expolys[i].contour, "black", scale_(0.05));
 | ||
|                                     svg_cummulative.draw_outline(expolys[i].holes, "blue", scale_(0.05));
 | ||
|                                 }
 | ||
|                             }
 | ||
|                         }
 | ||
| #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | ||
|                         // Reset the top / bottom inflated regions caches of entries, which are out of the moving window.
 | ||
|                         bool hole_first = true;
 | ||
|                         for (int n = (int)idx_layer - n_extra_bottom_layers; n <= (int)idx_layer + n_extra_top_layers; ++ n)
 | ||
|                             if (n >= 0 && n < (int)m_layers.size()) {
 | ||
|                                 Layer &neighbor_layer = *m_layers[n];
 | ||
|                                 const DiscoverVerticalShellsCacheEntry &cache = cache_top_botom_regions[n];
 | ||
|                                 if (hole_first) {
 | ||
|                                     hole_first = false;
 | ||
|                                     polygons_append(holes, cache.holes);
 | ||
|                                 }
 | ||
|                                 else if (! holes.empty()) {
 | ||
|                                     holes = intersection(holes, cache.holes);
 | ||
|                                 }
 | ||
|                                 size_t n_shell_old = shell.size();
 | ||
|                                 if (n > int(idx_layer))
 | ||
|                                     // Collect top surfaces.
 | ||
|                                     polygons_append(shell, cache.top_surfaces);
 | ||
|                                 else if (n < int(idx_layer))
 | ||
|                                     // Collect bottom and bottom bridge surfaces.
 | ||
|                                     polygons_append(shell, cache.bottom_surfaces);
 | ||
|                                 // Running the union_ using the Clipper library piece by piece is cheaper 
 | ||
|                                 // than running the union_ all at once.
 | ||
|                                 if (n_shell_old < shell.size())
 | ||
|                                    shell = union_(shell, false);
 | ||
|                             }
 | ||
| #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | ||
|                         {
 | ||
|         					Slic3r::SVG svg(debug_out_path("discover_vertical_shells-perimeters-before-union-%d.svg", debug_idx), get_extents(shell));
 | ||
|                             svg.draw(shell);
 | ||
|                             svg.draw_outline(shell, "black", scale_(0.05));
 | ||
|                             svg.Close(); 
 | ||
|                         }
 | ||
| #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | ||
| #if 0
 | ||
|                         {
 | ||
|                             PROFILE_BLOCK(discover_vertical_shells_region_layer_shell_);
 | ||
|         //                    shell = union_(shell, true);
 | ||
|                             shell = union_(shell, false); 
 | ||
|                         }
 | ||
| #endif
 | ||
| #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | ||
|                         shell_ex = union_ex(shell, true);
 | ||
| #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | ||
|                     }
 | ||
| 
 | ||
|                     //if (shell.empty())
 | ||
|                     //    continue;
 | ||
| 
 | ||
| #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | ||
|                     {
 | ||
|                         Slic3r::SVG svg(debug_out_path("discover_vertical_shells-perimeters-after-union-%d.svg", debug_idx), get_extents(shell));
 | ||
|                         svg.draw(shell_ex);
 | ||
|                         svg.draw_outline(shell_ex, "black", "blue", scale_(0.05));
 | ||
|                         svg.Close();  
 | ||
|                     }
 | ||
| #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | ||
| 
 | ||
| #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | ||
|                     {
 | ||
|                         Slic3r::SVG svg(debug_out_path("discover_vertical_shells-internal-wshell-%d.svg", debug_idx), get_extents(shell));
 | ||
|                         svg.draw(layerm->fill_surfaces.filter_by_type(stInternal), "yellow", 0.5);
 | ||
|                         svg.draw_outline(layerm->fill_surfaces.filter_by_type(stInternal), "black", "blue", scale_(0.05));
 | ||
|                         svg.draw(shell_ex, "blue", 0.5);
 | ||
|                         svg.draw_outline(shell_ex, "black", "blue", scale_(0.05));
 | ||
|                         svg.Close();
 | ||
|                     } 
 | ||
|                     {
 | ||
|                         Slic3r::SVG svg(debug_out_path("discover_vertical_shells-internalvoid-wshell-%d.svg", debug_idx), get_extents(shell));
 | ||
|                         svg.draw(layerm->fill_surfaces.filter_by_type(stInternalVoid), "yellow", 0.5);
 | ||
|                         svg.draw_outline(layerm->fill_surfaces.filter_by_type(stInternalVoid), "black", "blue", scale_(0.05));
 | ||
|                         svg.draw(shell_ex, "blue", 0.5);
 | ||
|                         svg.draw_outline(shell_ex, "black", "blue", scale_(0.05));
 | ||
|                         svg.Close();
 | ||
|                     } 
 | ||
|                     {
 | ||
|                         Slic3r::SVG svg(debug_out_path("discover_vertical_shells-internalvoid-wshell-%d.svg", debug_idx), get_extents(shell));
 | ||
|                         svg.draw(layerm->fill_surfaces.filter_by_type(stInternalVoid), "yellow", 0.5);
 | ||
|                         svg.draw_outline(layerm->fill_surfaces.filter_by_type(stInternalVoid), "black", "blue", scale_(0.05));
 | ||
|                         svg.draw(shell_ex, "blue", 0.5);
 | ||
|                         svg.draw_outline(shell_ex, "black", "blue", scale_(0.05)); 
 | ||
|                         svg.Close();
 | ||
|                     } 
 | ||
| #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | ||
| 
 | ||
|                     // Trim the shells region by the internal & internal void surfaces.
 | ||
|                     const SurfaceType surfaceTypesInternal[] = { stInternal, stInternalVoid, stInternalSolid };
 | ||
|                     const Polygons    polygonsInternal = to_polygons(layerm->fill_surfaces.filter_by_types(surfaceTypesInternal, 3));
 | ||
|                     shell = intersection(shell, polygonsInternal, true);
 | ||
|                     polygons_append(shell, diff(polygonsInternal, holes));
 | ||
|                     if (shell.empty())
 | ||
|                         continue;
 | ||
| 
 | ||
|                     // Append the internal solids, so they will be merged with the new ones.
 | ||
|                     polygons_append(shell, to_polygons(layerm->fill_surfaces.filter_by_type(stInternalSolid)));
 | ||
| 
 | ||
|                     // These regions will be filled by a rectilinear full infill. Currently this type of infill
 | ||
|                     // only fills regions, which fit at least a single line. To avoid gaps in the sparse infill,
 | ||
|                     // make sure that this region does not contain parts narrower than the infill spacing width.
 | ||
| #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | ||
|                     Polygons shell_before = shell;
 | ||
| #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | ||
| #if 1
 | ||
|                     // Intentionally inflate a bit more than how much the region has been shrunk, 
 | ||
|                     // so there will be some overlap between this solid infill and the other infill regions (mainly the sparse infill).
 | ||
|                     shell = offset(offset_ex(union_ex(shell), - 0.5f * min_perimeter_infill_spacing), 0.8f * min_perimeter_infill_spacing, ClipperLib::jtSquare);
 | ||
|                     if (shell.empty())
 | ||
|                         continue;
 | ||
| #else
 | ||
|                     // Ensure each region is at least 3x infill line width wide, so it could be filled in.
 | ||
|         //            float margin = float(infill_line_spacing) * 3.f;
 | ||
|                     float margin = float(infill_line_spacing) * 1.5f;
 | ||
|                     // we use a higher miterLimit here to handle areas with acute angles
 | ||
|                     // in those cases, the default miterLimit would cut the corner and we'd
 | ||
|                     // get a triangle in $too_narrow; if we grow it below then the shell
 | ||
|                     // would have a different shape from the external surface and we'd still
 | ||
|                     // have the same angle, so the next shell would be grown even more and so on.
 | ||
|                     Polygons too_narrow = diff(shell, offset2(shell, -margin, margin, ClipperLib::jtMiter, 5.), true);
 | ||
|                     if (! too_narrow.empty()) {
 | ||
|                         // grow the collapsing parts and add the extra area to  the neighbor layer 
 | ||
|                         // as well as to our original surfaces so that we support this 
 | ||
|                         // additional area in the next shell too
 | ||
|                         // make sure our grown surfaces don't exceed the fill area
 | ||
|                         polygons_append(shell, intersection(offset(too_narrow, margin), polygonsInternal));
 | ||
|                     }
 | ||
| #endif
 | ||
|                     ExPolygons new_internal_solid = intersection_ex(polygonsInternal, shell, false);
 | ||
| #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | ||
|                     {
 | ||
|                         Slic3r::SVG svg(debug_out_path("discover_vertical_shells-regularized-%d.svg", debug_idx), get_extents(shell_before));
 | ||
|                         // Source shell.
 | ||
|                         svg.draw(union_ex(shell_before, true));
 | ||
|                         // Shell trimmed to the internal surfaces.
 | ||
|                         svg.draw_outline(union_ex(shell, true), "black", "blue", scale_(0.05));
 | ||
|                         // Regularized infill region.
 | ||
|                         svg.draw_outline(new_internal_solid, "red", "magenta", scale_(0.05));
 | ||
|                         svg.Close();  
 | ||
|                     }
 | ||
| #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | ||
| 
 | ||
|                     // Trim the internal & internalvoid by the shell.
 | ||
|                     Slic3r::ExPolygons new_internal = diff_ex(
 | ||
|                         to_polygons(layerm->fill_surfaces.filter_by_type(stInternal)),
 | ||
|                         shell,
 | ||
|                         false
 | ||
|                     );
 | ||
|                     Slic3r::ExPolygons new_internal_void = diff_ex(
 | ||
|                         to_polygons(layerm->fill_surfaces.filter_by_type(stInternalVoid)),
 | ||
|                         shell,
 | ||
|                         false
 | ||
|                     );
 | ||
| 
 | ||
| #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | ||
|                     {
 | ||
|                         SVG::export_expolygons(debug_out_path("discover_vertical_shells-new_internal-%d.svg", debug_idx), get_extents(shell), new_internal, "black", "blue", scale_(0.05));
 | ||
|         				SVG::export_expolygons(debug_out_path("discover_vertical_shells-new_internal_void-%d.svg", debug_idx), get_extents(shell), new_internal_void, "black", "blue", scale_(0.05));
 | ||
|         				SVG::export_expolygons(debug_out_path("discover_vertical_shells-new_internal_solid-%d.svg", debug_idx), get_extents(shell), new_internal_solid, "black", "blue", scale_(0.05));
 | ||
|                     }
 | ||
| #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | ||
| 
 | ||
|                     // Assign resulting internal surfaces to layer.
 | ||
|                     const SurfaceType surfaceTypesKeep[] = { stTop, stBottom, stBottomBridge };
 | ||
|                     layerm->fill_surfaces.keep_types(surfaceTypesKeep, sizeof(surfaceTypesKeep)/sizeof(SurfaceType));
 | ||
|                     layerm->fill_surfaces.append(new_internal,       stInternal);
 | ||
|                     layerm->fill_surfaces.append(new_internal_void,  stInternalVoid);
 | ||
|                     layerm->fill_surfaces.append(new_internal_solid, stInternalSolid);
 | ||
|                 } // for each layer
 | ||
|             });
 | ||
|         m_print->throw_if_canceled();
 | ||
|         BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells for region " << idx_region << " in parallel - end";
 | ||
| 
 | ||
| #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | ||
| 		for (size_t idx_layer = 0; idx_layer < m_layers.size(); ++idx_layer) {
 | ||
| 			LayerRegion *layerm = m_layers[idx_layer]->get_region(idx_region);
 | ||
| 			layerm->export_region_slices_to_svg_debug("4_discover_vertical_shells-final");
 | ||
| 			layerm->export_region_fill_surfaces_to_svg_debug("4_discover_vertical_shells-final");
 | ||
| 		}
 | ||
| #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | ||
|     } // for each region
 | ||
| 
 | ||
|     // Write the profiler measurements to file
 | ||
| //    PROFILE_UPDATE();
 | ||
| //    PROFILE_OUTPUT(debug_out_path("discover_vertical_shells-profile.txt").c_str());
 | ||
| }
 | ||
| 
 | ||
| /* This method applies bridge flow to the first internal solid layer above
 | ||
|    sparse infill */
 | ||
| void PrintObject::bridge_over_infill()
 | ||
| {
 | ||
|     BOOST_LOG_TRIVIAL(info) << "Bridge over infill..." << log_memory_info();
 | ||
| 
 | ||
|     for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
 | ||
|         const PrintRegion ®ion = *m_print->regions()[region_id];
 | ||
|         
 | ||
|         // skip bridging in case there are no voids
 | ||
|         if (region.config().fill_density.value == 100) continue;
 | ||
|         
 | ||
|         // get bridge flow
 | ||
|         Flow bridge_flow = region.flow(
 | ||
|             frSolidInfill,
 | ||
|             -1,     // layer height, not relevant for bridge flow
 | ||
|             true,   // bridge
 | ||
|             false,  // first layer
 | ||
|             -1,     // custom width, not relevant for bridge flow
 | ||
|             *this
 | ||
|         );
 | ||
|         
 | ||
| 		for (LayerPtrs::iterator layer_it = m_layers.begin(); layer_it != m_layers.end(); ++ layer_it) {
 | ||
|             // skip first layer
 | ||
| 			if (layer_it == m_layers.begin())
 | ||
|                 continue;
 | ||
|             
 | ||
|             Layer* layer        = *layer_it;
 | ||
|             LayerRegion* layerm = layer->m_regions[region_id];
 | ||
|             
 | ||
|             // extract the stInternalSolid surfaces that might be transformed into bridges
 | ||
|             Polygons internal_solid;
 | ||
|             layerm->fill_surfaces.filter_by_type(stInternalSolid, &internal_solid);
 | ||
|             
 | ||
|             // check whether the lower area is deep enough for absorbing the extra flow
 | ||
|             // (for obvious physical reasons but also for preventing the bridge extrudates
 | ||
|             // from overflowing in 3D preview)
 | ||
|             ExPolygons to_bridge;
 | ||
|             {
 | ||
|                 Polygons to_bridge_pp = internal_solid;
 | ||
|                 
 | ||
|                 // iterate through lower layers spanned by bridge_flow
 | ||
|                 double bottom_z = layer->print_z - bridge_flow.height;
 | ||
|                 for (int i = int(layer_it - m_layers.begin()) - 1; i >= 0; --i) {
 | ||
|                     const Layer* lower_layer = m_layers[i];
 | ||
|                     
 | ||
|                     // stop iterating if layer is lower than bottom_z
 | ||
|                     if (lower_layer->print_z < bottom_z) break;
 | ||
|                     
 | ||
|                     // iterate through regions and collect internal surfaces
 | ||
|                     Polygons lower_internal;
 | ||
|                     for (LayerRegion *lower_layerm : lower_layer->m_regions)
 | ||
|                         lower_layerm->fill_surfaces.filter_by_type(stInternal, &lower_internal);
 | ||
|                     
 | ||
|                     // intersect such lower internal surfaces with the candidate solid surfaces
 | ||
|                     to_bridge_pp = intersection(to_bridge_pp, lower_internal);
 | ||
|                 }
 | ||
|                 
 | ||
|                 // there's no point in bridging too thin/short regions
 | ||
|                 //FIXME Vojtech: The offset2 function is not a geometric offset, 
 | ||
|                 // therefore it may create 1) gaps, and 2) sharp corners, which are outside the original contour.
 | ||
|                 // The gaps will be filled by a separate region, which makes the infill less stable and it takes longer.
 | ||
|                 {
 | ||
|                     float min_width = float(bridge_flow.scaled_width()) * 3.f;
 | ||
|                     to_bridge_pp = offset2(to_bridge_pp, -min_width, +min_width);
 | ||
|                 }
 | ||
|                 
 | ||
|                 if (to_bridge_pp.empty()) continue;
 | ||
|                 
 | ||
|                 // convert into ExPolygons
 | ||
|                 to_bridge = union_ex(to_bridge_pp);
 | ||
|             }
 | ||
|             
 | ||
|             #ifdef SLIC3R_DEBUG
 | ||
|             printf("Bridging " PRINTF_ZU " internal areas at layer " PRINTF_ZU "\n", to_bridge.size(), layer->id());
 | ||
|             #endif
 | ||
|             
 | ||
|             // compute the remaning internal solid surfaces as difference
 | ||
|             ExPolygons not_to_bridge = diff_ex(internal_solid, to_polygons(to_bridge), true);
 | ||
|             to_bridge = intersection_ex(to_polygons(to_bridge), internal_solid, true);
 | ||
|             // build the new collection of fill_surfaces
 | ||
|             layerm->fill_surfaces.remove_type(stInternalSolid);
 | ||
|             for (ExPolygon &ex : to_bridge)
 | ||
|                 layerm->fill_surfaces.surfaces.push_back(Surface(stInternalBridge, ex));
 | ||
|             for (ExPolygon &ex : not_to_bridge)
 | ||
|                 layerm->fill_surfaces.surfaces.push_back(Surface(stInternalSolid, ex));            
 | ||
|             /*
 | ||
|             # exclude infill from the layers below if needed
 | ||
|             # see discussion at https://github.com/alexrj/Slic3r/issues/240
 | ||
|             # Update: do not exclude any infill. Sparse infill is able to absorb the excess material.
 | ||
|             if (0) {
 | ||
|                 my $excess = $layerm->extruders->{infill}->bridge_flow->width - $layerm->height;
 | ||
|                 for (my $i = $layer_id-1; $excess >= $self->get_layer($i)->height; $i--) {
 | ||
|                     Slic3r::debugf "  skipping infill below those areas at layer %d\n", $i;
 | ||
|                     foreach my $lower_layerm (@{$self->get_layer($i)->regions}) {
 | ||
|                         my @new_surfaces = ();
 | ||
|                         # subtract the area from all types of surfaces
 | ||
|                         foreach my $group (@{$lower_layerm->fill_surfaces->group}) {
 | ||
|                             push @new_surfaces, map $group->[0]->clone(expolygon => $_),
 | ||
|                                 @{diff_ex(
 | ||
|                                     [ map $_->p, @$group ],
 | ||
|                                     [ map @$_, @$to_bridge ],
 | ||
|                                 )};
 | ||
|                             push @new_surfaces, map Slic3r::Surface->new(
 | ||
|                                 expolygon       => $_,
 | ||
|                                 surface_type    => S_TYPE_INTERNALVOID,
 | ||
|                             ), @{intersection_ex(
 | ||
|                                 [ map $_->p, @$group ],
 | ||
|                                 [ map @$_, @$to_bridge ],
 | ||
|                             )};
 | ||
|                         }
 | ||
|                         $lower_layerm->fill_surfaces->clear;
 | ||
|                         $lower_layerm->fill_surfaces->append($_) for @new_surfaces;
 | ||
|                     }
 | ||
|                     
 | ||
|                     $excess -= $self->get_layer($i)->height;
 | ||
|                 }
 | ||
|             }
 | ||
|             */
 | ||
| 
 | ||
| #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | ||
|             layerm->export_region_slices_to_svg_debug("7_bridge_over_infill");
 | ||
|             layerm->export_region_fill_surfaces_to_svg_debug("7_bridge_over_infill");
 | ||
| #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | ||
|             m_print->throw_if_canceled();
 | ||
|         }
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| static void clamp_exturder_to_default(ConfigOptionInt &opt, size_t num_extruders)
 | ||
| {
 | ||
|     if (opt.value > (int)num_extruders)
 | ||
|         // assign the default extruder
 | ||
|         opt.value = 1;
 | ||
| }
 | ||
| 
 | ||
| PrintObjectConfig PrintObject::object_config_from_model_object(const PrintObjectConfig &default_object_config, const ModelObject &object, size_t num_extruders)
 | ||
| {
 | ||
|     PrintObjectConfig config = default_object_config;
 | ||
|     normalize_and_apply_config(config, object.config);
 | ||
|     // Clamp invalid extruders to the default extruder (with index 1).
 | ||
|     clamp_exturder_to_default(config.support_material_extruder,           num_extruders);
 | ||
|     clamp_exturder_to_default(config.support_material_interface_extruder, num_extruders);
 | ||
|     return config;
 | ||
| }
 | ||
| 
 | ||
| PrintRegionConfig PrintObject::region_config_from_model_volume(const PrintRegionConfig &default_region_config, const ModelVolume &volume, size_t num_extruders)
 | ||
| {
 | ||
|     PrintRegionConfig config = default_region_config;
 | ||
|     normalize_and_apply_config(config, volume.get_object()->config);
 | ||
|     normalize_and_apply_config(config, volume.config);
 | ||
|     if (! volume.material_id().empty())
 | ||
|         normalize_and_apply_config(config, volume.material()->config);
 | ||
|     // Clamp invalid extruders to the default extruder (with index 1).
 | ||
|     clamp_exturder_to_default(config.infill_extruder,       num_extruders);
 | ||
|     clamp_exturder_to_default(config.perimeter_extruder,    num_extruders);
 | ||
|     clamp_exturder_to_default(config.solid_infill_extruder, num_extruders);
 | ||
|     return config;
 | ||
| }
 | ||
| 
 | ||
| SlicingParameters PrintObject::slicing_parameters() const
 | ||
| {
 | ||
|     return SlicingParameters::create_from_config(
 | ||
|         this->print()->config(), m_config, 
 | ||
|         unscale<double>(this->size(2)), this->object_extruders());
 | ||
| }
 | ||
| 
 | ||
| SlicingParameters PrintObject::slicing_parameters(const DynamicPrintConfig &full_config, const ModelObject &model_object)
 | ||
| {
 | ||
|     PrintConfig         print_config;
 | ||
|     PrintObjectConfig   object_config;
 | ||
|     PrintRegionConfig   default_region_config;
 | ||
|     print_config .apply(full_config, true);
 | ||
|     object_config.apply(full_config, true);
 | ||
|     default_region_config.apply(full_config, true);
 | ||
|     size_t              num_extruders = print_config.nozzle_diameter.size();
 | ||
|     object_config = object_config_from_model_object(object_config, model_object, num_extruders);
 | ||
| 
 | ||
|     std::vector<unsigned int> object_extruders;
 | ||
|     for (const ModelVolume *model_volume : model_object.volumes)
 | ||
|         if (model_volume->is_model_part())
 | ||
|             PrintRegion::collect_object_printing_extruders(
 | ||
|                 print_config,
 | ||
|                 region_config_from_model_volume(default_region_config, *model_volume, num_extruders),
 | ||
|                 object_extruders);
 | ||
|     sort_remove_duplicates(object_extruders);
 | ||
| 
 | ||
|     return SlicingParameters::create_from_config(print_config, object_config, model_object.bounding_box().max.z(), object_extruders);
 | ||
| }
 | ||
| 
 | ||
| // returns 0-based indices of extruders used to print the object (without brim, support and other helper extrusions)
 | ||
| std::vector<unsigned int> PrintObject::object_extruders() const
 | ||
| {
 | ||
|     std::vector<unsigned int> extruders;
 | ||
|     extruders.reserve(this->region_volumes.size() * 3);    
 | ||
|     for (size_t idx_region = 0; idx_region < this->region_volumes.size(); ++ idx_region)
 | ||
|         if (! this->region_volumes[idx_region].empty())
 | ||
|             m_print->get_region(idx_region)->collect_object_printing_extruders(extruders);
 | ||
|     sort_remove_duplicates(extruders);
 | ||
|     return extruders;
 | ||
| }
 | ||
| 
 | ||
| bool PrintObject::update_layer_height_profile(const ModelObject &model_object, const SlicingParameters &slicing_parameters, std::vector<coordf_t> &layer_height_profile)
 | ||
| {
 | ||
|     bool updated = false;
 | ||
| 
 | ||
|     if (layer_height_profile.empty()) {
 | ||
|         layer_height_profile = model_object.layer_height_profile;
 | ||
|         updated = true;
 | ||
|     }
 | ||
| 
 | ||
|     // Verify the layer_height_profile.
 | ||
|     if (! layer_height_profile.empty() && 
 | ||
|             // Must not be of even length.
 | ||
|             ((layer_height_profile.size() & 1) != 0 || 
 | ||
|             // Last entry must be at the top of the object.
 | ||
|              std::abs(layer_height_profile[layer_height_profile.size() - 2] - slicing_parameters.object_print_z_height()) > 1e-3))
 | ||
|         layer_height_profile.clear();
 | ||
| 
 | ||
|     if (layer_height_profile.empty()) {
 | ||
|         if (0)
 | ||
| //        if (this->layer_height_profile.empty())
 | ||
|             layer_height_profile = layer_height_profile_adaptive(slicing_parameters, model_object.layer_height_ranges, model_object.volumes);
 | ||
|         else
 | ||
|             layer_height_profile = layer_height_profile_from_ranges(slicing_parameters, model_object.layer_height_ranges);
 | ||
|         updated = true;
 | ||
|     }
 | ||
|     return updated;
 | ||
| }
 | ||
| 
 | ||
| // 1) Decides Z positions of the layers,
 | ||
| // 2) Initializes layers and their regions
 | ||
| // 3) Slices the object meshes
 | ||
| // 4) Slices the modifier meshes and reclassifies the slices of the object meshes by the slices of the modifier meshes
 | ||
| // 5) Applies size compensation (offsets the slices in XY plane)
 | ||
| // 6) Replaces bad slices by the slices reconstructed from the upper/lower layer
 | ||
| // Resulting expolygons of layer regions are marked as Internal.
 | ||
| //
 | ||
| // this should be idempotent
 | ||
| void PrintObject::_slice(const std::vector<coordf_t> &layer_height_profile)
 | ||
| {
 | ||
|     BOOST_LOG_TRIVIAL(info) << "Slicing objects..." << log_memory_info();
 | ||
| 
 | ||
|     this->typed_slices = false;
 | ||
| 
 | ||
| #ifdef SLIC3R_PROFILE
 | ||
|     // Disable parallelization so the Shiny profiler works
 | ||
|     static tbb::task_scheduler_init *tbb_init = nullptr;
 | ||
|     tbb_init = new tbb::task_scheduler_init(1);
 | ||
| #endif
 | ||
| 
 | ||
|     SlicingParameters slicing_params = this->slicing_parameters();
 | ||
| 
 | ||
|     // 1) Initialize layers and their slice heights.
 | ||
|     std::vector<float> slice_zs;
 | ||
|     {
 | ||
|         this->clear_layers();
 | ||
|         // Object layers (pairs of bottom/top Z coordinate), without the raft.
 | ||
|         std::vector<coordf_t> object_layers = generate_object_layers(slicing_params, layer_height_profile);
 | ||
|         // Reserve object layers for the raft. Last layer of the raft is the contact layer.
 | ||
|         int id = int(slicing_params.raft_layers());
 | ||
|         slice_zs.reserve(object_layers.size());
 | ||
|         Layer *prev = nullptr;
 | ||
|         for (size_t i_layer = 0; i_layer < object_layers.size(); i_layer += 2) {
 | ||
|             coordf_t lo = object_layers[i_layer];
 | ||
|             coordf_t hi = object_layers[i_layer + 1];
 | ||
|             coordf_t slice_z = 0.5 * (lo + hi);
 | ||
|             Layer *layer = this->add_layer(id ++, hi - lo, hi + slicing_params.object_print_z_min, slice_z);
 | ||
|             slice_zs.push_back(float(slice_z));
 | ||
|             if (prev != nullptr) {
 | ||
|                 prev->upper_layer = layer;
 | ||
|                 layer->lower_layer = prev;
 | ||
|             }
 | ||
|             // Make sure all layers contain layer region objects for all regions.
 | ||
|             for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id)
 | ||
|                 layer->add_region(this->print()->regions()[region_id]);
 | ||
|             prev = layer;
 | ||
|         }
 | ||
|     }
 | ||
|     
 | ||
|     // Slice all non-modifier volumes.
 | ||
|     for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
 | ||
|         BOOST_LOG_TRIVIAL(debug) << "Slicing objects - region " << region_id;
 | ||
|         std::vector<ExPolygons> expolygons_by_layer = this->_slice_region(region_id, slice_zs, false);
 | ||
|         m_print->throw_if_canceled();
 | ||
|         BOOST_LOG_TRIVIAL(debug) << "Slicing objects - append slices " << region_id << " start";
 | ||
|         for (size_t layer_id = 0; layer_id < expolygons_by_layer.size(); ++ layer_id)
 | ||
|             m_layers[layer_id]->regions()[region_id]->slices.append(std::move(expolygons_by_layer[layer_id]), stInternal);
 | ||
|         m_print->throw_if_canceled();
 | ||
|         BOOST_LOG_TRIVIAL(debug) << "Slicing objects - append slices " << region_id << " end";
 | ||
|     }
 | ||
| 
 | ||
|     // Slice all modifier volumes.
 | ||
|     if (this->region_volumes.size() > 1) {
 | ||
|         for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
 | ||
|             BOOST_LOG_TRIVIAL(debug) << "Slicing modifier volumes - region " << region_id;
 | ||
|             std::vector<ExPolygons> expolygons_by_layer = this->_slice_region(region_id, slice_zs, true);
 | ||
|             m_print->throw_if_canceled();
 | ||
|             // loop through the other regions and 'steal' the slices belonging to this one
 | ||
|             BOOST_LOG_TRIVIAL(debug) << "Slicing modifier volumes - stealing " << region_id << " start";
 | ||
|             for (size_t other_region_id = 0; other_region_id < this->region_volumes.size(); ++ other_region_id) {
 | ||
|                 if (region_id == other_region_id)
 | ||
|                     continue;
 | ||
|                 for (size_t layer_id = 0; layer_id < expolygons_by_layer.size(); ++ layer_id) {
 | ||
|                     Layer       *layer = m_layers[layer_id];
 | ||
|                     LayerRegion *layerm = layer->m_regions[region_id];
 | ||
|                     LayerRegion *other_layerm = layer->m_regions[other_region_id];
 | ||
|                     if (layerm == nullptr || other_layerm == nullptr)
 | ||
|                         continue;
 | ||
|                     Polygons other_slices = to_polygons(other_layerm->slices);
 | ||
|                     ExPolygons my_parts = intersection_ex(other_slices, to_polygons(expolygons_by_layer[layer_id]));
 | ||
|                     if (my_parts.empty())
 | ||
|                         continue;
 | ||
|                     // Remove such parts from original region.
 | ||
|                     other_layerm->slices.set(diff_ex(other_slices, to_polygons(my_parts)), stInternal);
 | ||
|                     // Append new parts to our region.
 | ||
|                     layerm->slices.append(std::move(my_parts), stInternal);
 | ||
|                 }
 | ||
|             }
 | ||
|             m_print->throw_if_canceled();
 | ||
|             BOOST_LOG_TRIVIAL(debug) << "Slicing modifier volumes - stealing " << region_id << " end";
 | ||
|         }
 | ||
|     }
 | ||
|     
 | ||
|     BOOST_LOG_TRIVIAL(debug) << "Slicing objects - removing top empty layers";
 | ||
|     while (! m_layers.empty()) {
 | ||
|         const Layer *layer = m_layers.back();
 | ||
|         if (! layer->empty())
 | ||
|             goto end;
 | ||
|         delete layer;
 | ||
|         m_layers.pop_back();
 | ||
| 		if (! m_layers.empty())
 | ||
| 			m_layers.back()->upper_layer = nullptr;
 | ||
|     }
 | ||
|     m_print->throw_if_canceled();
 | ||
| end:
 | ||
|     ;
 | ||
| 
 | ||
|     BOOST_LOG_TRIVIAL(debug) << "Slicing objects - make_slices in parallel - begin";
 | ||
|     tbb::parallel_for(
 | ||
|         tbb::blocked_range<size_t>(0, m_layers.size()),
 | ||
|         [this](const tbb::blocked_range<size_t>& range) {
 | ||
|             for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id) {
 | ||
|                 m_print->throw_if_canceled();
 | ||
|                 Layer *layer = m_layers[layer_id];
 | ||
|                 // Apply size compensation and perform clipping of multi-part objects.
 | ||
|                 float delta = float(scale_(m_config.xy_size_compensation.value));
 | ||
|                 if (layer_id == 0)
 | ||
|                     delta -= float(scale_(m_config.elefant_foot_compensation.value));
 | ||
|                 bool  scale = delta != 0.f;
 | ||
|                 bool  clip  = m_config.clip_multipart_objects.value || delta > 0.f;
 | ||
|                 if (layer->m_regions.size() == 1) {
 | ||
|                     if (scale) {
 | ||
|                         // Single region, growing or shrinking.
 | ||
|                         LayerRegion *layerm = layer->m_regions.front();
 | ||
|                         layerm->slices.set(offset_ex(to_expolygons(std::move(layerm->slices.surfaces)), delta), stInternal);
 | ||
|                     }
 | ||
|                 } else if (scale || clip) {
 | ||
|                     // Multiple regions, growing, shrinking or just clipping one region by the other.
 | ||
|                     // When clipping the regions, priority is given to the first regions.
 | ||
|                     Polygons processed;
 | ||
|         			for (size_t region_id = 0; region_id < layer->m_regions.size(); ++ region_id) {
 | ||
|                         LayerRegion *layerm = layer->m_regions[region_id];
 | ||
|         				ExPolygons slices = to_expolygons(std::move(layerm->slices.surfaces));
 | ||
|         				if (scale)
 | ||
|         					slices = offset_ex(slices, delta);
 | ||
|                         if (region_id > 0 && clip) 
 | ||
|                             // Trim by the slices of already processed regions.
 | ||
|                             slices = diff_ex(to_polygons(std::move(slices)), processed);
 | ||
|                         if (clip && region_id + 1 < layer->m_regions.size())
 | ||
|                             // Collect the already processed regions to trim the to be processed regions.
 | ||
|                             polygons_append(processed, slices);
 | ||
|                         layerm->slices.set(std::move(slices), stInternal);
 | ||
|                     }
 | ||
|                 }
 | ||
|                 // Merge all regions' slices to get islands, chain them by a shortest path.
 | ||
|                 layer->make_slices();
 | ||
|             }
 | ||
|         });
 | ||
|     m_print->throw_if_canceled();
 | ||
|     BOOST_LOG_TRIVIAL(debug) << "Slicing objects - make_slices in parallel - end";
 | ||
| }
 | ||
| 
 | ||
| std::vector<ExPolygons> PrintObject::_slice_region(size_t region_id, const std::vector<float> &z, bool modifier)
 | ||
| {
 | ||
|     std::vector<const ModelVolume*> volumes;
 | ||
|     if (region_id < this->region_volumes.size()) {
 | ||
|         for (int volume_id : this->region_volumes[region_id]) {
 | ||
|             const ModelVolume *volume = this->model_object()->volumes[volume_id];
 | ||
|             if (modifier ? volume->is_modifier() : volume->is_model_part())
 | ||
|                 volumes.emplace_back(volume);
 | ||
|         }
 | ||
|     }
 | ||
|     return this->_slice_volumes(z, volumes);
 | ||
| }
 | ||
| 
 | ||
| std::vector<ExPolygons> PrintObject::slice_support_enforcers() const
 | ||
| {
 | ||
|     std::vector<const ModelVolume*> volumes;
 | ||
|     for (const ModelVolume *volume : this->model_object()->volumes)
 | ||
|         if (volume->is_support_enforcer())
 | ||
|             volumes.emplace_back(volume);
 | ||
|     std::vector<float> zs;
 | ||
|     zs.reserve(this->layers().size());
 | ||
|     for (const Layer *l : this->layers())
 | ||
|         zs.emplace_back((float)l->slice_z);
 | ||
|     return this->_slice_volumes(zs, volumes);
 | ||
| }
 | ||
| 
 | ||
| std::vector<ExPolygons> PrintObject::slice_support_blockers() const
 | ||
| {
 | ||
|     std::vector<const ModelVolume*> volumes;
 | ||
|     for (const ModelVolume *volume : this->model_object()->volumes)
 | ||
|         if (volume->is_support_blocker())
 | ||
|             volumes.emplace_back(volume);
 | ||
|     std::vector<float> zs;
 | ||
|     zs.reserve(this->layers().size());
 | ||
|     for (const Layer *l : this->layers())
 | ||
|         zs.emplace_back((float)l->slice_z);
 | ||
|     return this->_slice_volumes(zs, volumes);
 | ||
| }
 | ||
| 
 | ||
| std::vector<ExPolygons> PrintObject::_slice_volumes(const std::vector<float> &z, const std::vector<const ModelVolume*> &volumes) const
 | ||
| {
 | ||
|     std::vector<ExPolygons> layers;
 | ||
|     if (! volumes.empty()) {
 | ||
|         // Compose mesh.
 | ||
|         //FIXME better to perform slicing over each volume separately and then to use a Boolean operation to merge them.
 | ||
|         TriangleMesh mesh;
 | ||
|         for (const ModelVolume *v : volumes)
 | ||
|         {
 | ||
|             TriangleMesh vol_mesh(v->mesh);
 | ||
|             vol_mesh.transform(v->get_matrix());
 | ||
|             mesh.merge(vol_mesh);
 | ||
|         }
 | ||
|         if (mesh.stl.stats.number_of_facets > 0) {
 | ||
|             mesh.transform(m_trafo);
 | ||
|             // apply XY shift
 | ||
|             mesh.translate(- unscale<float>(m_copies_shift(0)), - unscale<float>(m_copies_shift(1)), 0);
 | ||
|             // perform actual slicing
 | ||
|             TriangleMeshSlicer mslicer;
 | ||
|             const Print *print = this->print();
 | ||
|             auto callback = TriangleMeshSlicer::throw_on_cancel_callback_type([print](){print->throw_if_canceled();});
 | ||
|             mslicer.init(&mesh, callback);
 | ||
|             mslicer.slice(z, &layers, callback);
 | ||
|             m_print->throw_if_canceled();
 | ||
|         }
 | ||
|     }
 | ||
|     return layers;
 | ||
| }
 | ||
| 
 | ||
| std::string PrintObject::_fix_slicing_errors()
 | ||
| {
 | ||
|     // Collect layers with slicing errors.
 | ||
|     // These layers will be fixed in parallel.
 | ||
|     std::vector<size_t> buggy_layers;
 | ||
|     buggy_layers.reserve(m_layers.size());
 | ||
|     for (size_t idx_layer = 0; idx_layer < m_layers.size(); ++ idx_layer)
 | ||
|         if (m_layers[idx_layer]->slicing_errors)
 | ||
|             buggy_layers.push_back(idx_layer);
 | ||
| 
 | ||
|     BOOST_LOG_TRIVIAL(debug) << "Slicing objects - fixing slicing errors in parallel - begin";
 | ||
|     tbb::parallel_for(
 | ||
|         tbb::blocked_range<size_t>(0, buggy_layers.size()),
 | ||
|         [this, &buggy_layers](const tbb::blocked_range<size_t>& range) {
 | ||
|             for (size_t buggy_layer_idx = range.begin(); buggy_layer_idx < range.end(); ++ buggy_layer_idx) {
 | ||
|                 m_print->throw_if_canceled();
 | ||
|                 size_t idx_layer = buggy_layers[buggy_layer_idx];
 | ||
|                 Layer *layer     = m_layers[idx_layer];
 | ||
|                 assert(layer->slicing_errors);
 | ||
|                 // Try to repair the layer surfaces by merging all contours and all holes from neighbor layers.
 | ||
|                 // BOOST_LOG_TRIVIAL(trace) << "Attempting to repair layer" << idx_layer;
 | ||
|                 for (size_t region_id = 0; region_id < layer->m_regions.size(); ++ region_id) {
 | ||
|                     LayerRegion *layerm = layer->m_regions[region_id];
 | ||
|                     // Find the first valid layer below / above the current layer.
 | ||
|                     const Surfaces *upper_surfaces = nullptr;
 | ||
|                     const Surfaces *lower_surfaces = nullptr;
 | ||
|                     for (size_t j = idx_layer + 1; j < m_layers.size(); ++ j)
 | ||
|                         if (! m_layers[j]->slicing_errors) {
 | ||
|                             upper_surfaces = &m_layers[j]->regions()[region_id]->slices.surfaces;
 | ||
|                             break;
 | ||
|                         }
 | ||
|                     for (int j = int(idx_layer) - 1; j >= 0; -- j)
 | ||
|                         if (! m_layers[j]->slicing_errors) {
 | ||
|                             lower_surfaces = &m_layers[j]->regions()[region_id]->slices.surfaces;
 | ||
|                             break;
 | ||
|                         }
 | ||
|                     // Collect outer contours and holes from the valid layers above & below.
 | ||
|                     Polygons outer;
 | ||
|                     outer.reserve(
 | ||
|                         ((upper_surfaces == nullptr) ? 0 : upper_surfaces->size()) + 
 | ||
|                         ((lower_surfaces == nullptr) ? 0 : lower_surfaces->size()));
 | ||
|                     size_t num_holes = 0;
 | ||
|                     if (upper_surfaces)
 | ||
|                         for (const auto &surface : *upper_surfaces) {
 | ||
|                             outer.push_back(surface.expolygon.contour);
 | ||
|                             num_holes += surface.expolygon.holes.size();
 | ||
|                         }
 | ||
|                     if (lower_surfaces)
 | ||
|                         for (const auto &surface : *lower_surfaces) {
 | ||
|                             outer.push_back(surface.expolygon.contour);
 | ||
|                             num_holes += surface.expolygon.holes.size();
 | ||
|                         }
 | ||
|                     Polygons holes;
 | ||
|                     holes.reserve(num_holes);
 | ||
|                     if (upper_surfaces)
 | ||
|                         for (const auto &surface : *upper_surfaces)
 | ||
|                             polygons_append(holes, surface.expolygon.holes);
 | ||
|                     if (lower_surfaces)
 | ||
|                         for (const auto &surface : *lower_surfaces)
 | ||
|                             polygons_append(holes, surface.expolygon.holes);
 | ||
|                     layerm->slices.set(diff_ex(union_(outer), holes, false), stInternal);
 | ||
|                 }
 | ||
|                 // Update layer slices after repairing the single regions.
 | ||
|                 layer->make_slices();
 | ||
|             }
 | ||
|         });
 | ||
|     m_print->throw_if_canceled();
 | ||
|     BOOST_LOG_TRIVIAL(debug) << "Slicing objects - fixing slicing errors in parallel - end";
 | ||
| 
 | ||
|     // remove empty layers from bottom
 | ||
|     while (! m_layers.empty() && m_layers.front()->slices.expolygons.empty()) {
 | ||
|         delete m_layers.front();
 | ||
|         m_layers.erase(m_layers.begin());
 | ||
|         m_layers.front()->lower_layer = nullptr;
 | ||
|         for (size_t i = 0; i < m_layers.size(); ++ i)
 | ||
|             m_layers[i]->set_id(m_layers[i]->id() - 1);
 | ||
|     }
 | ||
| 
 | ||
|     return buggy_layers.empty() ? "" :
 | ||
|         "The model has overlapping or self-intersecting facets. I tried to repair it, "
 | ||
|         "however you might want to check the results or repair the input file and retry.\n";
 | ||
| }
 | ||
| 
 | ||
| // Simplify the sliced model, if "resolution" configuration parameter > 0.
 | ||
| // The simplification is problematic, because it simplifies the slices independent from each other,
 | ||
| // which makes the simplified discretization visible on the object surface.
 | ||
| void PrintObject::_simplify_slices(double distance)
 | ||
| {
 | ||
|     BOOST_LOG_TRIVIAL(debug) << "Slicing objects - siplifying slices in parallel - begin";
 | ||
|     tbb::parallel_for(
 | ||
|         tbb::blocked_range<size_t>(0, m_layers.size()),
 | ||
|         [this, distance](const tbb::blocked_range<size_t>& range) {
 | ||
|             for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
 | ||
|                 m_print->throw_if_canceled();
 | ||
|                 Layer *layer = m_layers[layer_idx];
 | ||
|                 for (size_t region_idx = 0; region_idx < layer->m_regions.size(); ++ region_idx)
 | ||
|                     layer->m_regions[region_idx]->slices.simplify(distance);
 | ||
|                 layer->slices.simplify(distance);
 | ||
|             }
 | ||
|         });
 | ||
|     BOOST_LOG_TRIVIAL(debug) << "Slicing objects - siplifying slices in parallel - end";
 | ||
| }
 | ||
| 
 | ||
| void PrintObject::_make_perimeters()
 | ||
| {
 | ||
|     if (! this->set_started(posPerimeters))
 | ||
|         return;
 | ||
| 
 | ||
|     BOOST_LOG_TRIVIAL(info) << "Generating perimeters..." << log_memory_info();
 | ||
|     
 | ||
|     // merge slices if they were split into types
 | ||
|     if (this->typed_slices) {
 | ||
|         for (Layer *layer : m_layers)
 | ||
|             layer->merge_slices();
 | ||
|         this->typed_slices = false;
 | ||
|         this->invalidate_step(posPrepareInfill);
 | ||
|     }
 | ||
|     
 | ||
|     // compare each layer to the one below, and mark those slices needing
 | ||
|     // one additional inner perimeter, like the top of domed objects-
 | ||
|     
 | ||
|     // this algorithm makes sure that at least one perimeter is overlapping
 | ||
|     // but we don't generate any extra perimeter if fill density is zero, as they would be floating
 | ||
|     // inside the object - infill_only_where_needed should be the method of choice for printing
 | ||
|     // hollow objects
 | ||
|     for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
 | ||
|         const PrintRegion ®ion = *m_print->regions()[region_id];
 | ||
|         if (! region.config().extra_perimeters || region.config().perimeters == 0 || region.config().fill_density == 0 || this->layer_count() < 2)
 | ||
|             continue;
 | ||
|         
 | ||
|         BOOST_LOG_TRIVIAL(debug) << "Generating extra perimeters for region " << region_id << " in parallel - start";
 | ||
|         tbb::parallel_for(
 | ||
|             tbb::blocked_range<size_t>(0, m_layers.size() - 1),
 | ||
|             [this, ®ion, region_id](const tbb::blocked_range<size_t>& range) {
 | ||
|                 for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
 | ||
|                     LayerRegion &layerm                     = *m_layers[layer_idx]->regions()[region_id];
 | ||
|                     const LayerRegion &upper_layerm         = *m_layers[layer_idx+1]->regions()[region_id];
 | ||
|                     const Polygons upper_layerm_polygons    = upper_layerm.slices;
 | ||
|                     // Filter upper layer polygons in intersection_ppl by their bounding boxes?
 | ||
|                     // my $upper_layerm_poly_bboxes= [ map $_->bounding_box, @{$upper_layerm_polygons} ];
 | ||
|                     const double total_loop_length      = total_length(upper_layerm_polygons);
 | ||
|                     const coord_t perimeter_spacing     = layerm.flow(frPerimeter).scaled_spacing();
 | ||
|                     const Flow ext_perimeter_flow       = layerm.flow(frExternalPerimeter);
 | ||
|                     const coord_t ext_perimeter_width   = ext_perimeter_flow.scaled_width();
 | ||
|                     const coord_t ext_perimeter_spacing = ext_perimeter_flow.scaled_spacing();
 | ||
| 
 | ||
|                     for (Surface &slice : layerm.slices.surfaces) {
 | ||
|                         for (;;) {
 | ||
|                             // compute the total thickness of perimeters
 | ||
|                             const coord_t perimeters_thickness = ext_perimeter_width/2 + ext_perimeter_spacing/2
 | ||
|                                 + (region.config().perimeters-1 + slice.extra_perimeters) * perimeter_spacing;
 | ||
|                             // define a critical area where we don't want the upper slice to fall into
 | ||
|                             // (it should either lay over our perimeters or outside this area)
 | ||
|                             const coord_t critical_area_depth = coord_t(perimeter_spacing * 1.5);
 | ||
|                             const Polygons critical_area = diff(
 | ||
|                                 offset(slice.expolygon, float(- perimeters_thickness)),
 | ||
|                                 offset(slice.expolygon, float(- perimeters_thickness - critical_area_depth))
 | ||
|                             );
 | ||
|                             // check whether a portion of the upper slices falls inside the critical area
 | ||
|                             const Polylines intersection = intersection_pl(to_polylines(upper_layerm_polygons), critical_area);
 | ||
|                             // only add an additional loop if at least 30% of the slice loop would benefit from it
 | ||
|                             if (total_length(intersection) <=  total_loop_length*0.3)
 | ||
|                                 break;
 | ||
|                             /*
 | ||
|                             if (0) {
 | ||
|                                 require "Slic3r/SVG.pm";
 | ||
|                                 Slic3r::SVG::output(
 | ||
|                                     "extra.svg",
 | ||
|                                     no_arrows   => 1,
 | ||
|                                     expolygons  => union_ex($critical_area),
 | ||
|                                     polylines   => [ map $_->split_at_first_point, map $_->p, @{$upper_layerm->slices} ],
 | ||
|                                 );
 | ||
|                             }
 | ||
|                             */
 | ||
|                             ++ slice.extra_perimeters;
 | ||
|                         }
 | ||
|                         #ifdef DEBUG
 | ||
|                             if (slice.extra_perimeters > 0)
 | ||
|                                 printf("  adding %d more perimeter(s) at layer %zu\n", slice.extra_perimeters, layer_idx);
 | ||
|                         #endif
 | ||
|                     }
 | ||
|                 }
 | ||
|             });
 | ||
|         BOOST_LOG_TRIVIAL(debug) << "Generating extra perimeters for region " << region_id << " in parallel - end";
 | ||
|     }
 | ||
| 
 | ||
|     BOOST_LOG_TRIVIAL(debug) << "Generating perimeters in parallel - start";
 | ||
|     tbb::parallel_for(
 | ||
|         tbb::blocked_range<size_t>(0, m_layers.size()),
 | ||
|         [this](const tbb::blocked_range<size_t>& range) {
 | ||
|             for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx)
 | ||
|                 m_layers[layer_idx]->make_perimeters();
 | ||
|         }
 | ||
|     );
 | ||
|     BOOST_LOG_TRIVIAL(debug) << "Generating perimeters in parallel - end";
 | ||
| 
 | ||
|     /*
 | ||
|         simplify slices (both layer and region slices),
 | ||
|         we only need the max resolution for perimeters
 | ||
|     ### This makes this method not-idempotent, so we keep it disabled for now.
 | ||
|     ###$self->_simplify_slices(&Slic3r::SCALED_RESOLUTION);
 | ||
|     */
 | ||
|     
 | ||
|     this->set_done(posPerimeters);
 | ||
| }
 | ||
| 
 | ||
| // Only active if config->infill_only_where_needed. This step trims the sparse infill,
 | ||
| // so it acts as an internal support. It maintains all other infill types intact.
 | ||
| // Here the internal surfaces and perimeters have to be supported by the sparse infill.
 | ||
| //FIXME The surfaces are supported by a sparse infill, but the sparse infill is only as large as the area to support.
 | ||
| // Likely the sparse infill will not be anchored correctly, so it will not work as intended.
 | ||
| // Also one wishes the perimeters to be supported by a full infill.
 | ||
| // Idempotence of this method is guaranteed by the fact that we don't remove things from
 | ||
| // fill_surfaces but we only turn them into VOID surfaces, thus preserving the boundaries.
 | ||
| void PrintObject::clip_fill_surfaces()
 | ||
| {
 | ||
|     if (! m_config.infill_only_where_needed.value ||
 | ||
|         ! std::any_of(this->print()->regions().begin(), this->print()->regions().end(), 
 | ||
|             [](const PrintRegion *region) { return region->config().fill_density > 0; }))
 | ||
|         return;
 | ||
| 
 | ||
|     // We only want infill under ceilings; this is almost like an
 | ||
|     // internal support material.
 | ||
|     // Proceed top-down, skipping the bottom layer.
 | ||
|     Polygons upper_internal;
 | ||
|     for (int layer_id = int(m_layers.size()) - 1; layer_id > 0; -- layer_id) {
 | ||
|         Layer *layer       = m_layers[layer_id];
 | ||
|         Layer *lower_layer = m_layers[layer_id - 1];
 | ||
|         // Detect things that we need to support.
 | ||
|         // Cummulative slices.
 | ||
|         Polygons slices;
 | ||
|         for (const ExPolygon &expoly : layer->slices.expolygons)
 | ||
|             polygons_append(slices, to_polygons(expoly));
 | ||
|         // Cummulative fill surfaces.
 | ||
|         Polygons fill_surfaces;
 | ||
|         // Solid surfaces to be supported.
 | ||
|         Polygons overhangs;
 | ||
|         for (const LayerRegion *layerm : layer->m_regions)
 | ||
|             for (const Surface &surface : layerm->fill_surfaces.surfaces) {
 | ||
|                 Polygons polygons = to_polygons(surface.expolygon);
 | ||
|                 if (surface.is_solid())
 | ||
|                     polygons_append(overhangs, polygons);
 | ||
|                 polygons_append(fill_surfaces, std::move(polygons));
 | ||
|             }
 | ||
|         Polygons lower_layer_fill_surfaces;
 | ||
|         Polygons lower_layer_internal_surfaces;
 | ||
|         for (const LayerRegion *layerm : lower_layer->m_regions)
 | ||
|             for (const Surface &surface : layerm->fill_surfaces.surfaces) {
 | ||
|                 Polygons polygons = to_polygons(surface.expolygon);
 | ||
|                 if (surface.surface_type == stInternal || surface.surface_type == stInternalVoid)
 | ||
|                     polygons_append(lower_layer_internal_surfaces, polygons);
 | ||
|                 polygons_append(lower_layer_fill_surfaces, std::move(polygons));
 | ||
|             }
 | ||
|         // We also need to support perimeters when there's at least one full unsupported loop
 | ||
|         {
 | ||
|             // Get perimeters area as the difference between slices and fill_surfaces
 | ||
|             // Only consider the area that is not supported by lower perimeters
 | ||
|             Polygons perimeters = intersection(diff(slices, fill_surfaces), lower_layer_fill_surfaces);
 | ||
|             // Only consider perimeter areas that are at least one extrusion width thick.
 | ||
|             //FIXME Offset2 eats out from both sides, while the perimeters are create outside in.
 | ||
|             //Should the pw not be half of the current value?
 | ||
|             float pw = FLT_MAX;
 | ||
|             for (const LayerRegion *layerm : layer->m_regions)
 | ||
|                 pw = std::min<float>(pw, layerm->flow(frPerimeter).scaled_width());
 | ||
|             // Append such thick perimeters to the areas that need support
 | ||
|             polygons_append(overhangs, offset2(perimeters, -pw, +pw));
 | ||
|         }
 | ||
|         // Find new internal infill.
 | ||
|         polygons_append(overhangs, std::move(upper_internal));
 | ||
|         upper_internal = intersection(overhangs, lower_layer_internal_surfaces);
 | ||
|         // Apply new internal infill to regions.
 | ||
|         for (LayerRegion *layerm : lower_layer->m_regions) {
 | ||
|             if (layerm->region()->config().fill_density.value == 0)
 | ||
|                 continue;
 | ||
|             SurfaceType internal_surface_types[] = { stInternal, stInternalVoid };
 | ||
|             Polygons internal;
 | ||
|             for (Surface &surface : layerm->fill_surfaces.surfaces)
 | ||
|                 if (surface.surface_type == stInternal || surface.surface_type == stInternalVoid)
 | ||
|                     polygons_append(internal, std::move(surface.expolygon));
 | ||
|             layerm->fill_surfaces.remove_types(internal_surface_types, 2);
 | ||
|             layerm->fill_surfaces.append(intersection_ex(internal, upper_internal, true), stInternal);
 | ||
|             layerm->fill_surfaces.append(diff_ex        (internal, upper_internal, true), stInternalVoid);
 | ||
|             // If there are voids it means that our internal infill is not adjacent to
 | ||
|             // perimeters. In this case it would be nice to add a loop around infill to
 | ||
|             // make it more robust and nicer. TODO.
 | ||
| #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | ||
|             layerm->export_region_fill_surfaces_to_svg_debug("6_clip_fill_surfaces");
 | ||
| #endif
 | ||
|         }
 | ||
|         m_print->throw_if_canceled();
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void PrintObject::discover_horizontal_shells()
 | ||
| {
 | ||
|     BOOST_LOG_TRIVIAL(trace) << "discover_horizontal_shells()";
 | ||
|     
 | ||
|     for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
 | ||
|         for (int i = 0; i < int(m_layers.size()); ++ i) {
 | ||
|             m_print->throw_if_canceled();
 | ||
|             LayerRegion             *layerm = m_layers[i]->regions()[region_id];
 | ||
|             const PrintRegionConfig ®ion_config = layerm->region()->config();
 | ||
|             if (region_config.solid_infill_every_layers.value > 0 && region_config.fill_density.value > 0 &&
 | ||
|                 (i % region_config.solid_infill_every_layers) == 0) {
 | ||
|                 // Insert a solid internal layer. Mark stInternal surfaces as stInternalSolid or stInternalBridge.
 | ||
|                 SurfaceType type = (region_config.fill_density == 100) ? stInternalSolid : stInternalBridge;
 | ||
|                 for (Surface &surface : layerm->fill_surfaces.surfaces)
 | ||
|                     if (surface.surface_type == stInternal)
 | ||
|                         surface.surface_type = type;
 | ||
|             }
 | ||
| 
 | ||
|             // If ensure_vertical_shell_thickness, then the rest has already been performed by discover_vertical_shells().
 | ||
|             if (region_config.ensure_vertical_shell_thickness.value)
 | ||
|                 continue;
 | ||
|             
 | ||
|             for (int idx_surface_type = 0; idx_surface_type < 3; ++ idx_surface_type) {
 | ||
|                 m_print->throw_if_canceled();
 | ||
|                 SurfaceType type = (idx_surface_type == 0) ? stTop : (idx_surface_type == 1) ? stBottom : stBottomBridge;
 | ||
|                 // Find slices of current type for current layer.
 | ||
|                 // Use slices instead of fill_surfaces, because they also include the perimeter area,
 | ||
|                 // which needs to be propagated in shells; we need to grow slices like we did for
 | ||
|                 // fill_surfaces though. Using both ungrown slices and grown fill_surfaces will
 | ||
|                 // not work in some situations, as there won't be any grown region in the perimeter 
 | ||
|                 // area (this was seen in a model where the top layer had one extra perimeter, thus
 | ||
|                 // its fill_surfaces were thinner than the lower layer's infill), however it's the best
 | ||
|                 // solution so far. Growing the external slices by EXTERNAL_INFILL_MARGIN will put
 | ||
|                 // too much solid infill inside nearly-vertical slopes.
 | ||
| 
 | ||
|                 // Surfaces including the area of perimeters. Everything, that is visible from the top / bottom
 | ||
|                 // (not covered by a layer above / below).
 | ||
|                 // This does not contain the areas covered by perimeters!
 | ||
|                 Polygons solid;
 | ||
|                 for (const Surface &surface : layerm->slices.surfaces)
 | ||
|                     if (surface.surface_type == type)
 | ||
|                         polygons_append(solid, to_polygons(surface.expolygon));
 | ||
|                 // Infill areas (slices without the perimeters).
 | ||
|                 for (const Surface &surface : layerm->fill_surfaces.surfaces)
 | ||
|                     if (surface.surface_type == type)
 | ||
|                         polygons_append(solid, to_polygons(surface.expolygon));
 | ||
|                 if (solid.empty())
 | ||
|                     continue;
 | ||
| //                Slic3r::debugf "Layer %d has %s surfaces\n", $i, ($type == S_TYPE_TOP) ? 'top' : 'bottom';
 | ||
|                 
 | ||
|                 size_t solid_layers = (type == stTop) ? region_config.top_solid_layers.value : region_config.bottom_solid_layers.value;                
 | ||
|                 for (int n = (type == stTop) ? i-1 : i+1; std::abs(n - i) < solid_layers; (type == stTop) ? -- n : ++ n) {
 | ||
|                     if (n < 0 || n >= int(m_layers.size()))
 | ||
|                         continue;
 | ||
| //                    Slic3r::debugf "  looking for neighbors on layer %d...\n", $n;                  
 | ||
|                     // Reference to the lower layer of a TOP surface, or an upper layer of a BOTTOM surface.
 | ||
|                     LayerRegion *neighbor_layerm = m_layers[n]->regions()[region_id];
 | ||
|                     
 | ||
|                     // find intersection between neighbor and current layer's surfaces
 | ||
|                     // intersections have contours and holes
 | ||
|                     // we update $solid so that we limit the next neighbor layer to the areas that were
 | ||
|                     // found on this one - in other words, solid shells on one layer (for a given external surface)
 | ||
|                     // are always a subset of the shells found on the previous shell layer
 | ||
|                     // this approach allows for DWIM in hollow sloping vases, where we want bottom
 | ||
|                     // shells to be generated in the base but not in the walls (where there are many
 | ||
|                     // narrow bottom surfaces): reassigning $solid will consider the 'shadow' of the 
 | ||
|                     // upper perimeter as an obstacle and shell will not be propagated to more upper layers
 | ||
|                     //FIXME How does it work for S_TYPE_INTERNALBRIDGE? This is set for sparse infill. Likely this does not work.
 | ||
|                     Polygons new_internal_solid;
 | ||
|                     {
 | ||
|                         Polygons internal;
 | ||
|                         for (const Surface &surface : neighbor_layerm->fill_surfaces.surfaces)
 | ||
|                             if (surface.surface_type == stInternal || surface.surface_type == stInternalSolid)
 | ||
|                                 polygons_append(internal, to_polygons(surface.expolygon));
 | ||
|                         new_internal_solid = intersection(solid, internal, true);
 | ||
|                     }
 | ||
|                     if (new_internal_solid.empty()) {
 | ||
|                         // No internal solid needed on this layer. In order to decide whether to continue
 | ||
|                         // searching on the next neighbor (thus enforcing the configured number of solid
 | ||
|                         // layers, use different strategies according to configured infill density:
 | ||
|                         if (region_config.fill_density.value == 0) {
 | ||
|                             // If user expects the object to be void (for example a hollow sloping vase),
 | ||
|                             // don't continue the search. In this case, we only generate the external solid
 | ||
|                             // shell if the object would otherwise show a hole (gap between perimeters of 
 | ||
|                             // the two layers), and internal solid shells are a subset of the shells found 
 | ||
|                             // on each previous layer.
 | ||
|                             goto EXTERNAL;
 | ||
|                         } else {
 | ||
|                             // If we have internal infill, we can generate internal solid shells freely.
 | ||
|                             continue;
 | ||
|                         }
 | ||
|                     }
 | ||
|                     
 | ||
|                     if (region_config.fill_density.value == 0) {
 | ||
|                         // if we're printing a hollow object we discard any solid shell thinner
 | ||
|                         // than a perimeter width, since it's probably just crossing a sloping wall
 | ||
|                         // and it's not wanted in a hollow print even if it would make sense when
 | ||
|                         // obeying the solid shell count option strictly (DWIM!)
 | ||
|                         float margin = float(neighbor_layerm->flow(frExternalPerimeter).scaled_width());
 | ||
|                         Polygons too_narrow = diff(
 | ||
|                             new_internal_solid, 
 | ||
|                             offset2(new_internal_solid, -margin, +margin, jtMiter, 5), 
 | ||
|                             true);
 | ||
|                         // Trim the regularized region by the original region.
 | ||
|                         if (! too_narrow.empty())
 | ||
|                             new_internal_solid = solid = diff(new_internal_solid, too_narrow);
 | ||
|                     }
 | ||
| 
 | ||
|                     // make sure the new internal solid is wide enough, as it might get collapsed
 | ||
|                     // when spacing is added in Fill.pm
 | ||
|                     {
 | ||
|                         //FIXME Vojtech: Disable this and you will be sorry.
 | ||
|                         // https://github.com/prusa3d/Slic3r/issues/26 bottom
 | ||
|                         float margin = 3.f * layerm->flow(frSolidInfill).scaled_width(); // require at least this size
 | ||
|                         // we use a higher miterLimit here to handle areas with acute angles
 | ||
|                         // in those cases, the default miterLimit would cut the corner and we'd
 | ||
|                         // get a triangle in $too_narrow; if we grow it below then the shell
 | ||
|                         // would have a different shape from the external surface and we'd still
 | ||
|                         // have the same angle, so the next shell would be grown even more and so on.
 | ||
|                         Polygons too_narrow = diff(
 | ||
|                             new_internal_solid,
 | ||
|                             offset2(new_internal_solid, -margin, +margin, ClipperLib::jtMiter, 5),
 | ||
|                             true);
 | ||
|                         if (! too_narrow.empty()) {
 | ||
|                             // grow the collapsing parts and add the extra area to  the neighbor layer 
 | ||
|                             // as well as to our original surfaces so that we support this 
 | ||
|                             // additional area in the next shell too
 | ||
|                             // make sure our grown surfaces don't exceed the fill area
 | ||
|                             Polygons internal;
 | ||
|                             for (const Surface &surface : neighbor_layerm->fill_surfaces.surfaces)
 | ||
|                                 if (surface.is_internal() && !surface.is_bridge())
 | ||
|                                     polygons_append(internal, to_polygons(surface.expolygon));
 | ||
|                             polygons_append(new_internal_solid, 
 | ||
|                                 intersection(
 | ||
|                                     offset(too_narrow, +margin),
 | ||
|                                     // Discard bridges as they are grown for anchoring and we can't
 | ||
|                                     // remove such anchors. (This may happen when a bridge is being 
 | ||
|                                     // anchored onto a wall where little space remains after the bridge
 | ||
|                                     // is grown, and that little space is an internal solid shell so 
 | ||
|                                     // it triggers this too_narrow logic.)
 | ||
|                                     internal));
 | ||
|                             solid = new_internal_solid;
 | ||
|                         }
 | ||
|                     }
 | ||
|                     
 | ||
|                     // internal-solid are the union of the existing internal-solid surfaces
 | ||
|                     // and new ones
 | ||
|                     SurfaceCollection backup = std::move(neighbor_layerm->fill_surfaces);
 | ||
|                     polygons_append(new_internal_solid, to_polygons(backup.filter_by_type(stInternalSolid)));
 | ||
|                     ExPolygons internal_solid = union_ex(new_internal_solid, false);
 | ||
|                     // assign new internal-solid surfaces to layer
 | ||
|                     neighbor_layerm->fill_surfaces.set(internal_solid, stInternalSolid);
 | ||
|                     // subtract intersections from layer surfaces to get resulting internal surfaces
 | ||
|                     Polygons polygons_internal = to_polygons(std::move(internal_solid));
 | ||
|                     ExPolygons internal = diff_ex(
 | ||
|                         to_polygons(backup.filter_by_type(stInternal)),
 | ||
|                         polygons_internal,
 | ||
|                         true);
 | ||
|                     // assign resulting internal surfaces to layer
 | ||
|                     neighbor_layerm->fill_surfaces.append(internal, stInternal);
 | ||
|                     polygons_append(polygons_internal, to_polygons(std::move(internal)));
 | ||
|                     // assign top and bottom surfaces to layer
 | ||
|                     SurfaceType surface_types_solid[] = { stTop, stBottom, stBottomBridge };
 | ||
|                     backup.keep_types(surface_types_solid, 3);
 | ||
|                     std::vector<SurfacesPtr> top_bottom_groups;
 | ||
|                     backup.group(&top_bottom_groups);
 | ||
|                     for (SurfacesPtr &group : top_bottom_groups)
 | ||
|                         neighbor_layerm->fill_surfaces.append(
 | ||
|                             diff_ex(to_polygons(group), polygons_internal),
 | ||
|                             // Use an existing surface as a template, it carries the bridge angle etc.
 | ||
|                             *group.front());
 | ||
|                 }
 | ||
| 		EXTERNAL:;
 | ||
|             } // foreach type (stTop, stBottom, stBottomBridge)
 | ||
|         } // for each layer
 | ||
|     } // for each region
 | ||
| 
 | ||
| #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | ||
|     for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
 | ||
|         for (const Layer *layer : m_layers) {
 | ||
|             const LayerRegion *layerm = layer->m_regions[region_id];
 | ||
|             layerm->export_region_slices_to_svg_debug("5_discover_horizontal_shells");
 | ||
|             layerm->export_region_fill_surfaces_to_svg_debug("5_discover_horizontal_shells");
 | ||
|         } // for each layer
 | ||
|     } // for each region
 | ||
| #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | ||
| }
 | ||
| 
 | ||
| // combine fill surfaces across layers to honor the "infill every N layers" option
 | ||
| // Idempotence of this method is guaranteed by the fact that we don't remove things from
 | ||
| // fill_surfaces but we only turn them into VOID surfaces, thus preserving the boundaries.
 | ||
| void PrintObject::combine_infill()
 | ||
| {
 | ||
|     // Work on each region separately.
 | ||
|     for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
 | ||
|         const PrintRegion *region = this->print()->regions()[region_id];
 | ||
|         const int every = region->config().infill_every_layers.value;
 | ||
|         if (every < 2 || region->config().fill_density == 0.)
 | ||
|             continue;
 | ||
|         // Limit the number of combined layers to the maximum height allowed by this regions' nozzle.
 | ||
|         //FIXME limit the layer height to max_layer_height
 | ||
|         double nozzle_diameter = std::min(
 | ||
|             this->print()->config().nozzle_diameter.get_at(region->config().infill_extruder.value - 1),
 | ||
|             this->print()->config().nozzle_diameter.get_at(region->config().solid_infill_extruder.value - 1));
 | ||
|         // define the combinations
 | ||
|         std::vector<size_t> combine(m_layers.size(), 0);
 | ||
|         {
 | ||
|             double current_height = 0.;
 | ||
|             size_t num_layers = 0;
 | ||
|             for (size_t layer_idx = 0; layer_idx < m_layers.size(); ++ layer_idx) {
 | ||
|                 m_print->throw_if_canceled();
 | ||
|                 const Layer *layer = m_layers[layer_idx];
 | ||
|                 if (layer->id() == 0)
 | ||
|                     // Skip first print layer (which may not be first layer in array because of raft).
 | ||
|                     continue;
 | ||
|                 // Check whether the combination of this layer with the lower layers' buffer
 | ||
|                 // would exceed max layer height or max combined layer count.
 | ||
|                 if (current_height + layer->height >= nozzle_diameter + EPSILON || num_layers >= every) {
 | ||
|                     // Append combination to lower layer.
 | ||
|                     combine[layer_idx - 1] = num_layers;
 | ||
|                     current_height = 0.;
 | ||
|                     num_layers = 0;
 | ||
|                 }
 | ||
|                 current_height += layer->height;
 | ||
|                 ++ num_layers;
 | ||
|             }
 | ||
|             
 | ||
|             // Append lower layers (if any) to uppermost layer.
 | ||
|             combine[m_layers.size() - 1] = num_layers;
 | ||
|         }
 | ||
|         
 | ||
|         // loop through layers to which we have assigned layers to combine
 | ||
|         for (size_t layer_idx = 0; layer_idx < m_layers.size(); ++ layer_idx) {
 | ||
|             m_print->throw_if_canceled();
 | ||
|             size_t num_layers = combine[layer_idx];
 | ||
| 			if (num_layers <= 1)
 | ||
|                 continue;
 | ||
|             // Get all the LayerRegion objects to be combined.
 | ||
|             std::vector<LayerRegion*> layerms;
 | ||
|             layerms.reserve(num_layers);
 | ||
| 			for (size_t i = layer_idx + 1 - num_layers; i <= layer_idx; ++ i)
 | ||
|                 layerms.emplace_back(m_layers[i]->regions()[region_id]);
 | ||
|             // We need to perform a multi-layer intersection, so let's split it in pairs.
 | ||
|             // Initialize the intersection with the candidates of the lowest layer.
 | ||
|             ExPolygons intersection = to_expolygons(layerms.front()->fill_surfaces.filter_by_type(stInternal));
 | ||
|             // Start looping from the second layer and intersect the current intersection with it.
 | ||
|             for (size_t i = 1; i < layerms.size(); ++ i)
 | ||
|                 intersection = intersection_ex(
 | ||
|                     to_polygons(intersection),
 | ||
|                     to_polygons(layerms[i]->fill_surfaces.filter_by_type(stInternal)),
 | ||
|                     false);
 | ||
|             double area_threshold = layerms.front()->infill_area_threshold();
 | ||
|             if (! intersection.empty() && area_threshold > 0.)
 | ||
|                 intersection.erase(std::remove_if(intersection.begin(), intersection.end(), 
 | ||
|                     [area_threshold](const ExPolygon &expoly) { return expoly.area() <= area_threshold; }), 
 | ||
|                     intersection.end());
 | ||
|             if (intersection.empty())
 | ||
|                 continue;
 | ||
| //            Slic3r::debugf "  combining %d %s regions from layers %d-%d\n",
 | ||
| //                scalar(@$intersection),
 | ||
| //                ($type == S_TYPE_INTERNAL ? 'internal' : 'internal-solid'),
 | ||
| //                $layer_idx-($every-1), $layer_idx;
 | ||
|             // intersection now contains the regions that can be combined across the full amount of layers,
 | ||
|             // so let's remove those areas from all layers.
 | ||
|             Polygons intersection_with_clearance;
 | ||
|             intersection_with_clearance.reserve(intersection.size());
 | ||
|             float clearance_offset = 
 | ||
|                 0.5f * layerms.back()->flow(frPerimeter).scaled_width() +
 | ||
|              // Because fill areas for rectilinear and honeycomb are grown 
 | ||
|              // later to overlap perimeters, we need to counteract that too.
 | ||
|                 ((region->config().fill_pattern == ipRectilinear   ||
 | ||
|                   region->config().fill_pattern == ipGrid          ||
 | ||
|                   region->config().fill_pattern == ipLine          ||
 | ||
|                   region->config().fill_pattern == ipHoneycomb) ? 1.5f : 0.5f) * 
 | ||
|                     layerms.back()->flow(frSolidInfill).scaled_width();
 | ||
|             for (ExPolygon &expoly : intersection)
 | ||
|                 polygons_append(intersection_with_clearance, offset(expoly, clearance_offset));
 | ||
|             for (LayerRegion *layerm : layerms) {
 | ||
|                 Polygons internal = to_polygons(layerm->fill_surfaces.filter_by_type(stInternal));
 | ||
|                 layerm->fill_surfaces.remove_type(stInternal);
 | ||
|                 layerm->fill_surfaces.append(diff_ex(internal, intersection_with_clearance, false), stInternal);
 | ||
|                 if (layerm == layerms.back()) {
 | ||
|                     // Apply surfaces back with adjusted depth to the uppermost layer.
 | ||
|                     Surface templ(stInternal, ExPolygon());
 | ||
|                     templ.thickness = 0.;
 | ||
|                     for (LayerRegion *layerm2 : layerms)
 | ||
|                         templ.thickness += layerm2->layer()->height;
 | ||
|                     templ.thickness_layers = (unsigned short)layerms.size();
 | ||
|                     layerm->fill_surfaces.append(intersection, templ);
 | ||
|                 } else {
 | ||
|                     // Save void surfaces.
 | ||
|                     layerm->fill_surfaces.append(
 | ||
|                         intersection_ex(internal, intersection_with_clearance, false),
 | ||
|                         stInternalVoid);
 | ||
|                 }
 | ||
|             }
 | ||
|         }
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void PrintObject::_generate_support_material()
 | ||
| {
 | ||
|     PrintObjectSupportMaterial support_material(this, PrintObject::slicing_parameters());
 | ||
|     support_material.generate(*this);
 | ||
| }
 | ||
| 
 | ||
| } // namespace Slic3r
 |