mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-07-25 15:44:12 -06:00

Reworked command line processing for the GUI slic3r. Now the config is loaded first, then the model files (also the configs from AMF/3MF are applied), and lastly the free standing parameters are applied. Fixed unescaping for command line parameters. The string parameters are now not unescaped, string vector parameters are unescaped only if enquoted. Tab::load_current_preset() - disabled CallAfter for predictability. With CallAfter, it was difficult to call the method in sequence with other methods. Fixed some missing ->Destroy() calls on dialogs created from MainFrame Fixed some compiler warnings.
288 lines
13 KiB
C++
288 lines
13 KiB
C++
#ifndef slic3r_Point_hpp_
|
|
#define slic3r_Point_hpp_
|
|
|
|
#include "libslic3r.h"
|
|
#include <cstddef>
|
|
#include <vector>
|
|
#include <cmath>
|
|
#include <string>
|
|
#include <sstream>
|
|
#include <unordered_map>
|
|
|
|
#include <Eigen/Geometry>
|
|
|
|
namespace Slic3r {
|
|
|
|
class Line;
|
|
class MultiPoint;
|
|
class Point;
|
|
typedef Point Vector;
|
|
|
|
// Eigen types, to replace the Slic3r's own types in the future.
|
|
// Vector types with a fixed point coordinate base type.
|
|
typedef Eigen::Matrix<coord_t, 2, 1, Eigen::DontAlign> Vec2crd;
|
|
typedef Eigen::Matrix<coord_t, 3, 1, Eigen::DontAlign> Vec3crd;
|
|
typedef Eigen::Matrix<int, 3, 1, Eigen::DontAlign> Vec3i;
|
|
typedef Eigen::Matrix<int64_t, 2, 1, Eigen::DontAlign> Vec2i64;
|
|
typedef Eigen::Matrix<int64_t, 3, 1, Eigen::DontAlign> Vec3i64;
|
|
|
|
// Vector types with a double coordinate base type.
|
|
typedef Eigen::Matrix<float, 2, 1, Eigen::DontAlign> Vec2f;
|
|
typedef Eigen::Matrix<float, 3, 1, Eigen::DontAlign> Vec3f;
|
|
typedef Eigen::Matrix<double, 2, 1, Eigen::DontAlign> Vec2d;
|
|
typedef Eigen::Matrix<double, 3, 1, Eigen::DontAlign> Vec3d;
|
|
|
|
typedef std::vector<Point> Points;
|
|
typedef std::vector<Point*> PointPtrs;
|
|
typedef std::vector<const Point*> PointConstPtrs;
|
|
typedef std::vector<Vec3crd> Points3;
|
|
typedef std::vector<Vec2d> Pointfs;
|
|
typedef std::vector<Vec3d> Pointf3s;
|
|
|
|
typedef Eigen::Transform<float, 2, Eigen::Affine, Eigen::DontAlign> Transform2f;
|
|
typedef Eigen::Transform<double, 2, Eigen::Affine, Eigen::DontAlign> Transform2d;
|
|
typedef Eigen::Transform<float, 3, Eigen::Affine, Eigen::DontAlign> Transform3f;
|
|
typedef Eigen::Transform<double, 3, Eigen::Affine, Eigen::DontAlign> Transform3d;
|
|
|
|
inline bool operator<(const Vec2d &lhs, const Vec2d &rhs) { return lhs(0) < rhs(0) || (lhs(0) == rhs(0) && lhs(1) < rhs(1)); }
|
|
|
|
inline int64_t cross2(const Vec2i64 &v1, const Vec2i64 &v2) { return v1(0) * v2(1) - v1(1) * v2(0); }
|
|
inline coord_t cross2(const Vec2crd &v1, const Vec2crd &v2) { return v1(0) * v2(1) - v1(1) * v2(0); }
|
|
inline float cross2(const Vec2f &v1, const Vec2f &v2) { return v1(0) * v2(1) - v1(1) * v2(0); }
|
|
inline double cross2(const Vec2d &v1, const Vec2d &v2) { return v1(0) * v2(1) - v1(1) * v2(0); }
|
|
|
|
inline Vec2crd to_2d(const Vec3crd &pt3) { return Vec2crd(pt3(0), pt3(1)); }
|
|
inline Vec2i64 to_2d(const Vec3i64 &pt3) { return Vec2i64(pt3(0), pt3(1)); }
|
|
inline Vec2f to_2d(const Vec3f &pt3) { return Vec2f (pt3(0), pt3(1)); }
|
|
inline Vec2d to_2d(const Vec3d &pt3) { return Vec2d (pt3(0), pt3(1)); }
|
|
|
|
inline Vec3d to_3d(const Vec2d &v, double z) { return Vec3d(v(0), v(1), z); }
|
|
inline Vec3f to_3d(const Vec2f &v, float z) { return Vec3f(v(0), v(1), z); }
|
|
inline Vec3i64 to_3d(const Vec2i64 &v, float z) { return Vec3i64(int64_t(v(0)), int64_t(v(1)), int64_t(z)); }
|
|
inline Vec3crd to_3d(const Vec3crd &p, coord_t z) { return Vec3crd(p(0), p(1), z); }
|
|
|
|
inline Vec2d unscale(coord_t x, coord_t y) { return Vec2d(unscale<double>(x), unscale<double>(y)); }
|
|
inline Vec2d unscale(const Vec2crd &pt) { return Vec2d(unscale<double>(pt(0)), unscale<double>(pt(1))); }
|
|
inline Vec2d unscale(const Vec2d &pt) { return Vec2d(unscale<double>(pt(0)), unscale<double>(pt(1))); }
|
|
inline Vec3d unscale(coord_t x, coord_t y, coord_t z) { return Vec3d(unscale<double>(x), unscale<double>(y), unscale<double>(z)); }
|
|
inline Vec3d unscale(const Vec3crd &pt) { return Vec3d(unscale<double>(pt(0)), unscale<double>(pt(1)), unscale<double>(pt(2))); }
|
|
inline Vec3d unscale(const Vec3d &pt) { return Vec3d(unscale<double>(pt(0)), unscale<double>(pt(1)), unscale<double>(pt(2))); }
|
|
|
|
inline std::string to_string(const Vec2crd &pt) { return std::string("[") + std::to_string(pt(0)) + ", " + std::to_string(pt(1)) + "]"; }
|
|
inline std::string to_string(const Vec2d &pt) { return std::string("[") + std::to_string(pt(0)) + ", " + std::to_string(pt(1)) + "]"; }
|
|
inline std::string to_string(const Vec3crd &pt) { return std::string("[") + std::to_string(pt(0)) + ", " + std::to_string(pt(1)) + ", " + std::to_string(pt(2)) + "]"; }
|
|
inline std::string to_string(const Vec3d &pt) { return std::string("[") + std::to_string(pt(0)) + ", " + std::to_string(pt(1)) + ", " + std::to_string(pt(2)) + "]"; }
|
|
|
|
std::vector<Vec3f> transform(const std::vector<Vec3f>& points, const Transform3f& t);
|
|
Pointf3s transform(const Pointf3s& points, const Transform3d& t);
|
|
|
|
class Point : public Vec2crd
|
|
{
|
|
public:
|
|
typedef coord_t coord_type;
|
|
|
|
Point() : Vec2crd() { (*this)(0) = 0; (*this)(1) = 0; }
|
|
Point(coord_t x, coord_t y) { (*this)(0) = x; (*this)(1) = y; }
|
|
Point(int64_t x, int64_t y) { (*this)(0) = coord_t(x); (*this)(1) = coord_t(y); } // for Clipper
|
|
Point(double x, double y) { (*this)(0) = coord_t(lrint(x)); (*this)(1) = coord_t(lrint(y)); }
|
|
Point(const Point &rhs) { *this = rhs; }
|
|
// This constructor allows you to construct Point from Eigen expressions
|
|
template<typename OtherDerived>
|
|
Point(const Eigen::MatrixBase<OtherDerived> &other) : Vec2crd(other) {}
|
|
static Point new_scale(coordf_t x, coordf_t y) { return Point(coord_t(scale_(x)), coord_t(scale_(y))); }
|
|
|
|
// This method allows you to assign Eigen expressions to MyVectorType
|
|
template<typename OtherDerived>
|
|
Point& operator=(const Eigen::MatrixBase<OtherDerived> &other)
|
|
{
|
|
this->Vec2crd::operator=(other);
|
|
return *this;
|
|
}
|
|
|
|
bool operator< (const Point& rhs) const { return (*this)(0) < rhs(0) || ((*this)(0) == rhs(0) && (*this)(1) < rhs(1)); }
|
|
|
|
Point& operator+=(const Point& rhs) { (*this)(0) += rhs(0); (*this)(1) += rhs(1); return *this; }
|
|
Point& operator-=(const Point& rhs) { (*this)(0) -= rhs(0); (*this)(1) -= rhs(1); return *this; }
|
|
Point& operator*=(const double &rhs) { (*this)(0) = coord_t((*this)(0) * rhs); (*this)(1) = coord_t((*this)(1) * rhs); return *this; }
|
|
|
|
void rotate(double angle);
|
|
void rotate(double angle, const Point ¢er);
|
|
Point rotated(double angle) const { Point res(*this); res.rotate(angle); return res; }
|
|
Point rotated(double angle, const Point ¢er) const { Point res(*this); res.rotate(angle, center); return res; }
|
|
int nearest_point_index(const Points &points) const;
|
|
int nearest_point_index(const PointConstPtrs &points) const;
|
|
int nearest_point_index(const PointPtrs &points) const;
|
|
bool nearest_point(const Points &points, Point* point) const;
|
|
double ccw(const Point &p1, const Point &p2) const;
|
|
double ccw(const Line &line) const;
|
|
double ccw_angle(const Point &p1, const Point &p2) const;
|
|
Point projection_onto(const MultiPoint &poly) const;
|
|
Point projection_onto(const Line &line) const;
|
|
};
|
|
|
|
namespace int128 {
|
|
// Exact orientation predicate,
|
|
// returns +1: CCW, 0: collinear, -1: CW.
|
|
int orient(const Vec2crd &p1, const Vec2crd &p2, const Vec2crd &p3);
|
|
// Exact orientation predicate,
|
|
// returns +1: CCW, 0: collinear, -1: CW.
|
|
int cross(const Vec2crd &v1, const Vec2crd &v2);
|
|
}
|
|
|
|
// To be used by std::unordered_map, std::unordered_multimap and friends.
|
|
struct PointHash {
|
|
size_t operator()(const Vec2crd &pt) const {
|
|
return std::hash<coord_t>()(pt(0)) ^ std::hash<coord_t>()(pt(1));
|
|
}
|
|
};
|
|
|
|
// A generic class to search for a closest Point in a given radius.
|
|
// It uses std::unordered_multimap to implement an efficient 2D spatial hashing.
|
|
// The PointAccessor has to return const Point*.
|
|
// If a nullptr is returned, it is ignored by the query.
|
|
template<typename ValueType, typename PointAccessor> class ClosestPointInRadiusLookup
|
|
{
|
|
public:
|
|
ClosestPointInRadiusLookup(coord_t search_radius, PointAccessor point_accessor = PointAccessor()) :
|
|
m_search_radius(search_radius), m_point_accessor(point_accessor), m_grid_log2(0)
|
|
{
|
|
// Resolution of a grid, twice the search radius + some epsilon.
|
|
coord_t gridres = 2 * m_search_radius + 4;
|
|
m_grid_resolution = gridres;
|
|
assert(m_grid_resolution > 0);
|
|
assert(m_grid_resolution < (coord_t(1) << 30));
|
|
// Compute m_grid_log2 = log2(m_grid_resolution)
|
|
if (m_grid_resolution > 32767) {
|
|
m_grid_resolution >>= 16;
|
|
m_grid_log2 += 16;
|
|
}
|
|
if (m_grid_resolution > 127) {
|
|
m_grid_resolution >>= 8;
|
|
m_grid_log2 += 8;
|
|
}
|
|
if (m_grid_resolution > 7) {
|
|
m_grid_resolution >>= 4;
|
|
m_grid_log2 += 4;
|
|
}
|
|
if (m_grid_resolution > 1) {
|
|
m_grid_resolution >>= 2;
|
|
m_grid_log2 += 2;
|
|
}
|
|
if (m_grid_resolution > 0)
|
|
++ m_grid_log2;
|
|
m_grid_resolution = 1 << m_grid_log2;
|
|
assert(m_grid_resolution >= gridres);
|
|
assert(gridres > m_grid_resolution / 2);
|
|
}
|
|
|
|
void insert(const ValueType &value) {
|
|
const Vec2crd *pt = m_point_accessor(value);
|
|
if (pt != nullptr)
|
|
m_map.emplace(std::make_pair(Vec2crd(pt->x()>>m_grid_log2, pt->y()>>m_grid_log2), value));
|
|
}
|
|
|
|
void insert(ValueType &&value) {
|
|
const Vec2crd *pt = m_point_accessor(value);
|
|
if (pt != nullptr)
|
|
m_map.emplace(std::make_pair(Vec2crd(pt->x()>>m_grid_log2, pt->y()>>m_grid_log2), std::move(value)));
|
|
}
|
|
|
|
// Erase a data point equal to value. (ValueType has to declare the operator==).
|
|
// Returns true if the data point equal to value was found and removed.
|
|
bool erase(const ValueType &value) {
|
|
const Point *pt = m_point_accessor(value);
|
|
if (pt != nullptr) {
|
|
// Range of fragment starts around grid_corner, close to pt.
|
|
auto range = m_map.equal_range(Point((*pt)(0)>>m_grid_log2, (*pt)(1)>>m_grid_log2));
|
|
// Remove the first item.
|
|
for (auto it = range.first; it != range.second; ++ it) {
|
|
if (it->second == value) {
|
|
m_map.erase(it);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Return a pair of <ValueType*, distance_squared>
|
|
std::pair<const ValueType*, double> find(const Vec2crd &pt) {
|
|
// Iterate over 4 closest grid cells around pt,
|
|
// find the closest start point inside these cells to pt.
|
|
const ValueType *value_min = nullptr;
|
|
double dist_min = std::numeric_limits<double>::max();
|
|
// Round pt to a closest grid_cell corner.
|
|
Vec2crd grid_corner((pt(0)+(m_grid_resolution>>1))>>m_grid_log2, (pt(1)+(m_grid_resolution>>1))>>m_grid_log2);
|
|
// For four neighbors of grid_corner:
|
|
for (coord_t neighbor_y = -1; neighbor_y < 1; ++ neighbor_y) {
|
|
for (coord_t neighbor_x = -1; neighbor_x < 1; ++ neighbor_x) {
|
|
// Range of fragment starts around grid_corner, close to pt.
|
|
auto range = m_map.equal_range(Vec2crd(grid_corner(0) + neighbor_x, grid_corner(1) + neighbor_y));
|
|
// Find the map entry closest to pt.
|
|
for (auto it = range.first; it != range.second; ++it) {
|
|
const ValueType &value = it->second;
|
|
const Vec2crd *pt2 = m_point_accessor(value);
|
|
if (pt2 != nullptr) {
|
|
const double d2 = (pt - *pt2).squaredNorm();
|
|
if (d2 < dist_min) {
|
|
dist_min = d2;
|
|
value_min = &value;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return (value_min != nullptr && dist_min < coordf_t(m_search_radius) * coordf_t(m_search_radius)) ?
|
|
std::make_pair(value_min, dist_min) :
|
|
std::make_pair(nullptr, std::numeric_limits<double>::max());
|
|
}
|
|
|
|
private:
|
|
typedef typename std::unordered_multimap<Vec2crd, ValueType, PointHash> map_type;
|
|
PointAccessor m_point_accessor;
|
|
map_type m_map;
|
|
coord_t m_search_radius;
|
|
coord_t m_grid_resolution;
|
|
coord_t m_grid_log2;
|
|
};
|
|
|
|
std::ostream& operator<<(std::ostream &stm, const Vec2d &pointf);
|
|
|
|
} // namespace Slic3r
|
|
|
|
// start Boost
|
|
#include <boost/version.hpp>
|
|
#include <boost/polygon/polygon.hpp>
|
|
namespace boost { namespace polygon {
|
|
template <>
|
|
struct geometry_concept<Slic3r::Point> { typedef point_concept type; };
|
|
|
|
template <>
|
|
struct point_traits<Slic3r::Point> {
|
|
typedef coord_t coordinate_type;
|
|
|
|
static inline coordinate_type get(const Slic3r::Point& point, orientation_2d orient) {
|
|
return (orient == HORIZONTAL) ? (coordinate_type)point(0) : (coordinate_type)point(1);
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct point_mutable_traits<Slic3r::Point> {
|
|
typedef coord_t coordinate_type;
|
|
static inline void set(Slic3r::Point& point, orientation_2d orient, coord_t value) {
|
|
if (orient == HORIZONTAL)
|
|
point(0) = value;
|
|
else
|
|
point(1) = value;
|
|
}
|
|
static inline Slic3r::Point construct(coord_t x_value, coord_t y_value) {
|
|
Slic3r::Point retval;
|
|
retval(0) = x_value;
|
|
retval(1) = y_value;
|
|
return retval;
|
|
}
|
|
};
|
|
} }
|
|
// end Boost
|
|
|
|
#endif
|