mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-10-31 04:31:15 -06:00 
			
		
		
		
	
		
			
				
	
	
		
			1897 lines
		
	
	
	
		
			81 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1897 lines
		
	
	
	
		
			81 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "TriangleMesh.hpp"
 | |
| #include "ClipperUtils.hpp"
 | |
| #include "Geometry.hpp"
 | |
| #include "qhull/src/libqhullcpp/Qhull.h"
 | |
| #include "qhull/src/libqhullcpp/QhullFacetList.h"
 | |
| #include "qhull/src/libqhullcpp/QhullVertexSet.h"
 | |
| #include <cmath>
 | |
| #include <deque>
 | |
| #include <queue>
 | |
| #include <set>
 | |
| #include <vector>
 | |
| #include <map>
 | |
| #include <utility>
 | |
| #include <algorithm>
 | |
| #include <math.h>
 | |
| #include <type_traits>
 | |
| 
 | |
| #include <boost/log/trivial.hpp>
 | |
| 
 | |
| #include <tbb/parallel_for.h>
 | |
| 
 | |
| #include <Eigen/Dense>
 | |
| 
 | |
| // for SLIC3R_DEBUG_SLICE_PROCESSING
 | |
| #include "libslic3r.h"
 | |
| 
 | |
| #if 0
 | |
|     #define DEBUG
 | |
|     #define _DEBUG
 | |
|     #undef NDEBUG
 | |
|     #define SLIC3R_DEBUG
 | |
| // #define SLIC3R_TRIANGLEMESH_DEBUG
 | |
| #endif
 | |
| 
 | |
| #include <assert.h>
 | |
| 
 | |
| #if defined(SLIC3R_DEBUG) || defined(SLIC3R_DEBUG_SLICE_PROCESSING)
 | |
| #include "SVG.hpp"
 | |
| #endif
 | |
| 
 | |
| namespace Slic3r {
 | |
| 
 | |
| TriangleMesh::TriangleMesh(const Pointf3s &points, const std::vector<Vec3crd>& facets )
 | |
|     : repaired(false)
 | |
| {
 | |
|     stl_initialize(&this->stl);
 | |
|     stl_file &stl = this->stl;
 | |
|     stl.error = 0;
 | |
|     stl.stats.type = inmemory;
 | |
| 
 | |
|     // count facets and allocate memory
 | |
|     stl.stats.number_of_facets = facets.size();
 | |
|     stl.stats.original_num_facets = stl.stats.number_of_facets;
 | |
|     stl_allocate(&stl);
 | |
| 
 | |
|     for (int i = 0; i < stl.stats.number_of_facets; i++) {
 | |
|         stl_facet facet;
 | |
|         facet.vertex[0] = points[facets[i](0)].cast<float>();
 | |
|         facet.vertex[1] = points[facets[i](1)].cast<float>();
 | |
|         facet.vertex[2] = points[facets[i](2)].cast<float>();
 | |
|         facet.extra[0] = 0;
 | |
|         facet.extra[1] = 0;
 | |
| 
 | |
|         stl_normal normal;
 | |
|         stl_calculate_normal(normal, &facet);
 | |
|         stl_normalize_vector(normal);
 | |
|         facet.normal = normal;
 | |
| 
 | |
|         stl.facet_start[i] = facet;
 | |
|     }
 | |
|     stl_get_size(&stl);
 | |
| }
 | |
| 
 | |
| TriangleMesh& TriangleMesh::operator=(const TriangleMesh &other)
 | |
| {
 | |
|     stl_close(&this->stl);
 | |
|     this->stl       = other.stl;
 | |
|     this->repaired  = other.repaired;
 | |
|     this->stl.heads = nullptr;
 | |
|     this->stl.tail  = nullptr;
 | |
|     this->stl.error = other.stl.error;
 | |
|     if (other.stl.facet_start != nullptr) {
 | |
|         this->stl.facet_start = (stl_facet*)calloc(other.stl.stats.number_of_facets, sizeof(stl_facet));
 | |
|         std::copy(other.stl.facet_start, other.stl.facet_start + other.stl.stats.number_of_facets, this->stl.facet_start);
 | |
|     }
 | |
|     if (other.stl.neighbors_start != nullptr) {
 | |
|         this->stl.neighbors_start = (stl_neighbors*)calloc(other.stl.stats.number_of_facets, sizeof(stl_neighbors));
 | |
|         std::copy(other.stl.neighbors_start, other.stl.neighbors_start + other.stl.stats.number_of_facets, this->stl.neighbors_start);
 | |
|     }
 | |
|     if (other.stl.v_indices != nullptr) {
 | |
|         this->stl.v_indices = (v_indices_struct*)calloc(other.stl.stats.number_of_facets, sizeof(v_indices_struct));
 | |
|         std::copy(other.stl.v_indices, other.stl.v_indices + other.stl.stats.number_of_facets, this->stl.v_indices);
 | |
|     }
 | |
|     if (other.stl.v_shared != nullptr) {
 | |
|         this->stl.v_shared = (stl_vertex*)calloc(other.stl.stats.shared_vertices, sizeof(stl_vertex));
 | |
|         std::copy(other.stl.v_shared, other.stl.v_shared + other.stl.stats.shared_vertices, this->stl.v_shared);
 | |
|     }
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| void TriangleMesh::repair()
 | |
| {
 | |
|     if (this->repaired) return;
 | |
|     
 | |
|     // admesh fails when repairing empty meshes
 | |
|     if (this->stl.stats.number_of_facets == 0) return;
 | |
| 
 | |
|     BOOST_LOG_TRIVIAL(debug) << "TriangleMesh::repair() started";
 | |
|     
 | |
|     // checking exact
 | |
| 	BOOST_LOG_TRIVIAL(trace) << "\tstl_check_faces_exact";
 | |
| 	stl_check_facets_exact(&stl);
 | |
|     stl.stats.facets_w_1_bad_edge = (stl.stats.connected_facets_2_edge - stl.stats.connected_facets_3_edge);
 | |
|     stl.stats.facets_w_2_bad_edge = (stl.stats.connected_facets_1_edge - stl.stats.connected_facets_2_edge);
 | |
|     stl.stats.facets_w_3_bad_edge = (stl.stats.number_of_facets - stl.stats.connected_facets_1_edge);
 | |
|     
 | |
|     // checking nearby
 | |
|     //int last_edges_fixed = 0;
 | |
| 	float tolerance = stl.stats.shortest_edge;
 | |
|     float increment = stl.stats.bounding_diameter / 10000.0;
 | |
|     int iterations = 2;
 | |
|     if (stl.stats.connected_facets_3_edge < stl.stats.number_of_facets) {
 | |
|         for (int i = 0; i < iterations; i++) {
 | |
|             if (stl.stats.connected_facets_3_edge < stl.stats.number_of_facets) {
 | |
|                 //printf("Checking nearby. Tolerance= %f Iteration=%d of %d...", tolerance, i + 1, iterations);
 | |
| 				BOOST_LOG_TRIVIAL(trace) << "\tstl_check_faces_nearby";
 | |
| 				stl_check_facets_nearby(&stl, tolerance);
 | |
|                 //printf("  Fixed %d edges.\n", stl.stats.edges_fixed - last_edges_fixed);
 | |
|                 //last_edges_fixed = stl.stats.edges_fixed;
 | |
|                 tolerance += increment;
 | |
|             } else {
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     
 | |
|     // remove_unconnected
 | |
|     if (stl.stats.connected_facets_3_edge <  stl.stats.number_of_facets) {
 | |
|         BOOST_LOG_TRIVIAL(trace) << "\tstl_remove_unconnected_facets";
 | |
|         stl_remove_unconnected_facets(&stl);
 | |
|     }
 | |
|     
 | |
|     // fill_holes
 | |
|     if (stl.stats.connected_facets_3_edge < stl.stats.number_of_facets) {
 | |
|         BOOST_LOG_TRIVIAL(trace) << "\tstl_fill_holes";
 | |
|         stl_fill_holes(&stl);
 | |
|         stl_clear_error(&stl);
 | |
|     }
 | |
| 
 | |
|     // normal_directions
 | |
|     BOOST_LOG_TRIVIAL(trace) << "\tstl_fix_normal_directions";
 | |
|     stl_fix_normal_directions(&stl);
 | |
| 
 | |
|     // normal_values
 | |
|     BOOST_LOG_TRIVIAL(trace) << "\tstl_fix_normal_values";
 | |
|     stl_fix_normal_values(&stl);
 | |
|     
 | |
|     // always calculate the volume and reverse all normals if volume is negative
 | |
|     BOOST_LOG_TRIVIAL(trace) << "\tstl_calculate_volume";
 | |
|     stl_calculate_volume(&stl);
 | |
|     
 | |
|     // neighbors
 | |
|     BOOST_LOG_TRIVIAL(trace) << "\tstl_verify_neighbors";
 | |
|     stl_verify_neighbors(&stl);
 | |
| 
 | |
|     this->repaired = true;
 | |
| 
 | |
|     BOOST_LOG_TRIVIAL(debug) << "TriangleMesh::repair() finished";
 | |
| }
 | |
| 
 | |
| float TriangleMesh::volume()
 | |
| {
 | |
|     if (this->stl.stats.volume == -1) 
 | |
|         stl_calculate_volume(&this->stl);
 | |
|     return this->stl.stats.volume;
 | |
| }
 | |
| 
 | |
| void TriangleMesh::check_topology()
 | |
| {
 | |
|     // checking exact
 | |
|     stl_check_facets_exact(&stl);
 | |
|     stl.stats.facets_w_1_bad_edge = (stl.stats.connected_facets_2_edge - stl.stats.connected_facets_3_edge);
 | |
|     stl.stats.facets_w_2_bad_edge = (stl.stats.connected_facets_1_edge - stl.stats.connected_facets_2_edge);
 | |
|     stl.stats.facets_w_3_bad_edge = (stl.stats.number_of_facets - stl.stats.connected_facets_1_edge);
 | |
|     
 | |
|     // checking nearby
 | |
|     //int last_edges_fixed = 0;
 | |
|     float tolerance = stl.stats.shortest_edge;
 | |
|     float increment = stl.stats.bounding_diameter / 10000.0;
 | |
|     int iterations = 2;
 | |
|     if (stl.stats.connected_facets_3_edge < stl.stats.number_of_facets) {
 | |
|         for (int i = 0; i < iterations; i++) {
 | |
|             if (stl.stats.connected_facets_3_edge < stl.stats.number_of_facets) {
 | |
|                 //printf("Checking nearby. Tolerance= %f Iteration=%d of %d...", tolerance, i + 1, iterations);
 | |
|                 stl_check_facets_nearby(&stl, tolerance);
 | |
|                 //printf("  Fixed %d edges.\n", stl.stats.edges_fixed - last_edges_fixed);
 | |
|                 //last_edges_fixed = stl.stats.edges_fixed;
 | |
|                 tolerance += increment;
 | |
|             } else {
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void TriangleMesh::reset_repair_stats() {
 | |
|     this->stl.stats.degenerate_facets   = 0;
 | |
|     this->stl.stats.edges_fixed         = 0;
 | |
|     this->stl.stats.facets_removed      = 0;
 | |
|     this->stl.stats.facets_added        = 0;
 | |
|     this->stl.stats.facets_reversed     = 0;
 | |
|     this->stl.stats.backwards_edges     = 0;
 | |
|     this->stl.stats.normals_fixed       = 0;
 | |
| }
 | |
| 
 | |
| bool TriangleMesh::needed_repair() const
 | |
| {
 | |
|     return this->stl.stats.degenerate_facets    > 0
 | |
|         || this->stl.stats.edges_fixed          > 0
 | |
|         || this->stl.stats.facets_removed       > 0
 | |
|         || this->stl.stats.facets_added         > 0
 | |
|         || this->stl.stats.facets_reversed      > 0
 | |
|         || this->stl.stats.backwards_edges      > 0;
 | |
| }
 | |
| 
 | |
| void TriangleMesh::WriteOBJFile(char* output_file)
 | |
| {
 | |
|     stl_generate_shared_vertices(&stl);
 | |
|     stl_write_obj(&stl, output_file);
 | |
| }
 | |
| 
 | |
| void TriangleMesh::scale(float factor)
 | |
| {
 | |
|     stl_scale(&(this->stl), factor);
 | |
|     stl_invalidate_shared_vertices(&this->stl);
 | |
| }
 | |
| 
 | |
| void TriangleMesh::scale(const Vec3d &versor)
 | |
| {
 | |
|     stl_scale_versor(&this->stl, versor.cast<float>());
 | |
|     stl_invalidate_shared_vertices(&this->stl);
 | |
| }
 | |
| 
 | |
| void TriangleMesh::translate(float x, float y, float z)
 | |
| {
 | |
|     if (x == 0.f && y == 0.f && z == 0.f)
 | |
|         return;
 | |
|     stl_translate_relative(&(this->stl), x, y, z);
 | |
|     stl_invalidate_shared_vertices(&this->stl);
 | |
| }
 | |
| 
 | |
| void TriangleMesh::rotate(float angle, const Axis &axis)
 | |
| {
 | |
|     if (angle == 0.f)
 | |
|         return;
 | |
| 
 | |
|     // admesh uses degrees
 | |
|     angle = Slic3r::Geometry::rad2deg(angle);
 | |
|     
 | |
|     if (axis == X) {
 | |
|         stl_rotate_x(&(this->stl), angle);
 | |
|     } else if (axis == Y) {
 | |
|         stl_rotate_y(&(this->stl), angle);
 | |
|     } else if (axis == Z) {
 | |
|         stl_rotate_z(&(this->stl), angle);
 | |
|     }
 | |
|     stl_invalidate_shared_vertices(&this->stl);
 | |
| }
 | |
| 
 | |
| void TriangleMesh::rotate(float angle, const Vec3d& axis)
 | |
| {
 | |
|     if (angle == 0.f)
 | |
|         return;
 | |
| 
 | |
|     Vec3d axis_norm = axis.normalized();
 | |
|     Transform3d m = Transform3d::Identity();
 | |
|     m.rotate(Eigen::AngleAxisd(angle, axis_norm));
 | |
|     stl_transform(&stl, m);
 | |
| }
 | |
| 
 | |
| void TriangleMesh::mirror(const Axis &axis)
 | |
| {
 | |
|     if (axis == X) {
 | |
|         stl_mirror_yz(&this->stl);
 | |
|     } else if (axis == Y) {
 | |
|         stl_mirror_xz(&this->stl);
 | |
|     } else if (axis == Z) {
 | |
|         stl_mirror_xy(&this->stl);
 | |
|     }
 | |
|     stl_invalidate_shared_vertices(&this->stl);
 | |
| }
 | |
| 
 | |
| void TriangleMesh::transform(const Transform3d& t)
 | |
| {
 | |
|     stl_transform(&stl, t);
 | |
| }
 | |
| 
 | |
| void TriangleMesh::align_to_origin()
 | |
| {
 | |
|     this->translate(
 | |
|         - this->stl.stats.min(0),
 | |
|         - this->stl.stats.min(1),
 | |
|         - this->stl.stats.min(2));
 | |
| }
 | |
| 
 | |
| void TriangleMesh::rotate(double angle, Point* center)
 | |
| {
 | |
|     if (angle == 0.)
 | |
|         return;
 | |
|     Vec2f c = center->cast<float>();
 | |
|     this->translate(-c(0), -c(1), 0);
 | |
|     stl_rotate_z(&(this->stl), (float)angle);
 | |
|     this->translate(c(0), c(1), 0);
 | |
| }
 | |
| 
 | |
| bool TriangleMesh::has_multiple_patches() const
 | |
| {
 | |
|     // we need neighbors
 | |
|     if (!this->repaired)
 | |
|         throw std::runtime_error("split() requires repair()");
 | |
|     
 | |
|     if (this->stl.stats.number_of_facets == 0)
 | |
|         return false;
 | |
| 
 | |
|     std::vector<int>  facet_queue(this->stl.stats.number_of_facets, 0);
 | |
|     std::vector<char> facet_visited(this->stl.stats.number_of_facets, false);
 | |
|     int               facet_queue_cnt = 1;
 | |
|     facet_queue[0] = 0;
 | |
|     facet_visited[0] = true;
 | |
|     while (facet_queue_cnt > 0) {
 | |
|         int facet_idx = facet_queue[-- facet_queue_cnt];
 | |
|         facet_visited[facet_idx] = true;
 | |
|         for (int j = 0; j < 3; ++ j) {
 | |
|             int neighbor_idx = this->stl.neighbors_start[facet_idx].neighbor[j];
 | |
|             if (neighbor_idx != -1 && ! facet_visited[neighbor_idx])
 | |
|                 facet_queue[facet_queue_cnt ++] = neighbor_idx;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // If any of the face was not visited at the first time, return "multiple bodies".
 | |
|     for (int facet_idx = 0; facet_idx < this->stl.stats.number_of_facets; ++ facet_idx)
 | |
|         if (! facet_visited[facet_idx])
 | |
|             return true;
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| size_t TriangleMesh::number_of_patches() const
 | |
| {
 | |
|     // we need neighbors
 | |
|     if (!this->repaired)
 | |
|         throw std::runtime_error("split() requires repair()");
 | |
|     
 | |
|     if (this->stl.stats.number_of_facets == 0)
 | |
|         return false;
 | |
| 
 | |
|     std::vector<int>  facet_queue(this->stl.stats.number_of_facets, 0);
 | |
|     std::vector<char> facet_visited(this->stl.stats.number_of_facets, false);
 | |
|     int               facet_queue_cnt = 0;
 | |
|     size_t            num_bodies = 0;
 | |
|     for (;;) {
 | |
|         // Find a seeding triangle for a new body.
 | |
|         int facet_idx = 0;
 | |
|         for (; facet_idx < this->stl.stats.number_of_facets; ++ facet_idx)
 | |
|             if (! facet_visited[facet_idx]) {
 | |
|                 // A seed triangle was found.
 | |
|                 facet_queue[facet_queue_cnt ++] = facet_idx;
 | |
|                 facet_visited[facet_idx] = true;
 | |
|                 break;
 | |
|             }
 | |
|         if (facet_idx == this->stl.stats.number_of_facets)
 | |
|             // No seed found.
 | |
|             break;
 | |
|         ++ num_bodies;
 | |
|         while (facet_queue_cnt > 0) {
 | |
|             int facet_idx = facet_queue[-- facet_queue_cnt];
 | |
|             facet_visited[facet_idx] = true;
 | |
|             for (int j = 0; j < 3; ++ j) {
 | |
|                 int neighbor_idx = this->stl.neighbors_start[facet_idx].neighbor[j];
 | |
|                 if (neighbor_idx != -1 && ! facet_visited[neighbor_idx])
 | |
|                     facet_queue[facet_queue_cnt ++] = neighbor_idx;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return num_bodies;
 | |
| }
 | |
| 
 | |
| TriangleMeshPtrs TriangleMesh::split() const
 | |
| {
 | |
|     TriangleMeshPtrs            meshes;
 | |
|     std::vector<unsigned char>  facet_visited(this->stl.stats.number_of_facets, false);
 | |
|     
 | |
|     // we need neighbors
 | |
|     if (!this->repaired)
 | |
|         throw std::runtime_error("split() requires repair()");
 | |
|     
 | |
|     // loop while we have remaining facets
 | |
|     for (;;) {
 | |
|         // get the first facet
 | |
|         std::queue<int> facet_queue;
 | |
|         std::deque<int> facets;
 | |
|         for (int facet_idx = 0; facet_idx < this->stl.stats.number_of_facets; facet_idx++) {
 | |
|             if (! facet_visited[facet_idx]) {
 | |
|                 // if facet was not seen put it into queue and start searching
 | |
|                 facet_queue.push(facet_idx);
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         if (facet_queue.empty())
 | |
|             break;
 | |
| 
 | |
|         while (! facet_queue.empty()) {
 | |
|             int facet_idx = facet_queue.front();
 | |
|             facet_queue.pop();
 | |
|             if (! facet_visited[facet_idx]) {
 | |
|                 facets.emplace_back(facet_idx);
 | |
|                 for (int j = 0; j < 3; ++ j)
 | |
|                     facet_queue.push(this->stl.neighbors_start[facet_idx].neighbor[j]);
 | |
|                 facet_visited[facet_idx] = true;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         TriangleMesh* mesh = new TriangleMesh;
 | |
|         meshes.emplace_back(mesh);
 | |
|         mesh->stl.stats.type = inmemory;
 | |
|         mesh->stl.stats.number_of_facets = facets.size();
 | |
|         mesh->stl.stats.original_num_facets = mesh->stl.stats.number_of_facets;
 | |
|         stl_clear_error(&mesh->stl);
 | |
|         stl_allocate(&mesh->stl);
 | |
|         
 | |
|         bool first = true;
 | |
|         for (std::deque<int>::const_iterator facet = facets.begin(); facet != facets.end(); ++ facet) {
 | |
|             mesh->stl.facet_start[facet - facets.begin()] = this->stl.facet_start[*facet];
 | |
|             stl_facet_stats(&mesh->stl, this->stl.facet_start[*facet], first);
 | |
|         }
 | |
|     }
 | |
|     
 | |
|     return meshes;
 | |
| }
 | |
| 
 | |
| void TriangleMesh::merge(const TriangleMesh &mesh)
 | |
| {
 | |
|     // reset stats and metadata
 | |
|     int number_of_facets = this->stl.stats.number_of_facets;
 | |
|     stl_invalidate_shared_vertices(&this->stl);
 | |
|     this->repaired = false;
 | |
|     
 | |
|     // update facet count and allocate more memory
 | |
|     this->stl.stats.number_of_facets = number_of_facets + mesh.stl.stats.number_of_facets;
 | |
|     this->stl.stats.original_num_facets = this->stl.stats.number_of_facets;
 | |
|     stl_reallocate(&this->stl);
 | |
|     
 | |
|     // copy facets
 | |
|     for (int i = 0; i < mesh.stl.stats.number_of_facets; i++) {
 | |
|         this->stl.facet_start[number_of_facets + i] = mesh.stl.facet_start[i];
 | |
|     }
 | |
|     
 | |
|     // update size
 | |
|     stl_get_size(&this->stl);
 | |
| }
 | |
| 
 | |
| // Calculate projection of the mesh into the XY plane, in scaled coordinates.
 | |
| //FIXME This could be extremely slow! Use it for tiny meshes only!
 | |
| ExPolygons TriangleMesh::horizontal_projection() const
 | |
| {
 | |
|     Polygons pp;
 | |
|     pp.reserve(this->stl.stats.number_of_facets);
 | |
|     for (int i = 0; i < this->stl.stats.number_of_facets; i++) {
 | |
|         stl_facet* facet = &this->stl.facet_start[i];
 | |
|         Polygon p;
 | |
|         p.points.resize(3);
 | |
|         p.points[0] = Point::new_scale(facet->vertex[0](0), facet->vertex[0](1));
 | |
|         p.points[1] = Point::new_scale(facet->vertex[1](0), facet->vertex[1](1));
 | |
|         p.points[2] = Point::new_scale(facet->vertex[2](0), facet->vertex[2](1));
 | |
|         p.make_counter_clockwise();  // do this after scaling, as winding order might change while doing that
 | |
|         pp.emplace_back(p);
 | |
|     }
 | |
|     
 | |
|     // the offset factor was tuned using groovemount.stl
 | |
|     return union_ex(offset(pp, scale_(0.01)), true);
 | |
| }
 | |
| 
 | |
| const float* TriangleMesh::first_vertex() const
 | |
| {
 | |
|     return this->stl.facet_start ? &this->stl.facet_start->vertex[0](0) : nullptr;
 | |
| }
 | |
| 
 | |
| Polygon TriangleMesh::convex_hull()
 | |
| {
 | |
|     this->require_shared_vertices();
 | |
|     Points pp;
 | |
|     pp.reserve(this->stl.stats.shared_vertices);
 | |
|     for (int i = 0; i < this->stl.stats.shared_vertices; ++ i) {
 | |
|         const stl_vertex &v = this->stl.v_shared[i];
 | |
|         pp.emplace_back(Point::new_scale(v(0), v(1)));
 | |
|     }
 | |
|     return Slic3r::Geometry::convex_hull(pp);
 | |
| }
 | |
| 
 | |
| BoundingBoxf3 TriangleMesh::bounding_box() const
 | |
| {
 | |
|     BoundingBoxf3 bb;
 | |
|     bb.defined = true;
 | |
|     bb.min = this->stl.stats.min.cast<double>();
 | |
|     bb.max = this->stl.stats.max.cast<double>();
 | |
|     return bb;
 | |
| }
 | |
| 
 | |
| BoundingBoxf3 TriangleMesh::transformed_bounding_box(const Transform3d& t) const
 | |
| {
 | |
|     bool has_shared = (stl.v_shared != nullptr);
 | |
|     if (!has_shared)
 | |
|         stl_generate_shared_vertices(&stl);
 | |
| 
 | |
|     unsigned int vertices_count = (stl.stats.shared_vertices > 0) ? (unsigned int)stl.stats.shared_vertices : 3 * (unsigned int)stl.stats.number_of_facets;
 | |
| 
 | |
|     if (vertices_count == 0)
 | |
|         return BoundingBoxf3();
 | |
| 
 | |
|     Eigen::MatrixXd src_vertices(3, vertices_count);
 | |
| 
 | |
|     if (stl.stats.shared_vertices > 0)
 | |
|     {
 | |
| 		assert(stl.v_shared != nullptr);
 | |
|         stl_vertex* vertex_ptr = stl.v_shared;
 | |
|         for (int i = 0; i < stl.stats.shared_vertices; ++i)
 | |
|         {
 | |
|             src_vertices(0, i) = (double)(*vertex_ptr)(0);
 | |
|             src_vertices(1, i) = (double)(*vertex_ptr)(1);
 | |
|             src_vertices(2, i) = (double)(*vertex_ptr)(2);
 | |
|             vertex_ptr += 1;
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         stl_facet* facet_ptr = stl.facet_start;
 | |
|         unsigned int v_id = 0;
 | |
|         while (facet_ptr < stl.facet_start + stl.stats.number_of_facets)
 | |
|         {
 | |
|             for (int i = 0; i < 3; ++i)
 | |
|             {
 | |
|                 src_vertices(0, v_id) = (double)facet_ptr->vertex[i](0);
 | |
|                 src_vertices(1, v_id) = (double)facet_ptr->vertex[i](1);
 | |
|                 src_vertices(2, v_id) = (double)facet_ptr->vertex[i](2);
 | |
|                 ++v_id;
 | |
|             }
 | |
|             facet_ptr += 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!has_shared && (stl.stats.shared_vertices > 0))
 | |
|         stl_invalidate_shared_vertices(&stl);
 | |
| 
 | |
|     Eigen::MatrixXd dst_vertices(3, vertices_count);
 | |
|     dst_vertices = t * src_vertices.colwise().homogeneous();
 | |
| 
 | |
|     Vec3d v_min(dst_vertices(0, 0), dst_vertices(1, 0), dst_vertices(2, 0));
 | |
|     Vec3d v_max = v_min;
 | |
| 
 | |
|     for (int i = 1; i < vertices_count; ++i)
 | |
|     {
 | |
|         for (int j = 0; j < 3; ++j)
 | |
|         {
 | |
|             v_min(j) = std::min(v_min(j), dst_vertices(j, i));
 | |
|             v_max(j) = std::max(v_max(j), dst_vertices(j, i));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return BoundingBoxf3(v_min, v_max);
 | |
| }
 | |
| 
 | |
| TriangleMesh TriangleMesh::convex_hull_3d() const
 | |
| {
 | |
|     // Helper struct for qhull:
 | |
|     struct PointForQHull{
 | |
|         PointForQHull(float x_p, float y_p, float z_p) : x((realT)x_p), y((realT)y_p), z((realT)z_p) {}
 | |
|         realT x, y, z;
 | |
|     };
 | |
|     std::vector<PointForQHull> src_vertices;
 | |
| 
 | |
|     // We will now fill the vector with input points for computation:
 | |
|     stl_facet* facet_ptr = stl.facet_start;
 | |
|     while (facet_ptr < stl.facet_start + stl.stats.number_of_facets)
 | |
|     {
 | |
|         for (int i = 0; i < 3; ++i)
 | |
|         {
 | |
|             const stl_vertex& v = facet_ptr->vertex[i];
 | |
|             src_vertices.emplace_back(v(0), v(1), v(2));
 | |
|         }
 | |
| 
 | |
|         facet_ptr += 1;
 | |
|     }
 | |
| 
 | |
|     // The qhull call:
 | |
|     orgQhull::Qhull qhull;
 | |
|     qhull.disableOutputStream(); // we want qhull to be quiet
 | |
|     try
 | |
|     {
 | |
|         qhull.runQhull("", 3, (int)src_vertices.size(), (const realT*)(src_vertices.data()), "Qt");
 | |
|     }
 | |
|     catch (...)
 | |
|     {
 | |
|         std::cout << "Unable to create convex hull" << std::endl;
 | |
|         return TriangleMesh();
 | |
|     }
 | |
| 
 | |
|     // Let's collect results:
 | |
|     Pointf3s dst_vertices;
 | |
|     std::vector<Vec3crd> facets;
 | |
|     auto facet_list = qhull.facetList().toStdVector();
 | |
|     for (const orgQhull::QhullFacet& facet : facet_list)
 | |
|     {   // iterate through facets
 | |
|         orgQhull::QhullVertexSet vertices = facet.vertices();
 | |
|         for (int i = 0; i < 3; ++i)
 | |
|         {   // iterate through facet's vertices
 | |
| 
 | |
|             orgQhull::QhullPoint p = vertices[i].point();
 | |
|             const float* coords = p.coordinates();
 | |
|             dst_vertices.emplace_back(coords[0], coords[1], coords[2]);
 | |
|         }
 | |
|         unsigned int size = (unsigned int)dst_vertices.size();
 | |
|         facets.emplace_back(size - 3, size - 2, size - 1);
 | |
|     }
 | |
| 
 | |
|     TriangleMesh output_mesh(dst_vertices, facets);
 | |
|     output_mesh.repair();
 | |
|     output_mesh.require_shared_vertices();
 | |
|     return output_mesh;
 | |
| }
 | |
| 
 | |
| void TriangleMesh::require_shared_vertices()
 | |
| {
 | |
|     BOOST_LOG_TRIVIAL(trace) << "TriangleMeshSlicer::require_shared_vertices - start";
 | |
|     if (!this->repaired) 
 | |
|         this->repair();
 | |
|     if (this->stl.v_shared == NULL) {
 | |
|         BOOST_LOG_TRIVIAL(trace) << "TriangleMeshSlicer::require_shared_vertices - stl_generate_shared_vertices";
 | |
|         stl_generate_shared_vertices(&(this->stl));
 | |
|     }
 | |
| #ifdef _DEBUG
 | |
|     // Verify validity of neighborship data.
 | |
|     for (int facet_idx = 0; facet_idx < stl.stats.number_of_facets; ++facet_idx) {
 | |
|         const stl_neighbors &nbr = stl.neighbors_start[facet_idx];
 | |
|         const int *vertices = stl.v_indices[facet_idx].vertex;
 | |
|         for (int nbr_idx = 0; nbr_idx < 3; ++nbr_idx) {
 | |
|             int nbr_face = this->stl.neighbors_start[facet_idx].neighbor[nbr_idx];
 | |
|             if (nbr_face != -1) {
 | |
|                 assert(stl.v_indices[nbr_face].vertex[(nbr.which_vertex_not[nbr_idx] + 1) % 3] == vertices[(nbr_idx + 1) % 3]);
 | |
|                 assert(stl.v_indices[nbr_face].vertex[(nbr.which_vertex_not[nbr_idx] + 2) % 3] == vertices[nbr_idx]);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| #endif /* _DEBUG */
 | |
|     BOOST_LOG_TRIVIAL(trace) << "TriangleMeshSlicer::require_shared_vertices - end";
 | |
| }
 | |
| 
 | |
| void TriangleMeshSlicer::init(TriangleMesh *_mesh, throw_on_cancel_callback_type throw_on_cancel)
 | |
| {
 | |
|     mesh = _mesh;
 | |
|     _mesh->require_shared_vertices();
 | |
|     throw_on_cancel();
 | |
|     facets_edges.assign(_mesh->stl.stats.number_of_facets * 3, -1);
 | |
|     v_scaled_shared.assign(_mesh->stl.v_shared, _mesh->stl.v_shared + _mesh->stl.stats.shared_vertices);
 | |
|     // Scale the copied vertices.
 | |
|     for (int i = 0; i < this->mesh->stl.stats.shared_vertices; ++ i)
 | |
|         this->v_scaled_shared[i] *= float(1. / SCALING_FACTOR);
 | |
| 
 | |
|     // Create a mapping from triangle edge into face.
 | |
|     struct EdgeToFace {
 | |
|         // Index of the 1st vertex of the triangle edge. vertex_low <= vertex_high.
 | |
|         int  vertex_low;
 | |
|         // Index of the 2nd vertex of the triangle edge.
 | |
|         int  vertex_high;
 | |
|         // Index of a triangular face.
 | |
|         int  face;
 | |
|         // Index of edge in the face, starting with 1. Negative indices if the edge was stored reverse in (vertex_low, vertex_high).
 | |
|         int  face_edge;
 | |
|         bool operator==(const EdgeToFace &other) const { return vertex_low == other.vertex_low && vertex_high == other.vertex_high; }
 | |
|         bool operator<(const EdgeToFace &other) const { return vertex_low < other.vertex_low || (vertex_low == other.vertex_low && vertex_high < other.vertex_high); }
 | |
|     };
 | |
|     std::vector<EdgeToFace> edges_map;
 | |
|     edges_map.assign(this->mesh->stl.stats.number_of_facets * 3, EdgeToFace());
 | |
|     for (int facet_idx = 0; facet_idx < this->mesh->stl.stats.number_of_facets; ++ facet_idx)
 | |
|         for (int i = 0; i < 3; ++ i) {
 | |
|             EdgeToFace &e2f = edges_map[facet_idx*3+i];
 | |
|             e2f.vertex_low  = this->mesh->stl.v_indices[facet_idx].vertex[i];
 | |
|             e2f.vertex_high = this->mesh->stl.v_indices[facet_idx].vertex[(i + 1) % 3];
 | |
|             e2f.face        = facet_idx;
 | |
|             // 1 based indexing, to be always strictly positive.
 | |
|             e2f.face_edge   = i + 1;
 | |
|             if (e2f.vertex_low > e2f.vertex_high) {
 | |
|                 // Sort the vertices
 | |
|                 std::swap(e2f.vertex_low, e2f.vertex_high);
 | |
|                 // and make the face_edge negative to indicate a flipped edge.
 | |
|                 e2f.face_edge = - e2f.face_edge;
 | |
|             }
 | |
|         }
 | |
|     throw_on_cancel();
 | |
|     std::sort(edges_map.begin(), edges_map.end());
 | |
| 
 | |
|     // Assign a unique common edge id to touching triangle edges.
 | |
|     int num_edges = 0;
 | |
|     for (size_t i = 0; i < edges_map.size(); ++ i) {
 | |
|         EdgeToFace &edge_i = edges_map[i];
 | |
|         if (edge_i.face == -1)
 | |
|             // This edge has been connected to some neighbor already.
 | |
|             continue;
 | |
|         // Unconnected edge. Find its neighbor with the correct orientation.
 | |
|         size_t j;
 | |
|         bool found = false;
 | |
|         for (j = i + 1; j < edges_map.size() && edge_i == edges_map[j]; ++ j)
 | |
|             if (edge_i.face_edge * edges_map[j].face_edge < 0 && edges_map[j].face != -1) {
 | |
|                 // Faces touching with opposite oriented edges and none of the edges is connected yet.
 | |
|                 found = true;
 | |
|                 break;
 | |
|             }
 | |
|         if (! found) {
 | |
|             //FIXME Vojtech: Trying to find an edge with equal orientation. This smells.
 | |
|             // admesh can assign the same edge ID to more than two facets (which is 
 | |
|             // still topologically correct), so we have to search for a duplicate of 
 | |
|             // this edge too in case it was already seen in this orientation
 | |
|             for (j = i + 1; j < edges_map.size() && edge_i == edges_map[j]; ++ j)
 | |
|                 if (edges_map[j].face != -1) {
 | |
|                     // Faces touching with equally oriented edges and none of the edges is connected yet.
 | |
|                     found = true;
 | |
|                     break;
 | |
|                 }
 | |
|         }
 | |
|         // Assign an edge index to the 1st face.
 | |
|         this->facets_edges[edge_i.face * 3 + std::abs(edge_i.face_edge) - 1] = num_edges;
 | |
|         if (found) {
 | |
|             EdgeToFace &edge_j = edges_map[j];
 | |
|             this->facets_edges[edge_j.face * 3 + std::abs(edge_j.face_edge) - 1] = num_edges;
 | |
|             // Mark the edge as connected.
 | |
|             edge_j.face = -1;
 | |
|         }
 | |
|         ++ num_edges;
 | |
|         if ((i & 0x0ffff) == 0)
 | |
|             throw_on_cancel();
 | |
|     }
 | |
| }
 | |
| 
 | |
| void TriangleMeshSlicer::slice(const std::vector<float> &z, std::vector<Polygons>* layers, throw_on_cancel_callback_type throw_on_cancel) const
 | |
| {
 | |
|     BOOST_LOG_TRIVIAL(debug) << "TriangleMeshSlicer::slice";
 | |
| 
 | |
|     /*
 | |
|        This method gets called with a list of unscaled Z coordinates and outputs
 | |
|        a vector pointer having the same number of items as the original list.
 | |
|        Each item is a vector of polygons created by slicing our mesh at the 
 | |
|        given heights.
 | |
|        
 | |
|        This method should basically combine the behavior of the existing
 | |
|        Perl methods defined in lib/Slic3r/TriangleMesh.pm:
 | |
|        
 | |
|        - analyze(): this creates the 'facets_edges' and the 'edges_facets'
 | |
|             tables (we don't need the 'edges' table)
 | |
|        
 | |
|        - slice_facet(): this has to be done for each facet. It generates 
 | |
|             intersection lines with each plane identified by the Z list.
 | |
|             The get_layer_range() binary search used to identify the Z range
 | |
|             of the facet is already ported to C++ (see Object.xsp)
 | |
|        
 | |
|        - make_loops(): this has to be done for each layer. It creates polygons
 | |
|             from the lines generated by the previous step.
 | |
|         
 | |
|         At the end, we free the tables generated by analyze() as we don't 
 | |
|         need them anymore.
 | |
|         
 | |
|         NOTE: this method accepts a vector of floats because the mesh coordinate
 | |
|         type is float.
 | |
|     */
 | |
|     
 | |
|     BOOST_LOG_TRIVIAL(debug) << "TriangleMeshSlicer::_slice_do";
 | |
|     std::vector<IntersectionLines> lines(z.size());
 | |
|     {
 | |
|         boost::mutex lines_mutex;
 | |
|         tbb::parallel_for(
 | |
|             tbb::blocked_range<int>(0,this->mesh->stl.stats.number_of_facets),
 | |
|             [&lines, &lines_mutex, &z, throw_on_cancel, this](const tbb::blocked_range<int>& range) {
 | |
|                 for (int facet_idx = range.begin(); facet_idx < range.end(); ++ facet_idx) {
 | |
|                     if ((facet_idx & 0x0ffff) == 0)
 | |
|                         throw_on_cancel();
 | |
|                     this->_slice_do(facet_idx, &lines, &lines_mutex, z);
 | |
|                 }
 | |
|             }
 | |
|         );
 | |
|     }
 | |
|     throw_on_cancel();
 | |
| 
 | |
|     // v_scaled_shared could be freed here
 | |
|     
 | |
|     // build loops
 | |
|     BOOST_LOG_TRIVIAL(debug) << "TriangleMeshSlicer::_make_loops_do";
 | |
|     layers->resize(z.size());
 | |
|     tbb::parallel_for(
 | |
|         tbb::blocked_range<size_t>(0, z.size()),
 | |
|         [&lines, &layers, throw_on_cancel, this](const tbb::blocked_range<size_t>& range) {
 | |
|             for (size_t line_idx = range.begin(); line_idx < range.end(); ++ line_idx) {
 | |
|                 if ((line_idx & 0x0ffff) == 0)
 | |
|                     throw_on_cancel();
 | |
|                 this->make_loops(lines[line_idx], &(*layers)[line_idx]);
 | |
|             }
 | |
|         }
 | |
|     );
 | |
|     BOOST_LOG_TRIVIAL(debug) << "TriangleMeshSlicer::slice finished";
 | |
| 
 | |
| #ifdef SLIC3R_DEBUG
 | |
|     {
 | |
|         static int iRun = 0;
 | |
|         for (size_t i = 0; i < z.size(); ++ i) {
 | |
|             Polygons  &polygons   = (*layers)[i];
 | |
|             ExPolygons expolygons = union_ex(polygons, true);
 | |
|             SVG::export_expolygons(debug_out_path("slice_%d_%d.svg", iRun, i).c_str(), expolygons);
 | |
|             {
 | |
|                 BoundingBox bbox;
 | |
|                 for (const IntersectionLine &l : lines[i]) {
 | |
|                     bbox.merge(l.a);
 | |
|                     bbox.merge(l.b);
 | |
|                 }
 | |
|                 SVG svg(debug_out_path("slice_loops_%d_%d.svg", iRun, i).c_str(), bbox);
 | |
|                 svg.draw(expolygons);
 | |
|                 for (const IntersectionLine &l : lines[i])
 | |
|                     svg.draw(l, "red", 0);
 | |
|                 svg.draw_outline(expolygons, "black", "blue", 0);
 | |
|                 svg.Close();
 | |
|             }
 | |
| #if 0
 | |
| //FIXME slice_facet() may create zero length edges due to rounding of doubles into coord_t.
 | |
|             for (Polygon &poly : polygons) {
 | |
|                 for (size_t i = 1; i < poly.points.size(); ++ i)
 | |
|                     assert(poly.points[i-1] != poly.points[i]);
 | |
|                 assert(poly.points.front() != poly.points.back());
 | |
|             }
 | |
| #endif
 | |
|         }
 | |
|         ++ iRun;
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void TriangleMeshSlicer::_slice_do(size_t facet_idx, std::vector<IntersectionLines>* lines, boost::mutex* lines_mutex, 
 | |
|     const std::vector<float> &z) const
 | |
| {
 | |
|     const stl_facet &facet = this->mesh->stl.facet_start[facet_idx];
 | |
|     
 | |
|     // find facet extents
 | |
|     const float min_z = fminf(facet.vertex[0](2), fminf(facet.vertex[1](2), facet.vertex[2](2)));
 | |
|     const float max_z = fmaxf(facet.vertex[0](2), fmaxf(facet.vertex[1](2), facet.vertex[2](2)));
 | |
|     
 | |
|     #ifdef SLIC3R_TRIANGLEMESH_DEBUG
 | |
|     printf("\n==> FACET %d (%f,%f,%f - %f,%f,%f - %f,%f,%f):\n", facet_idx,
 | |
|         facet.vertex[0].x, facet.vertex[0].y, facet.vertex[0](2),
 | |
|         facet.vertex[1].x, facet.vertex[1].y, facet.vertex[1](2),
 | |
|         facet.vertex[2].x, facet.vertex[2].y, facet.vertex[2](2));
 | |
|     printf("z: min = %.2f, max = %.2f\n", min_z, max_z);
 | |
|     #endif /* SLIC3R_TRIANGLEMESH_DEBUG */
 | |
|     
 | |
|     // find layer extents
 | |
|     std::vector<float>::const_iterator min_layer, max_layer;
 | |
|     min_layer = std::lower_bound(z.begin(), z.end(), min_z); // first layer whose slice_z is >= min_z
 | |
|     max_layer = std::upper_bound(z.begin() + (min_layer - z.begin()), z.end(), max_z); // first layer, whose slice_z is > max_z
 | |
|     #ifdef SLIC3R_TRIANGLEMESH_DEBUG
 | |
|     printf("layers: min = %d, max = %d\n", (int)(min_layer - z.begin()), (int)(max_layer - z.begin()) - 1);
 | |
|     #endif /* SLIC3R_TRIANGLEMESH_DEBUG */
 | |
|     
 | |
|     for (std::vector<float>::const_iterator it = min_layer; it != max_layer; ++it) {
 | |
|         std::vector<float>::size_type layer_idx = it - z.begin();
 | |
|         IntersectionLine il;
 | |
|         if (this->slice_facet(*it / SCALING_FACTOR, facet, facet_idx, min_z, max_z, &il) == TriangleMeshSlicer::Slicing) {
 | |
|             boost::lock_guard<boost::mutex> l(*lines_mutex);
 | |
|             if (il.edge_type == feHorizontal) {
 | |
|                 // Insert all marked edges of the face. The marked edges do not share an edge with another horizontal face
 | |
|                 // (they may not have a nighbor, or their neighbor is vertical)
 | |
|                 const int *vertices = this->mesh->stl.v_indices[facet_idx].vertex;
 | |
|                 const bool reverse  = this->mesh->stl.facet_start[facet_idx].normal(2) < 0;
 | |
|                 for (int j = 0; j < 3; ++ j)
 | |
|                     if (il.flags & ((IntersectionLine::EDGE0_NO_NEIGHBOR | IntersectionLine::EDGE0_FOLD) << j)) {
 | |
|                         int a_id = vertices[j % 3];
 | |
|                         int b_id = vertices[(j+1) % 3];
 | |
|                         if (reverse)
 | |
|                             std::swap(a_id, b_id);
 | |
|                         const stl_vertex &a = this->v_scaled_shared[a_id];
 | |
|                         const stl_vertex &b = this->v_scaled_shared[b_id];
 | |
|                         il.a(0)    = a(0);
 | |
|                         il.a(1)    = a(1);
 | |
|                         il.b(0)    = b(0);
 | |
|                         il.b(1)    = b(1);
 | |
|                         il.a_id   = a_id;
 | |
|                         il.b_id   = b_id;
 | |
|                         assert(il.a != il.b);
 | |
|                         // This edge will not be used as a seed for loop extraction if it was added due to a fold of two overlapping horizontal faces.
 | |
|                         il.set_no_seed((IntersectionLine::EDGE0_FOLD << j) != 0);
 | |
|                         (*lines)[layer_idx].emplace_back(il);
 | |
|                     }
 | |
|             } else
 | |
|                 (*lines)[layer_idx].emplace_back(il);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void TriangleMeshSlicer::slice(const std::vector<float> &z, std::vector<ExPolygons>* layers, throw_on_cancel_callback_type throw_on_cancel) const
 | |
| {
 | |
|     std::vector<Polygons> layers_p;
 | |
|     this->slice(z, &layers_p, throw_on_cancel);
 | |
|     
 | |
| 	BOOST_LOG_TRIVIAL(debug) << "TriangleMeshSlicer::make_expolygons in parallel - start";
 | |
| 	layers->resize(z.size());
 | |
| 	tbb::parallel_for(
 | |
| 		tbb::blocked_range<size_t>(0, z.size()),
 | |
| 		[&layers_p, layers, throw_on_cancel, this](const tbb::blocked_range<size_t>& range) {
 | |
|     		for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id) {
 | |
| #ifdef SLIC3R_TRIANGLEMESH_DEBUG
 | |
|                 printf("Layer " PRINTF_ZU " (slice_z = %.2f):\n", layer_id, z[layer_id]);
 | |
| #endif
 | |
|                 throw_on_cancel();
 | |
|     			this->make_expolygons(layers_p[layer_id], &(*layers)[layer_id]);
 | |
|     		}
 | |
|     	});
 | |
| 	BOOST_LOG_TRIVIAL(debug) << "TriangleMeshSlicer::make_expolygons in parallel - end";
 | |
| }
 | |
| 
 | |
| // Return true, if the facet has been sliced and line_out has been filled.
 | |
| TriangleMeshSlicer::FacetSliceType TriangleMeshSlicer::slice_facet(
 | |
|     float slice_z, const stl_facet &facet, const int facet_idx,
 | |
|     const float min_z, const float max_z, 
 | |
|     IntersectionLine *line_out) const
 | |
| {
 | |
|     IntersectionPoint points[3];
 | |
|     size_t            num_points = 0;
 | |
|     size_t            point_on_layer = size_t(-1);
 | |
|     
 | |
|     // Reorder vertices so that the first one is the one with lowest Z.
 | |
|     // This is needed to get all intersection lines in a consistent order
 | |
|     // (external on the right of the line)
 | |
|     const int *vertices = this->mesh->stl.v_indices[facet_idx].vertex;
 | |
|     int i = (facet.vertex[1](2) == min_z) ? 1 : ((facet.vertex[2](2) == min_z) ? 2 : 0);
 | |
|     for (int j = i; j - i < 3; ++j ) {  // loop through facet edges
 | |
|         int               edge_id  = this->facets_edges[facet_idx * 3 + (j % 3)];
 | |
|         int               a_id     = vertices[j % 3];
 | |
|         int               b_id     = vertices[(j+1) % 3];
 | |
|         const stl_vertex &a = this->v_scaled_shared[a_id];
 | |
|         const stl_vertex &b = this->v_scaled_shared[b_id];
 | |
|         
 | |
|         // Is edge or face aligned with the cutting plane?
 | |
|         if (a(2) == slice_z && b(2) == slice_z) {
 | |
|             // Edge is horizontal and belongs to the current layer.
 | |
|             const stl_vertex &v0 = this->v_scaled_shared[vertices[0]];
 | |
|             const stl_vertex &v1 = this->v_scaled_shared[vertices[1]];
 | |
|             const stl_vertex &v2 = this->v_scaled_shared[vertices[2]];
 | |
|             bool              swap = false;
 | |
|             const stl_normal &normal = this->mesh->stl.facet_start[facet_idx].normal;
 | |
|             // We may ignore this edge for slicing purposes, but we may still use it for object cutting.
 | |
|             FacetSliceType    result = Slicing;
 | |
|             const stl_neighbors &nbr = this->mesh->stl.neighbors_start[facet_idx];
 | |
|             if (min_z == max_z) {
 | |
|                 // All three vertices are aligned with slice_z.
 | |
|                 line_out->edge_type = feHorizontal;
 | |
|                 // Mark neighbor edges, which do not have a neighbor.
 | |
|                 uint32_t edges = 0;
 | |
|                 for (int nbr_idx = 0; nbr_idx != 3; ++ nbr_idx) {
 | |
|                     // If the neighbor with an edge starting with a vertex idx (nbr_idx - 2) shares no
 | |
|                     // opposite face, add it to the edges to process when slicing.
 | |
|                     if (nbr.neighbor[nbr_idx] == -1) {
 | |
|                         // Mark this edge to be added to the slice.
 | |
|                         edges |= (IntersectionLine::EDGE0_NO_NEIGHBOR << nbr_idx);
 | |
|                     }
 | |
| #if 1
 | |
|                      else if (normal(2) > 0) {
 | |
|                         // Produce edges for opposite faced overlapping horizontal faces aka folds.
 | |
|                         // This method often produces connecting lines (noise) at the cutting plane.
 | |
|                         // Produce the edges for the top facing face of the pair of top / bottom facing faces.
 | |
| 
 | |
|                         // Index of a neighbor face.
 | |
|                         const int  nbr_face     = nbr.neighbor[nbr_idx];
 | |
|                         const int *nbr_vertices = this->mesh->stl.v_indices[nbr_face].vertex;
 | |
|                         int idx_vertex_opposite = nbr_vertices[nbr.which_vertex_not[nbr_idx]];
 | |
|                         const stl_vertex    &c2 = this->v_scaled_shared[idx_vertex_opposite];
 | |
|                         if (c2(2) == slice_z) {
 | |
|                             // Edge shared by facet_idx and nbr_face.
 | |
|                             int               a_id      = vertices[nbr_idx];
 | |
|                             int               b_id      = vertices[(nbr_idx + 1) % 3];
 | |
|                             int               c1_id     = vertices[(nbr_idx + 2) % 3];
 | |
|                             const stl_vertex &a         = this->v_scaled_shared[a_id];
 | |
|                             const stl_vertex &b         = this->v_scaled_shared[b_id];
 | |
|                             const stl_vertex &c1        = this->v_scaled_shared[c1_id];
 | |
|                             // Verify that the two neighbor faces share a common edge.
 | |
|                             assert(nbr_vertices[(nbr.which_vertex_not[nbr_idx] + 1) % 3] == b_id);
 | |
|                             assert(nbr_vertices[(nbr.which_vertex_not[nbr_idx] + 2) % 3] == a_id);
 | |
|                             double n1 = (double(c1(0)) - double(a(0))) * (double(b(1)) - double(a(1))) - (double(c1(1)) - double(a(1))) * (double(b(0)) - double(a(0)));
 | |
|                             double n2 = (double(c2(0)) - double(a(0))) * (double(b(1)) - double(a(1))) - (double(c2(1)) - double(a(1))) * (double(b(0)) - double(a(0)));
 | |
|                             if (n1 * n2 > 0)
 | |
|                                 // The two faces overlap. This indicates an invalid mesh geometry (non-manifold),
 | |
|                                 // but these are the real world objects, and leaving out these edges leads to missing contours.
 | |
|                                 edges |= (IntersectionLine::EDGE0_FOLD << nbr_idx);
 | |
|                          }
 | |
|                     }
 | |
| #endif
 | |
|                 }
 | |
|                 // Use some edges of this triangle for slicing only if at least one of its edge does not have an opposite face.
 | |
|                 result = (edges == 0) ? Cutting : Slicing;
 | |
|                 line_out->flags |= edges;
 | |
|                 if (normal(2) < 0) {
 | |
|                     // If normal points downwards this is a bottom horizontal facet so we reverse its point order.
 | |
|                     swap = true;
 | |
|                 }
 | |
|             } else {
 | |
|                 // Two vertices are aligned with the cutting plane, the third vertex is below or above the cutting plane.
 | |
|                 int  nbr_idx     = j % 3;
 | |
|                 int  nbr_face    = nbr.neighbor[nbr_idx];
 | |
|                 // Is the third vertex below the cutting plane?
 | |
|                 bool third_below = v0(2) < slice_z || v1(2) < slice_z || v2(2) < slice_z;
 | |
|                 // Is this a concave corner?
 | |
|                 if (nbr_face == -1) {
 | |
| #ifdef _DEBUG
 | |
|                     printf("Face has no neighbor!\n");
 | |
| #endif
 | |
|                 } else {
 | |
|                     assert(this->mesh->stl.v_indices[nbr_face].vertex[(nbr.which_vertex_not[nbr_idx] + 1) % 3] == b_id);
 | |
|                     assert(this->mesh->stl.v_indices[nbr_face].vertex[(nbr.which_vertex_not[nbr_idx] + 2) % 3] == a_id);
 | |
|                     int idx_vertex_opposite = this->mesh->stl.v_indices[nbr_face].vertex[nbr.which_vertex_not[nbr_idx]];
 | |
|                     const stl_vertex &c = this->v_scaled_shared[idx_vertex_opposite];
 | |
|                     if (c(2) == slice_z) {
 | |
|                         double normal_nbr = (double(c(0)) - double(a(0))) * (double(b(1)) - double(a(1))) - (double(c(1)) - double(a(1))) * (double(b(0)) - double(a(0)));
 | |
| #if 0
 | |
|                         if ((normal_nbr < 0) == third_below) {
 | |
|                             printf("Flipped normal?\n");
 | |
|                         }
 | |
| #endif
 | |
|                         result =
 | |
|                                 // A vertical face shares edge with a horizontal face. Verify, whether the shared edge makes a convex or concave corner.
 | |
|                                 // Unfortunately too often there are flipped normals, which brake our assumption. Let's rather return every edge,
 | |
|                                 // and leth the code downstream hopefully handle it.
 | |
|     #if 1
 | |
|                                 // Ignore concave corners for slicing.
 | |
|                                 // This method has the unfortunate property, that folds in a horizontal plane create concave corners,
 | |
|                                 // leading to broken contours, if these concave corners are not replaced by edges of the folds, see above.
 | |
|                                    ((normal_nbr < 0) == third_below) ? Cutting : Slicing;
 | |
|     #else
 | |
|                                 // Use concave corners for slicing. This leads to the test 01_trianglemesh.t "slicing a top tangent plane includes its area" failing,
 | |
|                                 // and rightly so.
 | |
|                                     Slicing;
 | |
|     #endif
 | |
|                     } else {
 | |
|                         // For a pair of faces touching exactly at the cutting plane, ignore one of them. An arbitrary rule is to ignore the face with a higher index.
 | |
|                         result = (facet_idx < nbr_face) ? Slicing : Cutting;
 | |
|                     }
 | |
|                 }
 | |
|                 if (third_below) {
 | |
|                     line_out->edge_type = feTop;
 | |
|                     swap = true;
 | |
|                 } else
 | |
|                     line_out->edge_type = feBottom;
 | |
|             }
 | |
|             line_out->a = to_2d(swap ? b : a).cast<coord_t>();
 | |
|             line_out->b = to_2d(swap ? a : b).cast<coord_t>();
 | |
|             line_out->a_id = swap ? b_id : a_id;
 | |
|             line_out->b_id = swap ? a_id : b_id;
 | |
|             assert(line_out->a != line_out->b);
 | |
|             return result;
 | |
|         }
 | |
| 
 | |
|         if (a(2) == slice_z) {
 | |
|             // Only point a alings with the cutting plane.
 | |
|             if (point_on_layer == size_t(-1) || points[point_on_layer].point_id != a_id) {
 | |
|                 point_on_layer = num_points;
 | |
|                 IntersectionPoint &point = points[num_points ++];
 | |
|                 point(0)       = a(0);
 | |
|                 point(1)       = a(1);
 | |
|                 point.point_id  = a_id;
 | |
|             }
 | |
|         } else if (b(2) == slice_z) {
 | |
|             // Only point b alings with the cutting plane.
 | |
|             if (point_on_layer == size_t(-1) || points[point_on_layer].point_id != b_id) {
 | |
|                 point_on_layer = num_points;
 | |
|                 IntersectionPoint &point = points[num_points ++];
 | |
|                 point(0)       = b(0);
 | |
|                 point(1)       = b(1);
 | |
|                 point.point_id  = b_id;
 | |
|             }
 | |
|         } else if ((a(2) < slice_z && b(2) > slice_z) || (b(2) < slice_z && a(2) > slice_z)) {
 | |
|             // A general case. The face edge intersects the cutting plane. Calculate the intersection point.
 | |
|             assert(a_id != b_id);
 | |
|             // Sort the edge to give a consistent answer.
 | |
|             const stl_vertex *pa = &a;
 | |
|             const stl_vertex *pb = &b;
 | |
|             if (a_id > b_id) {
 | |
|                 std::swap(a_id, b_id);
 | |
|                 std::swap(pa, pb);
 | |
|             }
 | |
|             IntersectionPoint &point = points[num_points];
 | |
|             double t = (double(slice_z) - double((*pb)(2))) / (double((*pa)(2)) - double((*pb)(2)));
 | |
|             if (t <= 0.) {
 | |
|                 if (point_on_layer == size_t(-1) || points[point_on_layer].point_id != a_id) {
 | |
|                     point(0) = (*pa)(0);
 | |
|                     point(1) = (*pa)(1);
 | |
|                     point_on_layer = num_points ++;
 | |
|                     point.point_id = a_id;
 | |
|                 }
 | |
|             } else if (t >= 1.) {
 | |
|                 if (point_on_layer == size_t(-1) || points[point_on_layer].point_id != b_id) {
 | |
|                     point(0) = (*pb)(0);
 | |
|                     point(1) = (*pb)(1);
 | |
|                     point_on_layer = num_points ++;
 | |
|                     point.point_id = b_id;
 | |
|                 }
 | |
|             } else {
 | |
|                 point(0) = coord_t(floor(double((*pb)(0)) + (double((*pa)(0)) - double((*pb)(0))) * t + 0.5));
 | |
|                 point(1) = coord_t(floor(double((*pb)(1)) + (double((*pa)(1)) - double((*pb)(1))) * t + 0.5));
 | |
|                 point.edge_id = edge_id;
 | |
|                 ++ num_points;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Facets must intersect each plane 0 or 2 times, or it may touch the plane at a single vertex only.
 | |
|     assert(num_points < 3);
 | |
|     if (num_points == 2) {
 | |
|         line_out->edge_type  = feGeneral;
 | |
|         line_out->a          = (Point)points[1];
 | |
|         line_out->b          = (Point)points[0];
 | |
|         line_out->a_id       = points[1].point_id;
 | |
|         line_out->b_id       = points[0].point_id;
 | |
|         line_out->edge_a_id  = points[1].edge_id;
 | |
|         line_out->edge_b_id  = points[0].edge_id;
 | |
|         // Not a zero lenght edge.
 | |
|         //FIXME slice_facet() may create zero length edges due to rounding of doubles into coord_t.
 | |
|         //assert(line_out->a != line_out->b);
 | |
|         // The plane cuts at least one edge in a general position.
 | |
|         assert(line_out->a_id == -1 || line_out->b_id == -1);
 | |
|         assert(line_out->edge_a_id != -1 || line_out->edge_b_id != -1);
 | |
|         // General slicing position, use the segment for both slicing and object cutting.
 | |
| #if 0
 | |
|         if (line_out->a_id != -1 && line_out->b_id != -1) {
 | |
|             // Solving a degenerate case, where both the intersections snapped to an edge.
 | |
|             // Correctly classify the face as below or above based on the position of the 3rd point.
 | |
|             int i = vertices[0];
 | |
|             if (i == line_out->a_id || i == line_out->b_id)
 | |
|                 i = vertices[1];
 | |
|             if (i == line_out->a_id || i == line_out->b_id)
 | |
|                 i = vertices[2];
 | |
|             assert(i != line_out->a_id && i != line_out->b_id);
 | |
|             line_out->edge_type = (this->v_scaled_shared[i].z < slice_z) ? feTop : feBottom;
 | |
|         }
 | |
| #endif
 | |
|         return Slicing;
 | |
|     }
 | |
|     return NoSlice;
 | |
| }
 | |
| 
 | |
| //FIXME Should this go away? For valid meshes the function slice_facet() returns Slicing
 | |
| // and sets edges of vertical triangles to produce only a single edge per pair of neighbor faces.
 | |
| // So the following code makes only sense now to handle degenerate meshes with more than two faces
 | |
| // sharing a single edge.
 | |
| static inline void remove_tangent_edges(std::vector<IntersectionLine> &lines)
 | |
| {
 | |
|     std::vector<IntersectionLine*> by_vertex_pair;
 | |
|     by_vertex_pair.reserve(lines.size());
 | |
|     for (IntersectionLine& line : lines)
 | |
|         if (line.edge_type != feGeneral && line.a_id != -1)
 | |
|             // This is a face edge. Check whether there is its neighbor stored in lines.
 | |
|             by_vertex_pair.emplace_back(&line);
 | |
|     auto edges_lower_sorted = [](const IntersectionLine *l1, const IntersectionLine *l2) {
 | |
|         // Sort vertices of l1, l2 lexicographically
 | |
|         int l1a = l1->a_id;
 | |
|         int l1b = l1->b_id;
 | |
|         int l2a = l2->a_id;
 | |
|         int l2b = l2->b_id;
 | |
|         if (l1a > l1b)
 | |
|             std::swap(l1a, l1b);
 | |
|         if (l2a > l2b)
 | |
|             std::swap(l2a, l2b);
 | |
|         // Lexicographical "lower" operator on lexicographically sorted vertices should bring equal edges together when sored.
 | |
|         return l1a < l2a || (l1a == l2a && l1b < l2b);
 | |
|     };
 | |
|     std::sort(by_vertex_pair.begin(), by_vertex_pair.end(), edges_lower_sorted);
 | |
|     for (auto line = by_vertex_pair.begin(); line != by_vertex_pair.end(); ++ line) {
 | |
|         IntersectionLine &l1 = **line;
 | |
|         if (! l1.skip()) {
 | |
|             // Iterate as long as line and line2 edges share the same end points.
 | |
|             for (auto line2 = line + 1; line2 != by_vertex_pair.end() && ! edges_lower_sorted(*line, *line2); ++ line2) {
 | |
|                 // Lines must share the end points.
 | |
|                 assert(! edges_lower_sorted(*line, *line2));
 | |
|                 assert(! edges_lower_sorted(*line2, *line));
 | |
|                 IntersectionLine &l2 = **line2;
 | |
|                 if (l2.skip())
 | |
|                     continue;
 | |
|                 if (l1.a_id == l2.a_id) {
 | |
|                     assert(l1.b_id == l2.b_id);
 | |
|                     l2.set_skip();
 | |
|                     // If they are both oriented upwards or downwards (like a 'V'),
 | |
|                     // then we can remove both edges from this layer since it won't 
 | |
|                     // affect the sliced shape.
 | |
|                     // If one of them is oriented upwards and the other is oriented
 | |
|                     // downwards, let's only keep one of them (it doesn't matter which
 | |
|                     // one since all 'top' lines were reversed at slicing).
 | |
|                     if (l1.edge_type == l2.edge_type) {
 | |
|                         l1.set_skip();
 | |
|                         break;
 | |
|                     }
 | |
|                 } else {
 | |
|                     assert(l1.a_id == l2.b_id && l1.b_id == l2.a_id);
 | |
|                     // If this edge joins two horizontal facets, remove both of them.
 | |
|                     if (l1.edge_type == feHorizontal && l2.edge_type == feHorizontal) {
 | |
|                         l1.set_skip();
 | |
|                         l2.set_skip();
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void TriangleMeshSlicer::make_loops(std::vector<IntersectionLine> &lines, Polygons* loops) const
 | |
| {
 | |
| #if 0
 | |
| //FIXME slice_facet() may create zero length edges due to rounding of doubles into coord_t.
 | |
| //#ifdef _DEBUG
 | |
|     for (const Line &l : lines)
 | |
|         assert(l.a != l.b);
 | |
| #endif /* _DEBUG */
 | |
| 
 | |
|     remove_tangent_edges(lines);
 | |
| 
 | |
|     struct OpenPolyline {
 | |
|         OpenPolyline() {};
 | |
|         OpenPolyline(const IntersectionReference &start, const IntersectionReference &end, Points &&points) : 
 | |
|             start(start), end(end), points(std::move(points)), consumed(false) {}
 | |
|         void reverse() {
 | |
|             std::swap(start, end);
 | |
|             std::reverse(points.begin(), points.end());
 | |
|         }
 | |
|         IntersectionReference   start;
 | |
|         IntersectionReference   end;
 | |
|         Points                  points;
 | |
|         bool                    consumed;
 | |
|     };
 | |
|     std::vector<OpenPolyline> open_polylines;
 | |
|     {
 | |
|         // Build a map of lines by edge_a_id and a_id.
 | |
|         std::vector<IntersectionLine*> by_edge_a_id;
 | |
|         std::vector<IntersectionLine*> by_a_id;
 | |
|         by_edge_a_id.reserve(lines.size());
 | |
|         by_a_id.reserve(lines.size());
 | |
|         for (IntersectionLine &line : lines) {
 | |
|             if (! line.skip()) {
 | |
|                 if (line.edge_a_id != -1)
 | |
|                     by_edge_a_id.emplace_back(&line);
 | |
|                 if (line.a_id != -1)
 | |
|                     by_a_id.emplace_back(&line);
 | |
|             }
 | |
|         }
 | |
|         auto by_edge_lower = [](const IntersectionLine* il1, const IntersectionLine *il2) { return il1->edge_a_id < il2->edge_a_id; };
 | |
|         auto by_vertex_lower = [](const IntersectionLine* il1, const IntersectionLine *il2) { return il1->a_id < il2->a_id; };
 | |
|         std::sort(by_edge_a_id.begin(), by_edge_a_id.end(), by_edge_lower);
 | |
|         std::sort(by_a_id.begin(), by_a_id.end(), by_vertex_lower);
 | |
|         // Chain the segments with a greedy algorithm, collect the loops and unclosed polylines.
 | |
|         IntersectionLines::iterator it_line_seed = lines.begin();
 | |
|         for (;;) {
 | |
|             // take first spare line and start a new loop
 | |
|             IntersectionLine *first_line = nullptr;
 | |
|             for (; it_line_seed != lines.end(); ++ it_line_seed)
 | |
|                 if (it_line_seed->is_seed_candidate()) {
 | |
|                 //if (! it_line_seed->skip()) {
 | |
|                     first_line = &(*it_line_seed ++);
 | |
|                     break;
 | |
|                 }
 | |
|             if (first_line == nullptr)
 | |
|                 break;
 | |
|             first_line->set_skip();
 | |
|             Points loop_pts;
 | |
|             loop_pts.emplace_back(first_line->a);
 | |
|             IntersectionLine *last_line = first_line;
 | |
|             
 | |
|             /*
 | |
|             printf("first_line edge_a_id = %d, edge_b_id = %d, a_id = %d, b_id = %d, a = %d,%d, b = %d,%d\n", 
 | |
|                 first_line->edge_a_id, first_line->edge_b_id, first_line->a_id, first_line->b_id,
 | |
|                 first_line->a.x, first_line->a.y, first_line->b.x, first_line->b.y);
 | |
|             */
 | |
|             
 | |
|             IntersectionLine key;
 | |
|             for (;;) {
 | |
|                 // find a line starting where last one finishes
 | |
|                 IntersectionLine* next_line = nullptr;
 | |
|                 if (last_line->edge_b_id != -1) {
 | |
|                     key.edge_a_id = last_line->edge_b_id;
 | |
|                     auto it_begin = std::lower_bound(by_edge_a_id.begin(), by_edge_a_id.end(), &key, by_edge_lower);
 | |
|                     if (it_begin != by_edge_a_id.end()) {
 | |
|                         auto it_end = std::upper_bound(it_begin, by_edge_a_id.end(), &key, by_edge_lower);
 | |
|                         for (auto it_line = it_begin; it_line != it_end; ++ it_line)
 | |
|                             if (! (*it_line)->skip()) {
 | |
|                                 next_line = *it_line;
 | |
|                                 break;
 | |
|                             }
 | |
|                     }
 | |
|                 }
 | |
|                 if (next_line == nullptr && last_line->b_id != -1) {
 | |
|                     key.a_id = last_line->b_id;
 | |
|                     auto it_begin = std::lower_bound(by_a_id.begin(), by_a_id.end(), &key, by_vertex_lower);
 | |
|                     if (it_begin != by_a_id.end()) {
 | |
|                         auto it_end = std::upper_bound(it_begin, by_a_id.end(), &key, by_vertex_lower);
 | |
|                         for (auto it_line = it_begin; it_line != it_end; ++ it_line)
 | |
|                             if (! (*it_line)->skip()) {
 | |
|                                 next_line = *it_line;
 | |
|                                 break;
 | |
|                             }
 | |
|                     }
 | |
|                 }
 | |
|                 if (next_line == nullptr) {
 | |
|                     // Check whether we closed this loop.
 | |
|                     if ((first_line->edge_a_id != -1 && first_line->edge_a_id == last_line->edge_b_id) || 
 | |
|                         (first_line->a_id      != -1 && first_line->a_id      == last_line->b_id)) {
 | |
|                         // The current loop is complete. Add it to the output.
 | |
|                         loops->emplace_back(std::move(loop_pts));
 | |
|                         #ifdef SLIC3R_TRIANGLEMESH_DEBUG
 | |
|                         printf("  Discovered %s polygon of %d points\n", (p.is_counter_clockwise() ? "ccw" : "cw"), (int)p.points.size());
 | |
|                         #endif
 | |
|                     } else {
 | |
|                         // This is an open polyline. Add it to the list of open polylines. These open polylines will processed later.
 | |
|                         loop_pts.emplace_back(last_line->b);
 | |
|                         open_polylines.emplace_back(OpenPolyline(
 | |
|                             IntersectionReference(first_line->a_id, first_line->edge_a_id), 
 | |
|                             IntersectionReference(last_line->b_id, last_line->edge_b_id), std::move(loop_pts)));
 | |
|                     }
 | |
|                     break;
 | |
|                 }
 | |
|                 /*
 | |
|                 printf("next_line edge_a_id = %d, edge_b_id = %d, a_id = %d, b_id = %d, a = %d,%d, b = %d,%d\n", 
 | |
|                     next_line->edge_a_id, next_line->edge_b_id, next_line->a_id, next_line->b_id,
 | |
|                     next_line->a.x, next_line->a.y, next_line->b.x, next_line->b.y);
 | |
|                 */
 | |
|                 loop_pts.emplace_back(next_line->a);
 | |
|                 last_line = next_line;
 | |
|                 next_line->set_skip();
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Now process the open polylines.
 | |
|     if (! open_polylines.empty()) {
 | |
|         // Store the end points of open_polylines into vectors sorted
 | |
|         struct OpenPolylineEnd {
 | |
|             OpenPolylineEnd(OpenPolyline *polyline, bool start) : polyline(polyline), start(start) {}
 | |
|             OpenPolyline    *polyline;
 | |
|             // Is it the start or end point?
 | |
|             bool             start;
 | |
|             const IntersectionReference& ipref() const { return start ? polyline->start : polyline->end; }
 | |
|             int point_id() const { return ipref().point_id; }
 | |
|             int edge_id () const { return ipref().edge_id; }
 | |
|         };
 | |
|         auto by_edge_lower = [](const OpenPolylineEnd &ope1, const OpenPolylineEnd &ope2) { return ope1.edge_id() < ope2.edge_id(); };
 | |
|         auto by_point_lower = [](const OpenPolylineEnd &ope1, const OpenPolylineEnd &ope2) { return ope1.point_id() < ope2.point_id(); };
 | |
|         std::vector<OpenPolylineEnd> by_edge_id;
 | |
|         std::vector<OpenPolylineEnd> by_point_id;
 | |
|         by_edge_id.reserve(2 * open_polylines.size());
 | |
|         by_point_id.reserve(2 * open_polylines.size());
 | |
|         for (OpenPolyline &opl : open_polylines) {
 | |
|             if (opl.start.edge_id != -1)
 | |
|                 by_edge_id .emplace_back(OpenPolylineEnd(&opl, true));
 | |
|             if (opl.end.edge_id != -1)
 | |
|                 by_edge_id .emplace_back(OpenPolylineEnd(&opl, false));
 | |
|             if (opl.start.point_id != -1)
 | |
|                 by_point_id.emplace_back(OpenPolylineEnd(&opl, true));
 | |
|             if (opl.end.point_id != -1)
 | |
|                 by_point_id.emplace_back(OpenPolylineEnd(&opl, false));
 | |
|         }
 | |
|         std::sort(by_edge_id .begin(), by_edge_id .end(), by_edge_lower);
 | |
|         std::sort(by_point_id.begin(), by_point_id.end(), by_point_lower);
 | |
| 
 | |
|         // Try to connect the loops.
 | |
|         for (OpenPolyline &opl : open_polylines) {
 | |
|             if (opl.consumed)
 | |
|                 continue;
 | |
|             opl.consumed = true;
 | |
|             OpenPolylineEnd end(&opl, false);
 | |
|             for (;;) {
 | |
|                 // find a line starting where last one finishes
 | |
|                 OpenPolylineEnd* next_start = nullptr;
 | |
|                 if (end.edge_id() != -1) {
 | |
|                     auto it_begin = std::lower_bound(by_edge_id.begin(), by_edge_id.end(), end, by_edge_lower);
 | |
|                     if (it_begin != by_edge_id.end()) {
 | |
|                         auto it_end = std::upper_bound(it_begin, by_edge_id.end(), end, by_edge_lower);
 | |
|                         for (auto it_edge = it_begin; it_edge != it_end; ++ it_edge)
 | |
|                             if (! it_edge->polyline->consumed) {
 | |
|                                 next_start = &(*it_edge);
 | |
|                                 break;
 | |
|                             }
 | |
|                     }
 | |
|                 }
 | |
|                 if (next_start == nullptr && end.point_id() != -1) {
 | |
|                     auto it_begin = std::lower_bound(by_point_id.begin(), by_point_id.end(), end, by_point_lower);
 | |
|                     if (it_begin != by_point_id.end()) {
 | |
|                         auto it_end = std::upper_bound(it_begin, by_point_id.end(), end, by_point_lower);
 | |
|                         for (auto it_point = it_begin; it_point != it_end; ++ it_point)
 | |
|                             if (! it_point->polyline->consumed) {
 | |
|                                 next_start = &(*it_point);
 | |
|                                 break;
 | |
|                             }
 | |
|                     }
 | |
|                 }
 | |
|                 if (next_start == nullptr) {
 | |
|                     // The current loop could not be closed. Unmark the segment.
 | |
|                     opl.consumed = false;
 | |
|                     break;
 | |
|                 }
 | |
|                 // Attach this polyline to the end of the initial polyline.
 | |
|                 if (next_start->start) {
 | |
|                     auto it = next_start->polyline->points.begin();
 | |
|                     std::copy(++ it, next_start->polyline->points.end(), back_inserter(opl.points));
 | |
|                     //opl.points.insert(opl.points.back(), ++ it, next_start->polyline->points.end());
 | |
|                 } else {
 | |
|                     auto it = next_start->polyline->points.rbegin();
 | |
|                     std::copy(++ it, next_start->polyline->points.rend(), back_inserter(opl.points));
 | |
|                     //opl.points.insert(opl.points.back(), ++ it, next_start->polyline->points.rend());
 | |
|                 }
 | |
|                 end = *next_start;
 | |
|                 end.start = !end.start;
 | |
|                 next_start->polyline->points.clear();
 | |
|                 next_start->polyline->consumed = true;
 | |
|                 // Check whether we closed this loop.
 | |
|                 const IntersectionReference &ip1 = opl.start;
 | |
|                 const IntersectionReference &ip2 = end.ipref();
 | |
|                 if ((ip1.edge_id  != -1 && ip1.edge_id  == ip2.edge_id) ||
 | |
|                     (ip1.point_id != -1 && ip1.point_id == ip2.point_id)) {
 | |
|                     // The current loop is complete. Add it to the output.
 | |
|                     //assert(opl.points.front().point_id == opl.points.back().point_id);
 | |
|                     //assert(opl.points.front().edge_id  == opl.points.back().edge_id);
 | |
|                     // Remove the duplicate last point.
 | |
|                     opl.points.pop_back();
 | |
|                     if (opl.points.size() >= 3) {
 | |
|                         // The closed polygon is patched from pieces with messed up orientation, therefore
 | |
|                         // the orientation of the patched up polygon is not known.
 | |
|                         // Orient the patched up polygons CCW. This heuristic may close some holes and cavities.
 | |
|                         double area = 0.;
 | |
|                         for (size_t i = 0, j = opl.points.size() - 1; i < opl.points.size(); j = i ++)
 | |
|                             area += double(opl.points[j](0) + opl.points[i](0)) * double(opl.points[i](1) - opl.points[j](1));
 | |
|                         if (area < 0)
 | |
|                             std::reverse(opl.points.begin(), opl.points.end());
 | |
|                         loops->emplace_back(std::move(opl.points));
 | |
|                     }
 | |
|                     opl.points.clear();
 | |
|                     break;
 | |
|                 }
 | |
|                 // Continue with the current loop.
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Only used to cut the mesh into two halves.
 | |
| void TriangleMeshSlicer::make_expolygons_simple(std::vector<IntersectionLine> &lines, ExPolygons* slices) const
 | |
| {
 | |
|     assert(slices->empty());
 | |
| 
 | |
|     Polygons loops;
 | |
|     this->make_loops(lines, &loops);
 | |
|     
 | |
|     Polygons holes;
 | |
|     for (Polygons::const_iterator loop = loops.begin(); loop != loops.end(); ++ loop) {
 | |
|         if (loop->area() >= 0.) {
 | |
|             ExPolygon ex;
 | |
|             ex.contour = *loop;
 | |
|             slices->emplace_back(ex);
 | |
|         } else {
 | |
|             holes.emplace_back(*loop);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // If there are holes, then there should also be outer contours.
 | |
|     assert(holes.empty() || ! slices->empty());
 | |
|     if (slices->empty())
 | |
|         return;
 | |
|     
 | |
|     // Assign holes to outer contours.
 | |
|     for (Polygons::const_iterator hole = holes.begin(); hole != holes.end(); ++ hole) {
 | |
|         // Find an outer contour to a hole.
 | |
|         int     slice_idx            = -1;
 | |
|         double  current_contour_area = std::numeric_limits<double>::max();
 | |
|         for (ExPolygons::iterator slice = slices->begin(); slice != slices->end(); ++ slice) {
 | |
|             if (slice->contour.contains(hole->points.front())) {
 | |
|                 double area = slice->contour.area();
 | |
|                 if (area < current_contour_area) {
 | |
|                     slice_idx = slice - slices->begin();
 | |
|                     current_contour_area = area;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         // assert(slice_idx != -1);
 | |
|         if (slice_idx == -1)
 | |
|             // Ignore this hole.
 | |
|             continue;
 | |
|         assert(current_contour_area < std::numeric_limits<double>::max() && current_contour_area >= -hole->area());
 | |
|         (*slices)[slice_idx].holes.emplace_back(std::move(*hole));
 | |
|     }
 | |
| 
 | |
| #if 0
 | |
|     // If the input mesh is not valid, the holes may intersect with the external contour.
 | |
|     // Rather subtract them from the outer contour.
 | |
|     Polygons poly;
 | |
|     for (auto it_slice = slices->begin(); it_slice != slices->end(); ++ it_slice) {
 | |
|         if (it_slice->holes.empty()) {
 | |
|             poly.emplace_back(std::move(it_slice->contour));
 | |
|         } else {
 | |
|             Polygons contours;
 | |
|             contours.emplace_back(std::move(it_slice->contour));
 | |
|             for (auto it = it_slice->holes.begin(); it != it_slice->holes.end(); ++ it)
 | |
|                 it->reverse();
 | |
|             polygons_append(poly, diff(contours, it_slice->holes));
 | |
|         }
 | |
|     }
 | |
|     // If the input mesh is not valid, the input contours may intersect.
 | |
|     *slices = union_ex(poly);
 | |
| #endif
 | |
| 
 | |
| #if 0
 | |
|     // If the input mesh is not valid, the holes may intersect with the external contour.
 | |
|     // Rather subtract them from the outer contour.
 | |
|     ExPolygons poly;
 | |
|     for (auto it_slice = slices->begin(); it_slice != slices->end(); ++ it_slice) {
 | |
|         Polygons contours;
 | |
|         contours.emplace_back(std::move(it_slice->contour));
 | |
|         for (auto it = it_slice->holes.begin(); it != it_slice->holes.end(); ++ it)
 | |
|             it->reverse();
 | |
|         expolygons_append(poly, diff_ex(contours, it_slice->holes));
 | |
|     }
 | |
|     // If the input mesh is not valid, the input contours may intersect.
 | |
|     *slices = std::move(poly);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void TriangleMeshSlicer::make_expolygons(const Polygons &loops, ExPolygons* slices) const
 | |
| {
 | |
|     /*
 | |
|         Input loops are not suitable for evenodd nor nonzero fill types, as we might get
 | |
|         two consecutive concentric loops having the same winding order - and we have to 
 | |
|         respect such order. In that case, evenodd would create wrong inversions, and nonzero
 | |
|         would ignore holes inside two concentric contours.
 | |
|         So we're ordering loops and collapse consecutive concentric loops having the same 
 | |
|         winding order.
 | |
|         TODO: find a faster algorithm for this, maybe with some sort of binary search.
 | |
|         If we computed a "nesting tree" we could also just remove the consecutive loops
 | |
|         having the same winding order, and remove the extra one(s) so that we could just
 | |
|         supply everything to offset() instead of performing several union/diff calls.
 | |
|     
 | |
|         we sort by area assuming that the outermost loops have larger area;
 | |
|         the previous sorting method, based on $b->contains($a->[0]), failed to nest
 | |
|         loops correctly in some edge cases when original model had overlapping facets
 | |
|     */
 | |
| 
 | |
|     /* The following lines are commented out because they can generate wrong polygons,
 | |
|        see for example issue #661 */
 | |
| 
 | |
|     //std::vector<double> area;
 | |
|     //std::vector<size_t> sorted_area;  // vector of indices
 | |
|     //for (Polygons::const_iterator loop = loops.begin(); loop != loops.end(); ++ loop) {
 | |
|     //    area.emplace_back(loop->area());
 | |
|     //    sorted_area.emplace_back(loop - loops.begin());
 | |
|     //}
 | |
|     //
 | |
|     //// outer first
 | |
|     //std::sort(sorted_area.begin(), sorted_area.end(),
 | |
|     //    [&area](size_t a, size_t b) { return std::abs(area[a]) > std::abs(area[b]); });
 | |
| 
 | |
|     //// we don't perform a safety offset now because it might reverse cw loops
 | |
|     //Polygons p_slices;
 | |
|     //for (std::vector<size_t>::const_iterator loop_idx = sorted_area.begin(); loop_idx != sorted_area.end(); ++ loop_idx) {
 | |
|     //    /* we rely on the already computed area to determine the winding order
 | |
|     //       of the loops, since the Orientation() function provided by Clipper
 | |
|     //       would do the same, thus repeating the calculation */
 | |
|     //    Polygons::const_iterator loop = loops.begin() + *loop_idx;
 | |
|     //    if (area[*loop_idx] > +EPSILON)
 | |
|     //        p_slices.emplace_back(*loop);
 | |
|     //    else if (area[*loop_idx] < -EPSILON)
 | |
|     //        //FIXME This is arbitrary and possibly very slow.
 | |
|     //        // If the hole is inside a polygon, then there is no need to diff.
 | |
|     //        // If the hole intersects a polygon boundary, then diff it, but then
 | |
|     //        // there is no guarantee of an ordering of the loops.
 | |
|     //        // Maybe we can test for the intersection before running the expensive diff algorithm?
 | |
|     //        p_slices = diff(p_slices, *loop);
 | |
|     //}
 | |
| 
 | |
|     // perform a safety offset to merge very close facets (TODO: find test case for this)
 | |
|     double safety_offset = scale_(0.0499);
 | |
| //FIXME see https://github.com/prusa3d/Slic3r/issues/520
 | |
| //    double safety_offset = scale_(0.0001);
 | |
| 
 | |
|     /* The following line is commented out because it can generate wrong polygons,
 | |
|        see for example issue #661 */
 | |
|     //ExPolygons ex_slices = offset2_ex(p_slices, +safety_offset, -safety_offset);
 | |
|     
 | |
|     #ifdef SLIC3R_TRIANGLEMESH_DEBUG
 | |
|     size_t holes_count = 0;
 | |
|     for (ExPolygons::const_iterator e = ex_slices.begin(); e != ex_slices.end(); ++ e)
 | |
|         holes_count += e->holes.size();
 | |
|     printf(PRINTF_ZU " surface(s) having " PRINTF_ZU " holes detected from " PRINTF_ZU " polylines\n",
 | |
|         ex_slices.size(), holes_count, loops.size());
 | |
|     #endif
 | |
|     
 | |
|     // append to the supplied collection
 | |
|     /* Fix for issue #661 { */
 | |
|     expolygons_append(*slices, offset2_ex(union_(loops, false), +safety_offset, -safety_offset));
 | |
|     //expolygons_append(*slices, ex_slices);
 | |
|     /* } */
 | |
| }
 | |
| 
 | |
| void TriangleMeshSlicer::make_expolygons(std::vector<IntersectionLine> &lines, ExPolygons* slices) const
 | |
| {
 | |
|     Polygons pp;
 | |
|     this->make_loops(lines, &pp);
 | |
|     this->make_expolygons(pp, slices);
 | |
| }
 | |
| 
 | |
| void TriangleMeshSlicer::cut(float z, TriangleMesh* upper, TriangleMesh* lower) const
 | |
| {
 | |
|     IntersectionLines upper_lines, lower_lines;
 | |
|     
 | |
|     float scaled_z = scale_(z);
 | |
|     for (int facet_idx = 0; facet_idx < this->mesh->stl.stats.number_of_facets; ++ facet_idx) {
 | |
|         stl_facet* facet = &this->mesh->stl.facet_start[facet_idx];
 | |
|         
 | |
|         // find facet extents
 | |
|         float min_z = std::min(facet->vertex[0](2), std::min(facet->vertex[1](2), facet->vertex[2](2)));
 | |
|         float max_z = std::max(facet->vertex[0](2), std::max(facet->vertex[1](2), facet->vertex[2](2)));
 | |
|         
 | |
|         // intersect facet with cutting plane
 | |
|         IntersectionLine line;
 | |
|         if (this->slice_facet(scaled_z, *facet, facet_idx, min_z, max_z, &line) != TriangleMeshSlicer::NoSlice) {
 | |
|             // Save intersection lines for generating correct triangulations.
 | |
|             if (line.edge_type == feTop) {
 | |
|                 lower_lines.emplace_back(line);
 | |
|             } else if (line.edge_type == feBottom) {
 | |
|                 upper_lines.emplace_back(line);
 | |
|             } else if (line.edge_type != feHorizontal) {
 | |
|                 lower_lines.emplace_back(line);
 | |
|                 upper_lines.emplace_back(line);
 | |
|             }
 | |
|         }
 | |
|         
 | |
|         if (min_z > z || (min_z == z && max_z > z)) {
 | |
|             // facet is above the cut plane and does not belong to it
 | |
|             if (upper != NULL) stl_add_facet(&upper->stl, facet);
 | |
|         } else if (max_z < z || (max_z == z && min_z < z)) {
 | |
|             // facet is below the cut plane and does not belong to it
 | |
|             if (lower != NULL) stl_add_facet(&lower->stl, facet);
 | |
|         } else if (min_z < z && max_z > z) {
 | |
|             // Facet is cut by the slicing plane.
 | |
| 
 | |
|             // look for the vertex on whose side of the slicing plane there are no other vertices
 | |
|             int isolated_vertex;
 | |
|             if ( (facet->vertex[0](2) > z) == (facet->vertex[1](2) > z) ) {
 | |
|                 isolated_vertex = 2;
 | |
|             } else if ( (facet->vertex[1](2) > z) == (facet->vertex[2](2) > z) ) {
 | |
|                 isolated_vertex = 0;
 | |
|             } else {
 | |
|                 isolated_vertex = 1;
 | |
|             }
 | |
|             
 | |
|             // get vertices starting from the isolated one
 | |
|             const stl_vertex &v0 = facet->vertex[isolated_vertex];
 | |
|             const stl_vertex &v1 = facet->vertex[(isolated_vertex+1) % 3];
 | |
|             const stl_vertex &v2 = facet->vertex[(isolated_vertex+2) % 3];
 | |
|             
 | |
|             // intersect v0-v1 and v2-v0 with cutting plane and make new vertices
 | |
|             stl_vertex v0v1, v2v0;
 | |
|             v0v1(0) = v1(0) + (v0(0) - v1(0)) * (z - v1(2)) / (v0(2) - v1(2));
 | |
|             v0v1(1) = v1(1) + (v0(1) - v1(1)) * (z - v1(2)) / (v0(2) - v1(2));
 | |
|             v0v1(2) = z;
 | |
|             v2v0(0) = v2(0) + (v0(0) - v2(0)) * (z - v2(2)) / (v0(2) - v2(2));
 | |
|             v2v0(1) = v2(1) + (v0(1) - v2(1)) * (z - v2(2)) / (v0(2) - v2(2));
 | |
|             v2v0(2) = z;
 | |
|             
 | |
|             // build the triangular facet
 | |
|             stl_facet triangle;
 | |
|             triangle.normal = facet->normal;
 | |
|             triangle.vertex[0] = v0;
 | |
|             triangle.vertex[1] = v0v1;
 | |
|             triangle.vertex[2] = v2v0;
 | |
|             
 | |
|             // build the facets forming a quadrilateral on the other side
 | |
|             stl_facet quadrilateral[2];
 | |
|             quadrilateral[0].normal = facet->normal;
 | |
|             quadrilateral[0].vertex[0] = v1;
 | |
|             quadrilateral[0].vertex[1] = v2;
 | |
|             quadrilateral[0].vertex[2] = v0v1;
 | |
|             quadrilateral[1].normal = facet->normal;
 | |
|             quadrilateral[1].vertex[0] = v2;
 | |
|             quadrilateral[1].vertex[1] = v2v0;
 | |
|             quadrilateral[1].vertex[2] = v0v1;
 | |
|             
 | |
|             if (v0(2) > z) {
 | |
|                 if (upper != NULL) stl_add_facet(&upper->stl, &triangle);
 | |
|                 if (lower != NULL) {
 | |
|                     stl_add_facet(&lower->stl, &quadrilateral[0]);
 | |
|                     stl_add_facet(&lower->stl, &quadrilateral[1]);
 | |
|                 }
 | |
|             } else {
 | |
|                 if (upper != NULL) {
 | |
|                     stl_add_facet(&upper->stl, &quadrilateral[0]);
 | |
|                     stl_add_facet(&upper->stl, &quadrilateral[1]);
 | |
|                 }
 | |
|                 if (lower != NULL) stl_add_facet(&lower->stl, &triangle);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     
 | |
|     // triangulate holes of upper mesh
 | |
|     if (upper != NULL) {
 | |
|         // compute shape of section
 | |
|         ExPolygons section;
 | |
|         this->make_expolygons_simple(upper_lines, §ion);
 | |
|         
 | |
|         // triangulate section
 | |
|         Polygons triangles;
 | |
|         for (ExPolygons::const_iterator expolygon = section.begin(); expolygon != section.end(); ++expolygon)
 | |
|             expolygon->triangulate_p2t(&triangles);
 | |
|         
 | |
|         // convert triangles to facets and append them to mesh
 | |
|         for (Polygons::const_iterator polygon = triangles.begin(); polygon != triangles.end(); ++polygon) {
 | |
|             Polygon p = *polygon;
 | |
|             p.reverse();
 | |
|             stl_facet facet;
 | |
|             facet.normal = stl_normal(0, 0, -1.f);
 | |
|             for (size_t i = 0; i <= 2; ++i) {
 | |
|                 facet.vertex[i](0) = unscale<float>(p.points[i](0));
 | |
|                 facet.vertex[i](1) = unscale<float>(p.points[i](1));
 | |
|                 facet.vertex[i](2) = z;
 | |
|             }
 | |
|             stl_add_facet(&upper->stl, &facet);
 | |
|         }
 | |
|     }
 | |
|     
 | |
|     // triangulate holes of lower mesh
 | |
|     if (lower != NULL) {
 | |
|         // compute shape of section
 | |
|         ExPolygons section;
 | |
|         this->make_expolygons_simple(lower_lines, §ion);
 | |
|         
 | |
|         // triangulate section
 | |
|         Polygons triangles;
 | |
|         for (ExPolygons::const_iterator expolygon = section.begin(); expolygon != section.end(); ++expolygon)
 | |
|             expolygon->triangulate_p2t(&triangles);
 | |
|         
 | |
|         // convert triangles to facets and append them to mesh
 | |
|         for (Polygons::const_iterator polygon = triangles.begin(); polygon != triangles.end(); ++polygon) {
 | |
|             stl_facet facet;
 | |
|             facet.normal = stl_normal(0, 0, 1.f);
 | |
|             for (size_t i = 0; i <= 2; ++i) {
 | |
|                 facet.vertex[i](0) = unscale<float>(polygon->points[i](0));
 | |
|                 facet.vertex[i](1) = unscale<float>(polygon->points[i](1));
 | |
|                 facet.vertex[i](2) = z;
 | |
|             }
 | |
|             stl_add_facet(&lower->stl, &facet);
 | |
|         }
 | |
|     }
 | |
|     
 | |
|     // Update the bounding box / sphere of the new meshes.
 | |
|     stl_get_size(&upper->stl);
 | |
|     stl_get_size(&lower->stl);
 | |
| }
 | |
| 
 | |
| // Generate the vertex list for a cube solid of arbitrary size in X/Y/Z.
 | |
| TriangleMesh make_cube(double x, double y, double z) {
 | |
|     Vec3d pv[8] = { 
 | |
|         Vec3d(x, y, 0), Vec3d(x, 0, 0), Vec3d(0, 0, 0), 
 | |
|         Vec3d(0, y, 0), Vec3d(x, y, z), Vec3d(0, y, z), 
 | |
|         Vec3d(0, 0, z), Vec3d(x, 0, z) 
 | |
|     };
 | |
|     Vec3crd fv[12] = { 
 | |
|         Vec3crd(0, 1, 2), Vec3crd(0, 2, 3), Vec3crd(4, 5, 6), 
 | |
|         Vec3crd(4, 6, 7), Vec3crd(0, 4, 7), Vec3crd(0, 7, 1), 
 | |
|         Vec3crd(1, 7, 6), Vec3crd(1, 6, 2), Vec3crd(2, 6, 5), 
 | |
|         Vec3crd(2, 5, 3), Vec3crd(4, 0, 3), Vec3crd(4, 3, 5) 
 | |
|     };
 | |
| 
 | |
|     std::vector<Vec3crd> facets(&fv[0], &fv[0]+12);
 | |
|     Pointf3s vertices(&pv[0], &pv[0]+8);
 | |
| 
 | |
|     TriangleMesh mesh(vertices ,facets);
 | |
|     return mesh;
 | |
| }
 | |
| 
 | |
| // Generate the mesh for a cylinder and return it, using 
 | |
| // the generated angle to calculate the top mesh triangles.
 | |
| // Default is 360 sides, angle fa is in radians.
 | |
| TriangleMesh make_cylinder(double r, double h, double fa) {
 | |
|     Pointf3s vertices;
 | |
|     std::vector<Vec3crd> facets;
 | |
| 
 | |
|     // 2 special vertices, top and bottom center, rest are relative to this
 | |
|     vertices.emplace_back(Vec3d(0.0, 0.0, 0.0));
 | |
|     vertices.emplace_back(Vec3d(0.0, 0.0, h));
 | |
| 
 | |
|     // adjust via rounding to get an even multiple for any provided angle.
 | |
|     double angle = (2*PI / floor(2*PI / fa));
 | |
| 
 | |
|     // for each line along the polygon approximating the top/bottom of the
 | |
|     // circle, generate four points and four facets (2 for the wall, 2 for the
 | |
|     // top and bottom.
 | |
|     // Special case: Last line shares 2 vertices with the first line.
 | |
|     unsigned id = vertices.size() - 1;
 | |
|     vertices.emplace_back(Vec3d(sin(0) * r , cos(0) * r, 0));
 | |
|     vertices.emplace_back(Vec3d(sin(0) * r , cos(0) * r, h));
 | |
|     for (double i = 0; i < 2*PI; i+=angle) {
 | |
|         Vec2d p = Eigen::Rotation2Dd(i) * Eigen::Vector2d(0, r);
 | |
|         vertices.emplace_back(Vec3d(p(0), p(1), 0.));
 | |
|         vertices.emplace_back(Vec3d(p(0), p(1), h));
 | |
|         id = vertices.size() - 1;
 | |
|         facets.emplace_back(Vec3crd( 0, id - 1, id - 3)); // top
 | |
|         facets.emplace_back(Vec3crd(id,      1, id - 2)); // bottom
 | |
|         facets.emplace_back(Vec3crd(id, id - 2, id - 3)); // upper-right of side
 | |
|         facets.emplace_back(Vec3crd(id, id - 3, id - 1)); // bottom-left of side
 | |
|     }
 | |
|     // Connect the last set of vertices with the first.
 | |
|     facets.emplace_back(Vec3crd( 2, 0, id - 1));
 | |
|     facets.emplace_back(Vec3crd( 1, 3,     id));
 | |
|     facets.emplace_back(Vec3crd(id, 3,      2));
 | |
|     facets.emplace_back(Vec3crd(id, 2, id - 1));
 | |
|     
 | |
|     TriangleMesh mesh(vertices, facets);
 | |
|     return mesh;
 | |
| }
 | |
| 
 | |
| // Generates mesh for a sphere centered about the origin, using the generated angle
 | |
| // to determine the granularity. 
 | |
| // Default angle is 1 degree.
 | |
| TriangleMesh make_sphere(double rho, double fa) {
 | |
|     Pointf3s vertices;
 | |
|     std::vector<Vec3crd> facets;
 | |
| 
 | |
|     // Algorithm: 
 | |
|     // Add points one-by-one to the sphere grid and form facets using relative coordinates.
 | |
|     // Sphere is composed effectively of a mesh of stacked circles.
 | |
| 
 | |
|     // adjust via rounding to get an even multiple for any provided angle.
 | |
|     double angle = (2*PI / floor(2*PI / fa));
 | |
| 
 | |
|     // Ring to be scaled to generate the steps of the sphere
 | |
|     std::vector<double> ring;
 | |
|     for (double i = 0; i < 2*PI; i+=angle) {
 | |
|         ring.emplace_back(i);
 | |
|     }
 | |
|     const size_t steps = ring.size(); 
 | |
|     const double increment = (double)(1.0 / (double)steps);
 | |
| 
 | |
|     // special case: first ring connects to 0,0,0
 | |
|     // insert and form facets.
 | |
|     vertices.emplace_back(Vec3d(0.0, 0.0, -rho));
 | |
|     size_t id = vertices.size();
 | |
|     for (size_t i = 0; i < ring.size(); i++) {
 | |
|         // Fixed scaling 
 | |
|         const double z = -rho + increment*rho*2.0;
 | |
|         // radius of the circle for this step.
 | |
|         const double r = sqrt(abs(rho*rho - z*z));
 | |
|         Vec2d b = Eigen::Rotation2Dd(ring[i]) * Eigen::Vector2d(0, r);
 | |
|         vertices.emplace_back(Vec3d(b(0), b(1), z));
 | |
|         facets.emplace_back((i == 0) ? Vec3crd(1, 0, ring.size()) : Vec3crd(id, 0, id - 1));
 | |
|         ++ id;
 | |
|     }
 | |
| 
 | |
|     // General case: insert and form facets for each step, joining it to the ring below it.
 | |
|     for (size_t s = 2; s < steps - 1; s++) {
 | |
|         const double z = -rho + increment*(double)s*2.0*rho;
 | |
|         const double r = sqrt(abs(rho*rho - z*z));
 | |
| 
 | |
|         for (size_t i = 0; i < ring.size(); i++) {
 | |
|             Vec2d b = Eigen::Rotation2Dd(ring[i]) * Eigen::Vector2d(0, r);
 | |
|             vertices.emplace_back(Vec3d(b(0), b(1), z));
 | |
|             if (i == 0) {
 | |
|                 // wrap around
 | |
|                 facets.emplace_back(Vec3crd(id + ring.size() - 1 , id, id - 1)); 
 | |
|                 facets.emplace_back(Vec3crd(id, id - ring.size(),  id - 1)); 
 | |
|             } else {
 | |
|                 facets.emplace_back(Vec3crd(id , id - ring.size(), (id - 1) - ring.size())); 
 | |
|                 facets.emplace_back(Vec3crd(id, id - 1 - ring.size() ,  id - 1)); 
 | |
|             }
 | |
|             id++;
 | |
|         } 
 | |
|     }
 | |
| 
 | |
| 
 | |
|     // special case: last ring connects to 0,0,rho*2.0
 | |
|     // only form facets.
 | |
|     vertices.emplace_back(Vec3d(0.0, 0.0, rho));
 | |
|     for (size_t i = 0; i < ring.size(); i++) {
 | |
|         if (i == 0) {
 | |
|             // third vertex is on the other side of the ring.
 | |
|             facets.emplace_back(Vec3crd(id, id - ring.size(),  id - 1));
 | |
|         } else {
 | |
|             facets.emplace_back(Vec3crd(id, id - ring.size() + i,  id - ring.size() + (i - 1)));
 | |
|         }
 | |
|     }
 | |
|     id++;
 | |
|     TriangleMesh mesh(vertices, facets);
 | |
|     return mesh;
 | |
| }
 | |
| }
 | 
