OrcaSlicer/src/libslic3r/PrintExport.hpp

395 lines
13 KiB
C++

#ifndef PRINTEXPORT_HPP
#define PRINTEXPORT_HPP
// For png export of the sliced model
#include <fstream>
#include <sstream>
#include <vector>
#include <boost/log/trivial.hpp>
#include "Rasterizer/Rasterizer.hpp"
//#include <tbb/parallel_for.h>
//#include <tbb/spin_mutex.h>//#include "tbb/mutex.h"
namespace Slic3r {
enum class FilePrinterFormat {
SLA_PNGZIP,
SVG
};
/*
* Interface for a file printer of the slices. Implementation can be an SVG
* or PNG printer or any other format.
*
* The format argument specifies the output format of the printer and it enables
* different implementations of this class template for each supported format.
*
*/
template<FilePrinterFormat format>
class FilePrinter {
public:
void print_config(const Print&);
// Draw an ExPolygon which is a polygon inside a slice on the specified layer.
void draw_polygon(const ExPolygon& p, unsigned lyr);
// Tell the printer how many layers should it consider.
void layers(unsigned layernum);
// Get the number of layers in the print.
unsigned layers() const;
/* Switch to a particular layer. If there where less layers then the
* specified layer number than an appropriate number of layers will be
* allocated in the printer.
*/
void begin_layer(unsigned layer);
// Allocate a new layer on top of the last and switch to it.
void begin_layer();
/*
* Finish the selected layer. It means that no drawing is allowed on that
* layer anymore. This fact can be used to prepare the file system output
* data like png comprimation and so on.
*/
void finish_layer(unsigned layer);
// Finish the top layer.
void finish_layer();
// Save all the layers into the file (or dir) specified in the path argument
void save(const std::string& path);
// Save only the selected layer to the file specified in path argument.
void save_layer(unsigned lyr, const std::string& path);
};
// Provokes static_assert in the right way.
template<class T = void> struct VeryFalse { static const bool value = false; };
// This has to be explicitly implemented in the gui layer or a default zlib
// based implementation is needed. I don't have time for that and I'm delegating
// the implementation to the gui layer where the gui toolkit can cover this.
template<class Fmt> class LayerWriter {
public:
LayerWriter(const std::string& /*zipfile_path*/) {
static_assert(VeryFalse<Fmt>::value,
"No layer writer implementation provided!");
}
void next_entry(const std::string& /*fname*/) {}
std::string get_name() { return ""; }
bool is_ok() { return false; }
template<class T> LayerWriter& operator<<(const T& /*arg*/) {
return *this;
}
void close() {}
};
// Implementation for PNG raster output
// Be aware that if a large number of layers are allocated, it can very well
// exhaust the available memory especially on 32 bit platform.
template<> class FilePrinter<FilePrinterFormat::SLA_PNGZIP>
{
struct Layer {
Raster first;
std::stringstream second;
Layer() {}
Layer(const Layer&) = delete;
Layer(Layer&& m):
first(std::move(m.first))/*, second(std::move(m.second))*/ {}
};
// We will save the compressed PNG data into stringstreams which can be done
// in parallel. Later we can write every layer to the disk sequentially.
std::vector<Layer> m_layers_rst;
Raster::Resolution m_res;
Raster::PixelDim m_pxdim;
double m_exp_time_s = .0, m_exp_time_first_s = .0;
double m_layer_height = .0;
std::string createIniContent(const std::string& projectname) {
double layer_height = m_layer_height;
using std::string;
using std::to_string;
auto expt_str = to_string(m_exp_time_s);
auto expt_first_str = to_string(m_exp_time_first_s);
auto stepnum_str = to_string(static_cast<unsigned>(800*layer_height));
auto layerh_str = to_string(layer_height);
return string(
"action = print\n"
"jobDir = ") + projectname + "\n" +
"expTime = " + expt_str + "\n"
"expTimeFirst = " + expt_first_str + "\n"
"stepNum = " + stepnum_str + "\n"
"wifiOn = 1\n"
"tiltSlow = 60\n"
"tiltFast = 15\n"
"numFade = 10\n"
"startdelay = 0\n"
"layerHeight = " + layerh_str + "\n"
"noteInfo = "
"expTime="+expt_str+"+resinType=generic+layerHeight="
+layerh_str+"+printer=DWARF3\n";
}
// Change this to TOP_LEFT if you want correct PNG orientation
static const Raster::Origin ORIGIN = Raster::Origin::BOTTOM_LEFT;
public:
inline FilePrinter(double width_mm, double height_mm,
unsigned width_px, unsigned height_px,
double layer_height,
double exp_time, double exp_time_first):
m_res(width_px, height_px),
m_pxdim(width_mm/width_px, height_mm/height_px),
m_exp_time_s(exp_time),
m_exp_time_first_s(exp_time_first),
m_layer_height(layer_height)
{
}
FilePrinter(const FilePrinter& ) = delete;
FilePrinter(FilePrinter&& m):
m_layers_rst(std::move(m.m_layers_rst)),
m_res(m.m_res),
m_pxdim(m.m_pxdim) {}
inline void layers(unsigned cnt) { if(cnt > 0) m_layers_rst.resize(cnt); }
inline unsigned layers() const { return unsigned(m_layers_rst.size()); }
inline void draw_polygon(const ExPolygon& p, unsigned lyr) {
assert(lyr < m_layers_rst.size());
m_layers_rst[lyr].first.draw(p);
}
inline void begin_layer(unsigned lyr) {
if(m_layers_rst.size() <= lyr) m_layers_rst.resize(lyr+1);
m_layers_rst[lyr].first.reset(m_res, m_pxdim, ORIGIN);
}
inline void begin_layer() {
m_layers_rst.emplace_back();
m_layers_rst.front().first.reset(m_res, m_pxdim, ORIGIN);
}
inline void finish_layer(unsigned lyr_id) {
assert(lyr_id < m_layers_rst.size());
m_layers_rst[lyr_id].first.save(m_layers_rst[lyr_id].second,
Raster::Compression::PNG);
m_layers_rst[lyr_id].first.reset();
}
inline void finish_layer() {
if(!m_layers_rst.empty()) {
m_layers_rst.back().first.save(m_layers_rst.back().second,
Raster::Compression::PNG);
m_layers_rst.back().first.reset();
}
}
template<class LyrFmt>
inline void save(const std::string& path) {
try {
LayerWriter<LyrFmt> writer(path);
std::string project = writer.get_name();
writer.next_entry("config.ini");
writer << createIniContent(project);
for(unsigned i = 0; i < m_layers_rst.size(); i++) {
if(m_layers_rst[i].second.rdbuf()->in_avail() > 0) {
char lyrnum[6];
std::sprintf(lyrnum, "%.5d", i);
auto zfilename = project + lyrnum + ".png";
writer.next_entry(zfilename);
writer << m_layers_rst[i].second.rdbuf();
m_layers_rst[i].second.str("");
}
}
writer.close();
} catch(std::exception& e) {
BOOST_LOG_TRIVIAL(error) << e.what();
return;
}
}
void save_layer(unsigned lyr, const std::string& path) {
unsigned i = lyr;
assert(i < m_layers_rst.size());
char lyrnum[6];
std::sprintf(lyrnum, "%.5d", lyr);
std::string loc = path + "layer" + lyrnum + ".png";
std::fstream out(loc, std::fstream::out | std::fstream::binary);
if(out.good()) {
m_layers_rst[i].first.save(out, Raster::Compression::PNG);
} else {
BOOST_LOG_TRIVIAL(error) << "Can't create file for layer";
}
out.close();
m_layers_rst[i].first.reset();
}
};
//// Let's shadow this eigen interface
//inline coord_t px(const Point& p) { return p(0); }
//inline coord_t py(const Point& p) { return p(1); }
//inline coordf_t px(const Vec2d& p) { return p(0); }
//inline coordf_t py(const Vec2d& p) { return p(1); }
//template<FilePrinterFormat format, class LayerFormat, class...Args>
//void print_to(Print& print,
// std::string dirpath,
// double width_mm,
// double height_mm,
// Args&&...args)
//{
// std::string& dir = dirpath;
// // This map will hold the layers sorted by z coordinate. Layers on the
// // same height (from different objects) will be mapped to the same key and
// // rasterized to the same image.
// std::map<long long, LayerPtrs> layers;
// auto& objects = print.objects();
// // Merge the sliced layers with the support layers
// std::for_each(objects.cbegin(), objects.cend(),
// [&layers](const PrintObject *o)
// {
// for(const auto l : o->layers()) {
// auto& lyrs = layers[static_cast<long long>(scale_(l->print_z))];
// lyrs.push_back(l);
// }
// for(const auto l : o->support_layers()) {
// auto& lyrs = layers[static_cast<long long>(scale_(l->print_z))];
// lyrs.push_back(l);
// }
// });
// auto print_bb = print.bounding_box();
// Vec2d punsc = unscale(print_bb.size());
// // If the print does not fit into the print area we should cry about it.
// if(px(punsc) > width_mm || py(punsc) > height_mm) {
// BOOST_LOG_TRIVIAL(warning) << "Warning: Print will not fit!" << "\n"
// << "Width needed: " << px(punsc) << "\n"
// << "Height needed: " << py(punsc) << "\n";
// }
// // Offset for centering the print onto the print area
// auto cx = scale_(width_mm)/2 - (px(print_bb.center()) - px(print_bb.min));
// auto cy = scale_(height_mm)/2 - (py(print_bb.center()) - py(print_bb.min));
// // Create the actual printer, forward any additional arguments to it.
// FilePrinter<format, LayerFormat> printer(width_mm, height_mm,
// std::forward<Args>(args)...);
// printer.print_config(print);
// printer.layers(layers.size()); // Allocate space for all the layers
// int st_prev = 0;
// const std::string jobdesc = "Rasterizing and compressing sliced layers";
// tbb::spin_mutex m;
// std::vector<long long> keys;
// keys.reserve(layers.size());
// for(auto& e : layers) keys.push_back(e.first);
// print.set_status(0, jobdesc);
// // Method that prints one layer
// auto process_layer = [&layers, &keys, &printer, &st_prev, &m,
// &jobdesc, print_bb, dir, cx, cy, &print]
// (unsigned layer_id)
// {
// LayerPtrs lrange = layers[keys[layer_id]];
// printer.begin_layer(layer_id); // Switch to the appropriate layer
// for(Layer *lp : lrange) {
// Layer& l = *lp;
// ExPolygonCollection slices = l.slices; // Copy the layer slices
// // Sort the polygons in the layer
// std::stable_sort(slices.expolygons.begin(), slices.expolygons.end(),
// [](const ExPolygon& a, const ExPolygon& b) {
// return a.contour.contains(b.contour.first_point()) ? false :
// true;
// });
// // Draw all the polygons in the slice to the actual layer.
// for (const Point &d : l.object()->copies())
// for (ExPolygon slice : slices.expolygons) {
// slice.translate(px(d), py(d));
// slice.translate(-px(print_bb.min) + cx,
// -py(print_bb.min) + cy);
// printer.draw_polygon(slice, layer_id);
// }
// /*if(print.has_support_material() && layer_id > 0) {
// BOOST_LOG_TRIVIAL(warning) << "support material for layer "
// << layer_id
// << " defined but export is "
// "not yet implemented.";
// }*/
// }
// printer.finish_layer(layer_id); // Finish the layer for later saving it.
// auto st = static_cast<int>(layer_id*80.0/layers.size());
// m.lock();
// if( st - st_prev > 10) {
// print.set_status(st, jobdesc);
// st_prev = st;
// }
// m.unlock();
// // printer.saveLayer(layer_id, dir); We could save the layer immediately
// };
// // Print all the layers in parallel
// tbb::parallel_for<size_t, decltype(process_layer)>(0,
// layers.size(),
// process_layer);
// // Sequential version (for testing)
// // for(unsigned l = 0; l < layers.size(); ++l) process_layer(l);
//// print.set_status(100, jobdesc);
// // Save the print into the file system.
// print.set_status(90, "Writing layers to disk");
// printer.save(dir);
// print.set_status(100, "Writing layers completed");
//}
}
#endif // PRINTEXPORT_HPP