mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-10-28 11:11:16 -06:00
Fixing dep build script on Windows and removing some warnings. Use bundled igl by default. Not building with the dependency scripts if not explicitly stated. This way, it will stay in Fix the libigl patch to include C source files in header only mode.
225 lines
6.6 KiB
C++
225 lines
6.6 KiB
C++
// This file is part of libigl, a simple c++ geometry processing library.
|
|
//
|
|
// Copyright (C) 2013 Alec Jacobson <alecjacobson@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla Public License
|
|
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
|
|
// obtain one at http://mozilla.org/MPL/2.0/.
|
|
#include "fit_rotations.h"
|
|
#include "polar_svd3x3.h"
|
|
#include "repmat.h"
|
|
#include "verbose.h"
|
|
#include "polar_dec.h"
|
|
#include "polar_svd.h"
|
|
#include "C_STR.h"
|
|
#include <iostream>
|
|
|
|
template <typename DerivedS, typename DerivedD>
|
|
IGL_INLINE void igl::fit_rotations(
|
|
const Eigen::PlainObjectBase<DerivedS> & S,
|
|
const bool single_precision,
|
|
Eigen::PlainObjectBase<DerivedD> & R)
|
|
{
|
|
using namespace std;
|
|
const int dim = S.cols();
|
|
const int nr = S.rows()/dim;
|
|
assert(nr * dim == S.rows());
|
|
assert(dim == 3);
|
|
|
|
// resize output
|
|
R.resize(dim,dim*nr); // hopefully no op (should be already allocated)
|
|
|
|
//std::cout<<"S=["<<std::endl<<S<<std::endl<<"];"<<std::endl;
|
|
//MatrixXd si(dim,dim);
|
|
Eigen::Matrix<typename DerivedS::Scalar,3,3> si;// = Eigen::Matrix3d::Identity();
|
|
// loop over number of rotations we're computing
|
|
for(int r = 0;r<nr;r++)
|
|
{
|
|
// build this covariance matrix
|
|
for(int i = 0;i<dim;i++)
|
|
{
|
|
for(int j = 0;j<dim;j++)
|
|
{
|
|
si(i,j) = S(i*nr+r,j);
|
|
}
|
|
}
|
|
typedef Eigen::Matrix<typename DerivedD::Scalar,3,3> Mat3;
|
|
typedef Eigen::Matrix<typename DerivedD::Scalar,3,1> Vec3;
|
|
Mat3 ri;
|
|
if(single_precision)
|
|
{
|
|
polar_svd3x3(si, ri);
|
|
}else
|
|
{
|
|
Mat3 ti,ui,vi;
|
|
Vec3 _;
|
|
igl::polar_svd(si,ri,ti,ui,_,vi);
|
|
}
|
|
assert(ri.determinant() >= 0);
|
|
R.block(0,r*dim,dim,dim) = ri.block(0,0,dim,dim).transpose();
|
|
//cout<<matlab_format(si,C_STR("si_"<<r))<<endl;
|
|
//cout<<matlab_format(ri.transpose().eval(),C_STR("ri_"<<r))<<endl;
|
|
}
|
|
}
|
|
|
|
template <typename DerivedS, typename DerivedD>
|
|
IGL_INLINE void igl::fit_rotations_planar(
|
|
const Eigen::PlainObjectBase<DerivedS> & S,
|
|
Eigen::PlainObjectBase<DerivedD> & R)
|
|
{
|
|
using namespace std;
|
|
const int dim = S.cols();
|
|
const int nr = S.rows()/dim;
|
|
//assert(dim == 2 && "_planar input should be 2D");
|
|
assert(nr * dim == S.rows());
|
|
|
|
// resize output
|
|
R.resize(dim,dim*nr); // hopefully no op (should be already allocated)
|
|
|
|
Eigen::Matrix<typename DerivedS::Scalar,2,2> si;
|
|
// loop over number of rotations we're computing
|
|
for(int r = 0;r<nr;r++)
|
|
{
|
|
// build this covariance matrix
|
|
for(int i = 0;i<2;i++)
|
|
{
|
|
for(int j = 0;j<2;j++)
|
|
{
|
|
si(i,j) = S(i*nr+r,j);
|
|
}
|
|
}
|
|
typedef Eigen::Matrix<typename DerivedD::Scalar,2,2> Mat2;
|
|
typedef Eigen::Matrix<typename DerivedD::Scalar,2,1> Vec2;
|
|
Mat2 ri,ti,ui,vi;
|
|
Vec2 _;
|
|
igl::polar_svd(si,ri,ti,ui,_,vi);
|
|
#ifndef FIT_ROTATIONS_ALLOW_FLIPS
|
|
// Check for reflection
|
|
if(ri.determinant() < 0)
|
|
{
|
|
vi.col(1) *= -1.;
|
|
ri = ui * vi.transpose();
|
|
}
|
|
assert(ri.determinant() >= 0);
|
|
#endif
|
|
|
|
// Not sure why polar_dec computes transpose...
|
|
R.block(0,r*dim,dim,dim).setIdentity();
|
|
R.block(0,r*dim,2,2) = ri.transpose();
|
|
}
|
|
}
|
|
|
|
|
|
#ifdef __SSE__
|
|
IGL_INLINE void igl::fit_rotations_SSE(
|
|
const Eigen::MatrixXf & S,
|
|
Eigen::MatrixXf & R)
|
|
{
|
|
const int cStep = 4;
|
|
|
|
assert(S.cols() == 3);
|
|
const int dim = 3; //S.cols();
|
|
const int nr = S.rows()/dim;
|
|
assert(nr * dim == S.rows());
|
|
|
|
// resize output
|
|
R.resize(dim,dim*nr); // hopefully no op (should be already allocated)
|
|
|
|
Eigen::Matrix<float, 3*cStep, 3> siBig;
|
|
// using SSE decompose cStep matrices at a time:
|
|
int r = 0;
|
|
for( ; r<nr; r+=cStep)
|
|
{
|
|
int numMats = cStep;
|
|
if (r + cStep >= nr) numMats = nr - r;
|
|
// build siBig:
|
|
for (int k=0; k<numMats; k++)
|
|
{
|
|
for(int i = 0;i<dim;i++)
|
|
{
|
|
for(int j = 0;j<dim;j++)
|
|
{
|
|
siBig(i + 3*k, j) = S(i*nr + r + k, j);
|
|
}
|
|
}
|
|
}
|
|
Eigen::Matrix<float, 3*cStep, 3> ri;
|
|
polar_svd3x3_sse(siBig, ri);
|
|
|
|
for (int k=0; k<cStep; k++)
|
|
assert(ri.block(3*k, 0, 3, 3).determinant() >= 0);
|
|
|
|
// Not sure why polar_dec computes transpose...
|
|
for (int k=0; k<numMats; k++)
|
|
{
|
|
R.block(0, (r + k)*dim, dim, dim) = ri.block(3*k, 0, dim, dim).transpose();
|
|
}
|
|
}
|
|
}
|
|
|
|
IGL_INLINE void igl::fit_rotations_SSE(
|
|
const Eigen::MatrixXd & S,
|
|
Eigen::MatrixXd & R)
|
|
{
|
|
const Eigen::MatrixXf Sf = S.cast<float>();
|
|
Eigen::MatrixXf Rf;
|
|
fit_rotations_SSE(Sf,Rf);
|
|
R = Rf.cast<double>();
|
|
}
|
|
#endif
|
|
|
|
#ifdef __AVX__
|
|
IGL_INLINE void igl::fit_rotations_AVX(
|
|
const Eigen::MatrixXf & S,
|
|
Eigen::MatrixXf & R)
|
|
{
|
|
const int cStep = 8;
|
|
|
|
assert(S.cols() == 3);
|
|
const int dim = 3; //S.cols();
|
|
const int nr = S.rows()/dim;
|
|
assert(nr * dim == S.rows());
|
|
|
|
// resize output
|
|
R.resize(dim,dim*nr); // hopefully no op (should be already allocated)
|
|
|
|
Eigen::Matrix<float, 3*cStep, 3> siBig;
|
|
// using SSE decompose cStep matrices at a time:
|
|
int r = 0;
|
|
for( ; r<nr; r+=cStep)
|
|
{
|
|
int numMats = cStep;
|
|
if (r + cStep >= nr) numMats = nr - r;
|
|
// build siBig:
|
|
for (int k=0; k<numMats; k++)
|
|
{
|
|
for(int i = 0;i<dim;i++)
|
|
{
|
|
for(int j = 0;j<dim;j++)
|
|
{
|
|
siBig(i + 3*k, j) = S(i*nr + r + k, j);
|
|
}
|
|
}
|
|
}
|
|
Eigen::Matrix<float, 3*cStep, 3> ri;
|
|
polar_svd3x3_avx(siBig, ri);
|
|
|
|
for (int k=0; k<cStep; k++)
|
|
assert(ri.block(3*k, 0, 3, 3).determinant() >= 0);
|
|
|
|
// Not sure why polar_dec computes transpose...
|
|
for (int k=0; k<numMats; k++)
|
|
{
|
|
R.block(0, (r + k)*dim, dim, dim) = ri.block(3*k, 0, dim, dim).transpose();
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef IGL_STATIC_LIBRARY
|
|
// Explicit template instantiation
|
|
template void igl::fit_rotations<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, bool, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&);
|
|
template void igl::fit_rotations_planar<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&);
|
|
template void igl::fit_rotations_planar<Eigen::Matrix<float, -1, -1, 0, -1, -1>, Eigen::Matrix<float, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<float, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<float, -1, -1, 0, -1, -1> >&);
|
|
template void igl::fit_rotations<Eigen::Matrix<float,-1,-1,0,-1,-1>,Eigen::Matrix<float,-1,-1,0,-1,-1> >(Eigen::PlainObjectBase<Eigen::Matrix<float,-1,-1,0,-1,-1> > const &,bool,Eigen::PlainObjectBase<Eigen::Matrix<float,-1,-1,0,-1,-1> > &);
|
|
#endif
|