mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-10-30 20:21:12 -06:00 
			
		
		
		
	
		
			
				
	
	
		
			320 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			320 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of libigl, a simple c++ geometry processing library.
 | |
| //
 | |
| // Copyright (C) 2016 Michael Rabinovich
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla Public License
 | |
| // v. 2.0. If a copy of the MPL was not distributed with this file, You can
 | |
| // obtain one at http://mozilla.org/MPL/2.0/.
 | |
| #include "flip_avoiding_line_search.h"
 | |
| #include "line_search.h"
 | |
| #include "PI.h"
 | |
| 
 | |
| #include <Eigen/Dense>
 | |
| #include <vector>
 | |
| 
 | |
| namespace igl
 | |
| {
 | |
|   namespace flip_avoiding
 | |
|   {
 | |
|     //---------------------------------------------------------------------------
 | |
|     // x - array of size 3
 | |
|     // In case 3 real roots: => x[0], x[1], x[2], return 3
 | |
|     //         2 real roots: x[0], x[1],          return 2
 | |
|     //         1 real root : x[0], x[1] ± i*x[2], return 1
 | |
|     // http://math.ivanovo.ac.ru/dalgebra/Khashin/poly/index.html
 | |
|     IGL_INLINE int SolveP3(std::vector<double>& x,double a,double b,double c)
 | |
|     { // solve cubic equation x^3 + a*x^2 + b*x + c
 | |
|       using namespace std;
 | |
|       double a2 = a*a;
 | |
|         double q  = (a2 - 3*b)/9;
 | |
|       double r  = (a*(2*a2-9*b) + 27*c)/54;
 | |
|         double r2 = r*r;
 | |
|       double q3 = q*q*q;
 | |
|       double A,B;
 | |
|         if(r2<q3)
 | |
|         {
 | |
|           double t=r/sqrt(q3);
 | |
|           if( t<-1) t=-1;
 | |
|           if( t> 1) t= 1;
 | |
|           t=acos(t);
 | |
|           a/=3; q=-2*sqrt(q);
 | |
|           x[0]=q*cos(t/3)-a;
 | |
|           x[1]=q*cos((t+(2*igl::PI))/3)-a;
 | |
|           x[2]=q*cos((t-(2*igl::PI))/3)-a;
 | |
|           return(3);
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|           A =-pow(fabs(r)+sqrt(r2-q3),1./3);
 | |
|           if( r<0 ) A=-A;
 | |
|           B = A==0? 0 : B=q/A;
 | |
| 
 | |
|           a/=3;
 | |
|           x[0] =(A+B)-a;
 | |
|           x[1] =-0.5*(A+B)-a;
 | |
|           x[2] = 0.5*sqrt(3.)*(A-B);
 | |
|           if(fabs(x[2])<1e-14)
 | |
|           {
 | |
|             x[2]=x[1]; return(2);
 | |
|           }
 | |
|           return(1);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     IGL_INLINE double get_smallest_pos_quad_zero(double a,double b, double c)
 | |
|     {
 | |
|       using namespace std;
 | |
|       double t1, t2;
 | |
|       if(std::abs(a) > 1.0e-10)
 | |
|       {
 | |
|         double delta_in = pow(b, 2) - 4 * a * c;
 | |
|         if(delta_in <= 0)
 | |
|         {
 | |
|           return INFINITY;
 | |
|         }
 | |
| 
 | |
|         double delta = sqrt(delta_in); // delta >= 0
 | |
|         if(b >= 0) // avoid subtracting two similar numbers
 | |
|         {
 | |
|           double bd = - b - delta;
 | |
|           t1 = 2 * c / bd;
 | |
|           t2 = bd / (2 * a);
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|           double bd = - b + delta;
 | |
|           t1 = bd / (2 * a);
 | |
|           t2 = (2 * c) / bd;
 | |
|         }
 | |
| 
 | |
|         assert (std::isfinite(t1));
 | |
|         assert (std::isfinite(t2));
 | |
| 
 | |
|         if(a < 0) std::swap(t1, t2); // make t1 > t2
 | |
|         // return the smaller positive root if it exists, otherwise return infinity
 | |
|         if(t1 > 0)
 | |
|         {
 | |
|           return t2 > 0 ? t2 : t1;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|           return INFINITY;
 | |
|         }
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|         if(b == 0) return INFINITY; // just to avoid divide-by-zero
 | |
|         t1 = -c / b;
 | |
|         return t1 > 0 ? t1 : INFINITY;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     IGL_INLINE double get_min_pos_root_2D(const Eigen::MatrixXd& uv,
 | |
|                                           const Eigen::MatrixXi& F,
 | |
|                                           Eigen::MatrixXd& d,
 | |
|                                           int f)
 | |
|     {
 | |
|       using namespace std;
 | |
|     /*
 | |
|           Finding the smallest timestep t s.t a triangle get degenerated (<=> det = 0)
 | |
|           The following code can be derived by a symbolic expression in matlab:
 | |
| 
 | |
|           Symbolic matlab:
 | |
|           U11 = sym('U11');
 | |
|           U12 = sym('U12');
 | |
|           U21 = sym('U21');
 | |
|           U22 = sym('U22');
 | |
|           U31 = sym('U31');
 | |
|           U32 = sym('U32');
 | |
| 
 | |
|           V11 = sym('V11');
 | |
|           V12 = sym('V12');
 | |
|           V21 = sym('V21');
 | |
|           V22 = sym('V22');
 | |
|           V31 = sym('V31');
 | |
|           V32 = sym('V32');
 | |
| 
 | |
|           t = sym('t');
 | |
| 
 | |
|           U1 = [U11,U12];
 | |
|           U2 = [U21,U22];
 | |
|           U3 = [U31,U32];
 | |
| 
 | |
|           V1 = [V11,V12];
 | |
|           V2 = [V21,V22];
 | |
|           V3 = [V31,V32];
 | |
| 
 | |
|           A = [(U2+V2*t) - (U1+ V1*t)];
 | |
|           B = [(U3+V3*t) - (U1+ V1*t)];
 | |
|           C = [A;B];
 | |
| 
 | |
|           solve(det(C), t);
 | |
|           cf = coeffs(det(C),t); % Now cf(1),cf(2),cf(3) holds the coefficients for the polynom. at order c,b,a
 | |
|         */
 | |
| 
 | |
|       int v1 = F(f,0); int v2 = F(f,1); int v3 = F(f,2);
 | |
|       // get quadratic coefficients (ax^2 + b^x + c)
 | |
|       const double& U11 = uv(v1,0);
 | |
|       const double& U12 = uv(v1,1);
 | |
|       const double& U21 = uv(v2,0);
 | |
|       const double& U22 = uv(v2,1);
 | |
|       const double& U31 = uv(v3,0);
 | |
|       const double& U32 = uv(v3,1);
 | |
| 
 | |
|       const double& V11 = d(v1,0);
 | |
|       const double& V12 = d(v1,1);
 | |
|       const double& V21 = d(v2,0);
 | |
|       const double& V22 = d(v2,1);
 | |
|       const double& V31 = d(v3,0);
 | |
|       const double& V32 = d(v3,1);
 | |
| 
 | |
|       double a = V11*V22 - V12*V21 - V11*V32 + V12*V31 + V21*V32 - V22*V31;
 | |
|       double b = U11*V22 - U12*V21 - U21*V12 + U22*V11 - U11*V32 + U12*V31 + U31*V12 - U32*V11 + U21*V32 - U22*V31 - U31*V22 + U32*V21;
 | |
|       double c = U11*U22 - U12*U21 - U11*U32 + U12*U31 + U21*U32 - U22*U31;
 | |
| 
 | |
|       return get_smallest_pos_quad_zero(a,b,c);
 | |
|     }
 | |
| 
 | |
|     IGL_INLINE double get_min_pos_root_3D(const Eigen::MatrixXd& uv,
 | |
|                                           const Eigen::MatrixXi& F,
 | |
|                                           Eigen::MatrixXd& direc,
 | |
|                                           int f)
 | |
|     {
 | |
|       using namespace std;
 | |
|       /*
 | |
|           Searching for the roots of:
 | |
|             +-1/6 * |ax ay az 1|
 | |
|                     |bx by bz 1|
 | |
|                     |cx cy cz 1|
 | |
|                     |dx dy dz 1|
 | |
|           Every point ax,ay,az has a search direction a_dx,a_dy,a_dz, and so we add those to the matrix, and solve the cubic to find the step size t for a 0 volume
 | |
|           Symbolic matlab:
 | |
|             syms a_x a_y a_z a_dx a_dy a_dz % tetrahedera point and search direction
 | |
|             syms b_x b_y b_z b_dx b_dy b_dz
 | |
|             syms c_x c_y c_z c_dx c_dy c_dz
 | |
|             syms d_x d_y d_z d_dx d_dy d_dz
 | |
|             syms t % Timestep var, this is what we're looking for
 | |
| 
 | |
| 
 | |
|             a_plus_t = [a_x,a_y,a_z] + t*[a_dx,a_dy,a_dz];
 | |
|             b_plus_t = [b_x,b_y,b_z] + t*[b_dx,b_dy,b_dz];
 | |
|             c_plus_t = [c_x,c_y,c_z] + t*[c_dx,c_dy,c_dz];
 | |
|             d_plus_t = [d_x,d_y,d_z] + t*[d_dx,d_dy,d_dz];
 | |
| 
 | |
|             vol_mat = [a_plus_t,1;b_plus_t,1;c_plus_t,1;d_plus_t,1]
 | |
|             //cf = coeffs(det(vol_det),t); % Now cf(1),cf(2),cf(3),cf(4) holds the coefficients for the polynom
 | |
|             [coefficients,terms] = coeffs(det(vol_det),t); % terms = [ t^3, t^2, t, 1], Coefficients hold the coeff we seek
 | |
|       */
 | |
|       int v1 = F(f,0); int v2 = F(f,1); int v3 = F(f,2); int v4 = F(f,3);
 | |
|       const double& a_x = uv(v1,0);
 | |
|       const double& a_y = uv(v1,1);
 | |
|       const double& a_z = uv(v1,2);
 | |
|       const double& b_x = uv(v2,0);
 | |
|       const double& b_y = uv(v2,1);
 | |
|       const double& b_z = uv(v2,2);
 | |
|       const double& c_x = uv(v3,0);
 | |
|       const double& c_y = uv(v3,1);
 | |
|       const double& c_z = uv(v3,2);
 | |
|       const double& d_x = uv(v4,0);
 | |
|       const double& d_y = uv(v4,1);
 | |
|       const double& d_z = uv(v4,2);
 | |
| 
 | |
|       const double& a_dx = direc(v1,0);
 | |
|       const double& a_dy = direc(v1,1);
 | |
|       const double& a_dz = direc(v1,2);
 | |
|       const double& b_dx = direc(v2,0);
 | |
|       const double& b_dy = direc(v2,1);
 | |
|       const double& b_dz = direc(v2,2);
 | |
|       const double& c_dx = direc(v3,0);
 | |
|       const double& c_dy = direc(v3,1);
 | |
|       const double& c_dz = direc(v3,2);
 | |
|       const double& d_dx = direc(v4,0);
 | |
|       const double& d_dy = direc(v4,1);
 | |
|       const double& d_dz = direc(v4,2);
 | |
| 
 | |
|       // Find solution for: a*t^3 + b*t^2 + c*d +d = 0
 | |
|       double a = a_dx*b_dy*c_dz - a_dx*b_dz*c_dy - a_dy*b_dx*c_dz + a_dy*b_dz*c_dx + a_dz*b_dx*c_dy - a_dz*b_dy*c_dx - a_dx*b_dy*d_dz + a_dx*b_dz*d_dy + a_dy*b_dx*d_dz - a_dy*b_dz*d_dx - a_dz*b_dx*d_dy + a_dz*b_dy*d_dx + a_dx*c_dy*d_dz - a_dx*c_dz*d_dy - a_dy*c_dx*d_dz + a_dy*c_dz*d_dx + a_dz*c_dx*d_dy - a_dz*c_dy*d_dx - b_dx*c_dy*d_dz + b_dx*c_dz*d_dy + b_dy*c_dx*d_dz - b_dy*c_dz*d_dx - b_dz*c_dx*d_dy + b_dz*c_dy*d_dx;
 | |
| 
 | |
|       double b = a_dy*b_dz*c_x - a_dy*b_x*c_dz - a_dz*b_dy*c_x + a_dz*b_x*c_dy + a_x*b_dy*c_dz - a_x*b_dz*c_dy - a_dx*b_dz*c_y + a_dx*b_y*c_dz + a_dz*b_dx*c_y - a_dz*b_y*c_dx - a_y*b_dx*c_dz + a_y*b_dz*c_dx + a_dx*b_dy*c_z - a_dx*b_z*c_dy - a_dy*b_dx*c_z + a_dy*b_z*c_dx + a_z*b_dx*c_dy - a_z*b_dy*c_dx - a_dy*b_dz*d_x + a_dy*b_x*d_dz + a_dz*b_dy*d_x - a_dz*b_x*d_dy - a_x*b_dy*d_dz + a_x*b_dz*d_dy + a_dx*b_dz*d_y - a_dx*b_y*d_dz - a_dz*b_dx*d_y + a_dz*b_y*d_dx + a_y*b_dx*d_dz - a_y*b_dz*d_dx - a_dx*b_dy*d_z + a_dx*b_z*d_dy + a_dy*b_dx*d_z - a_dy*b_z*d_dx - a_z*b_dx*d_dy + a_z*b_dy*d_dx + a_dy*c_dz*d_x - a_dy*c_x*d_dz - a_dz*c_dy*d_x + a_dz*c_x*d_dy + a_x*c_dy*d_dz - a_x*c_dz*d_dy - a_dx*c_dz*d_y + a_dx*c_y*d_dz + a_dz*c_dx*d_y - a_dz*c_y*d_dx - a_y*c_dx*d_dz + a_y*c_dz*d_dx + a_dx*c_dy*d_z - a_dx*c_z*d_dy - a_dy*c_dx*d_z + a_dy*c_z*d_dx + a_z*c_dx*d_dy - a_z*c_dy*d_dx - b_dy*c_dz*d_x + b_dy*c_x*d_dz + b_dz*c_dy*d_x - b_dz*c_x*d_dy - b_x*c_dy*d_dz + b_x*c_dz*d_dy + b_dx*c_dz*d_y - b_dx*c_y*d_dz - b_dz*c_dx*d_y + b_dz*c_y*d_dx + b_y*c_dx*d_dz - b_y*c_dz*d_dx - b_dx*c_dy*d_z + b_dx*c_z*d_dy + b_dy*c_dx*d_z - b_dy*c_z*d_dx - b_z*c_dx*d_dy + b_z*c_dy*d_dx;
 | |
| 
 | |
|       double c = a_dz*b_x*c_y - a_dz*b_y*c_x - a_x*b_dz*c_y + a_x*b_y*c_dz + a_y*b_dz*c_x - a_y*b_x*c_dz - a_dy*b_x*c_z + a_dy*b_z*c_x + a_x*b_dy*c_z - a_x*b_z*c_dy - a_z*b_dy*c_x + a_z*b_x*c_dy + a_dx*b_y*c_z - a_dx*b_z*c_y - a_y*b_dx*c_z + a_y*b_z*c_dx + a_z*b_dx*c_y - a_z*b_y*c_dx - a_dz*b_x*d_y + a_dz*b_y*d_x + a_x*b_dz*d_y - a_x*b_y*d_dz - a_y*b_dz*d_x + a_y*b_x*d_dz + a_dy*b_x*d_z - a_dy*b_z*d_x - a_x*b_dy*d_z + a_x*b_z*d_dy + a_z*b_dy*d_x - a_z*b_x*d_dy - a_dx*b_y*d_z + a_dx*b_z*d_y + a_y*b_dx*d_z - a_y*b_z*d_dx - a_z*b_dx*d_y + a_z*b_y*d_dx + a_dz*c_x*d_y - a_dz*c_y*d_x - a_x*c_dz*d_y + a_x*c_y*d_dz + a_y*c_dz*d_x - a_y*c_x*d_dz - a_dy*c_x*d_z + a_dy*c_z*d_x + a_x*c_dy*d_z - a_x*c_z*d_dy - a_z*c_dy*d_x + a_z*c_x*d_dy + a_dx*c_y*d_z - a_dx*c_z*d_y - a_y*c_dx*d_z + a_y*c_z*d_dx + a_z*c_dx*d_y - a_z*c_y*d_dx - b_dz*c_x*d_y + b_dz*c_y*d_x + b_x*c_dz*d_y - b_x*c_y*d_dz - b_y*c_dz*d_x + b_y*c_x*d_dz + b_dy*c_x*d_z - b_dy*c_z*d_x - b_x*c_dy*d_z + b_x*c_z*d_dy + b_z*c_dy*d_x - b_z*c_x*d_dy - b_dx*c_y*d_z + b_dx*c_z*d_y + b_y*c_dx*d_z - b_y*c_z*d_dx - b_z*c_dx*d_y + b_z*c_y*d_dx;
 | |
| 
 | |
|       double d = a_x*b_y*c_z - a_x*b_z*c_y - a_y*b_x*c_z + a_y*b_z*c_x + a_z*b_x*c_y - a_z*b_y*c_x - a_x*b_y*d_z + a_x*b_z*d_y + a_y*b_x*d_z - a_y*b_z*d_x - a_z*b_x*d_y + a_z*b_y*d_x + a_x*c_y*d_z - a_x*c_z*d_y - a_y*c_x*d_z + a_y*c_z*d_x + a_z*c_x*d_y - a_z*c_y*d_x - b_x*c_y*d_z + b_x*c_z*d_y + b_y*c_x*d_z - b_y*c_z*d_x - b_z*c_x*d_y + b_z*c_y*d_x;
 | |
| 
 | |
|       if (std::abs(a)<=1.e-10)
 | |
|       {
 | |
|         return get_smallest_pos_quad_zero(b,c,d);
 | |
|       }
 | |
|       b/=a; c/=a; d/=a; // normalize it all
 | |
|       std::vector<double> res(3);
 | |
|       int real_roots_num = SolveP3(res,b,c,d);
 | |
|       switch (real_roots_num)
 | |
|       {
 | |
|         case 1:
 | |
|           return (res[0] >= 0) ? res[0]:INFINITY;
 | |
|         case 2:
 | |
|         {
 | |
|           double max_root = std::max(res[0],res[1]); double min_root = std::min(res[0],res[1]);
 | |
|           if (min_root > 0) return min_root;
 | |
|           if (max_root > 0) return max_root;
 | |
|           return INFINITY;
 | |
|         }
 | |
|         case 3:
 | |
|         default:
 | |
|         {
 | |
|           std::sort(res.begin(),res.end());
 | |
|           if (res[0] > 0) return res[0];
 | |
|           if (res[1] > 0) return res[1];
 | |
|           if (res[2] > 0) return res[2];
 | |
|           return INFINITY;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     IGL_INLINE double compute_max_step_from_singularities(const Eigen::MatrixXd& uv,
 | |
|                                                           const Eigen::MatrixXi& F,
 | |
|                                                           Eigen::MatrixXd& d)
 | |
|     {
 | |
|       using namespace std;
 | |
|       double max_step = INFINITY;
 | |
| 
 | |
|       // The if statement is outside the for loops to avoid branching/ease parallelizing
 | |
|       if (uv.cols() == 2)
 | |
|       {
 | |
|         for (int f = 0; f < F.rows(); f++)
 | |
|         {
 | |
|           double min_positive_root = get_min_pos_root_2D(uv,F,d,f);
 | |
|           max_step = std::min(max_step, min_positive_root);
 | |
|         }
 | |
|       }
 | |
|       else
 | |
|       { // volumetric deformation
 | |
|         for (int f = 0; f < F.rows(); f++)
 | |
|         {
 | |
|           double min_positive_root = get_min_pos_root_3D(uv,F,d,f);
 | |
|           max_step = std::min(max_step, min_positive_root);
 | |
|         }
 | |
|       }
 | |
|       return max_step;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| IGL_INLINE double igl::flip_avoiding_line_search(
 | |
|   const Eigen::MatrixXi F,
 | |
|   Eigen::MatrixXd& cur_v,
 | |
|   Eigen::MatrixXd& dst_v,
 | |
|   std::function<double(Eigen::MatrixXd&)> energy,
 | |
|   double cur_energy)
 | |
| {
 | |
|   using namespace std;
 | |
|   Eigen::MatrixXd d = dst_v - cur_v;
 | |
| 
 | |
|   double min_step_to_singularity = igl::flip_avoiding::compute_max_step_from_singularities(cur_v,F,d);
 | |
|   double max_step_size = std::min(1., min_step_to_singularity*0.8);
 | |
| 
 | |
|   return igl::line_search(cur_v,d,max_step_size, energy, cur_energy);
 | |
| }
 | |
| 
 | |
| #ifdef IGL_STATIC_LIBRARY
 | |
| #endif
 | 
