mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-10-30 20:21:12 -06:00 
			
		
		
		
	
		
			
				
	
	
		
			123 lines
		
	
	
	
		
			4.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			123 lines
		
	
	
	
		
			4.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of libigl, a simple c++ geometry processing library.
 | |
| // 
 | |
| // Copyright (C) 2016 Alec Jacobson <alecjacobson@gmail.com>
 | |
| // 
 | |
| // This Source Code Form is subject to the terms of the Mozilla Public License 
 | |
| // v. 2.0. If a copy of the MPL was not distributed with this file, You can 
 | |
| // obtain one at http://mozilla.org/MPL/2.0/.
 | |
| #include "extract_non_manifold_edge_curves.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <list>
 | |
| #include <vector>
 | |
| #include <unordered_map>
 | |
| 
 | |
| template<
 | |
| typename DerivedF,
 | |
| typename DerivedEMAP,
 | |
| typename uE2EType >
 | |
| IGL_INLINE void igl::extract_non_manifold_edge_curves(
 | |
|         const Eigen::PlainObjectBase<DerivedF>& F,
 | |
|         const Eigen::PlainObjectBase<DerivedEMAP>& /*EMAP*/,
 | |
|         const std::vector<std::vector<uE2EType> >& uE2E,
 | |
|         std::vector<std::vector<size_t> >& curves) {
 | |
|     const size_t num_faces = F.rows();
 | |
|     assert(F.cols() == 3);
 | |
|     //typedef std::pair<size_t, size_t> Edge;
 | |
|     auto edge_index_to_face_index = [&](size_t ei) { return ei % num_faces; };
 | |
|     auto edge_index_to_corner_index = [&](size_t ei) { return ei / num_faces; };
 | |
|     auto get_edge_end_points = [&](size_t ei, size_t& s, size_t& d) {
 | |
|         const size_t fi = edge_index_to_face_index(ei);
 | |
|         const size_t ci = edge_index_to_corner_index(ei);
 | |
|         s = F(fi, (ci+1)%3);
 | |
|         d = F(fi, (ci+2)%3);
 | |
|     };
 | |
| 
 | |
|     curves.clear();
 | |
|     const size_t num_unique_edges = uE2E.size();
 | |
|     std::unordered_multimap<size_t, size_t> vertex_edge_adjacency;
 | |
|     std::vector<size_t> non_manifold_edges;
 | |
|     for (size_t i=0; i<num_unique_edges; i++) {
 | |
|         const auto& adj_edges = uE2E[i];
 | |
|         if (adj_edges.size() == 2) continue;
 | |
| 
 | |
|         const size_t ei = adj_edges[0];
 | |
|         size_t s,d;
 | |
|         get_edge_end_points(ei, s, d);
 | |
|         vertex_edge_adjacency.insert({{s, i}, {d, i}});
 | |
|         non_manifold_edges.push_back(i);
 | |
|         assert(vertex_edge_adjacency.count(s) > 0);
 | |
|         assert(vertex_edge_adjacency.count(d) > 0);
 | |
|     }
 | |
| 
 | |
|     auto expand_forward = [&](std::list<size_t>& edge_curve,
 | |
|             size_t& front_vertex, size_t& end_vertex) {
 | |
|         while(vertex_edge_adjacency.count(front_vertex) == 2 &&
 | |
|                 front_vertex != end_vertex) {
 | |
|             auto adj_edges = vertex_edge_adjacency.equal_range(front_vertex);
 | |
|             for (auto itr = adj_edges.first; itr!=adj_edges.second; itr++) {
 | |
|                 const size_t uei = itr->second;
 | |
|                 assert(uE2E.at(uei).size() != 2);
 | |
|                 const size_t ei = uE2E[uei][0];
 | |
|                 if (uei == edge_curve.back()) continue;
 | |
|                 size_t s,d;
 | |
|                 get_edge_end_points(ei, s, d);
 | |
|                 edge_curve.push_back(uei);
 | |
|                 if (s == front_vertex) {
 | |
|                     front_vertex = d;
 | |
|                 } else if (d == front_vertex) {
 | |
|                     front_vertex = s;
 | |
|                 } else {
 | |
|                     throw "Invalid vertex/edge adjacency!";
 | |
|                 }
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     auto expand_backward = [&](std::list<size_t>& edge_curve,
 | |
|             size_t& front_vertex, size_t& end_vertex) {
 | |
|         while(vertex_edge_adjacency.count(front_vertex) == 2 &&
 | |
|                 front_vertex != end_vertex) {
 | |
|             auto adj_edges = vertex_edge_adjacency.equal_range(front_vertex);
 | |
|             for (auto itr = adj_edges.first; itr!=adj_edges.second; itr++) {
 | |
|                 const size_t uei = itr->second;
 | |
|                 assert(uE2E.at(uei).size() != 2);
 | |
|                 const size_t ei = uE2E[uei][0];
 | |
|                 if (uei == edge_curve.front()) continue;
 | |
|                 size_t s,d;
 | |
|                 get_edge_end_points(ei, s, d);
 | |
|                 edge_curve.push_front(uei);
 | |
|                 if (s == front_vertex) {
 | |
|                     front_vertex = d;
 | |
|                 } else if (d == front_vertex) {
 | |
|                     front_vertex = s;
 | |
|                 } else {
 | |
|                     throw "Invalid vertex/edge adjcency!";
 | |
|                 }
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     std::vector<bool> visited(num_unique_edges, false);
 | |
|     for (const size_t i : non_manifold_edges) {
 | |
|         if (visited[i]) continue;
 | |
|         std::list<size_t> edge_curve;
 | |
|         edge_curve.push_back(i);
 | |
| 
 | |
|         const auto& adj_edges = uE2E[i];
 | |
|         assert(adj_edges.size() != 2);
 | |
|         const size_t ei = adj_edges[0];
 | |
|         size_t s,d;
 | |
|         get_edge_end_points(ei, s, d);
 | |
| 
 | |
|         expand_forward(edge_curve, d, s);
 | |
|         expand_backward(edge_curve, s, d);
 | |
|         curves.emplace_back(edge_curve.begin(), edge_curve.end());
 | |
|         for (auto itr = edge_curve.begin(); itr!=edge_curve.end(); itr++) {
 | |
|             visited[*itr] = true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| }
 | 
