mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-10-31 04:31:15 -06:00 
			
		
		
		
	
		
			
				
	
	
		
			267 lines
		
	
	
	
		
			7.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			267 lines
		
	
	
	
		
			7.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of libigl, a simple c++ geometry processing library.
 | |
| // 
 | |
| // Copyright (C) 2013 Alec Jacobson <alecjacobson@gmail.com>
 | |
| // 
 | |
| // This Source Code Form is subject to the terms of the Mozilla Public License 
 | |
| // v. 2.0. If a copy of the MPL was not distributed with this file, You can 
 | |
| // obtain one at http://mozilla.org/MPL/2.0/.
 | |
| #include "cat.h"
 | |
| 
 | |
| #include <cstdio>
 | |
| 
 | |
| // Bug in unsupported/Eigen/SparseExtra needs iostream first
 | |
| #include <iostream>
 | |
| #include <unsupported/Eigen/SparseExtra>
 | |
| 
 | |
| 
 | |
| // Sparse matrices need to be handled carefully. Because C++ does not 
 | |
| // Template:
 | |
| //   Scalar  sparse matrix scalar type, e.g. double
 | |
| template <typename Scalar>
 | |
| IGL_INLINE void igl::cat(
 | |
|     const int dim, 
 | |
|     const Eigen::SparseMatrix<Scalar> & A, 
 | |
|     const Eigen::SparseMatrix<Scalar> & B, 
 | |
|     Eigen::SparseMatrix<Scalar> & C)
 | |
| {
 | |
| 
 | |
|   assert(dim == 1 || dim == 2);
 | |
|   using namespace Eigen;
 | |
|   // Special case if B or A is empty
 | |
|   if(A.size() == 0)
 | |
|   {
 | |
|     C = B;
 | |
|     return;
 | |
|   }
 | |
|   if(B.size() == 0)
 | |
|   {
 | |
|     C = A;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
| #if false
 | |
|   // This **must** be DynamicSparseMatrix, otherwise this implementation is
 | |
|   // insanely slow
 | |
|   DynamicSparseMatrix<Scalar, RowMajor> dyn_C;
 | |
|   if(dim == 1)
 | |
|   {
 | |
|     assert(A.cols() == B.cols());
 | |
|     dyn_C.resize(A.rows()+B.rows(),A.cols());
 | |
|   }else if(dim == 2)
 | |
|   {
 | |
|     assert(A.rows() == B.rows());
 | |
|     dyn_C.resize(A.rows(),A.cols()+B.cols());
 | |
|   }else
 | |
|   {
 | |
|     fprintf(stderr,"cat.h: Error: Unsupported dimension %d\n",dim);
 | |
|   }
 | |
| 
 | |
|   dyn_C.reserve(A.nonZeros()+B.nonZeros());
 | |
| 
 | |
|   // Iterate over outside of A
 | |
|   for(int k=0; k<A.outerSize(); ++k)
 | |
|   {
 | |
|     // Iterate over inside
 | |
|     for(typename SparseMatrix<Scalar>::InnerIterator it (A,k); it; ++it)
 | |
|     {
 | |
|       dyn_C.coeffRef(it.row(),it.col()) += it.value();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Iterate over outside of B
 | |
|   for(int k=0; k<B.outerSize(); ++k)
 | |
|   {
 | |
|     // Iterate over inside
 | |
|     for(typename SparseMatrix<Scalar>::InnerIterator it (B,k); it; ++it)
 | |
|     {
 | |
|       int r = (dim == 1 ? A.rows()+it.row() : it.row());
 | |
|       int c = (dim == 2 ? A.cols()+it.col() : it.col());
 | |
|       dyn_C.coeffRef(r,c) += it.value();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   C = SparseMatrix<Scalar>(dyn_C);
 | |
| #elif false
 | |
|   std::vector<Triplet<Scalar> > CIJV;
 | |
|   CIJV.reserve(A.nonZeros() + B.nonZeros());
 | |
|   {
 | |
|     // Iterate over outside of A
 | |
|     for(int k=0; k<A.outerSize(); ++k)
 | |
|     {
 | |
|       // Iterate over inside
 | |
|       for(typename SparseMatrix<Scalar>::InnerIterator it (A,k); it; ++it)
 | |
|       {
 | |
|         CIJV.emplace_back(it.row(),it.col(),it.value());
 | |
|       }
 | |
|     }
 | |
|     // Iterate over outside of B
 | |
|     for(int k=0; k<B.outerSize(); ++k)
 | |
|     {
 | |
|       // Iterate over inside
 | |
|       for(typename SparseMatrix<Scalar>::InnerIterator it (B,k); it; ++it)
 | |
|       {
 | |
|         int r = (dim == 1 ? A.rows()+it.row() : it.row());
 | |
|         int c = (dim == 2 ? A.cols()+it.col() : it.col());
 | |
|         CIJV.emplace_back(r,c,it.value());
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   }
 | |
| 
 | |
|   C = SparseMatrix<Scalar>( 
 | |
|       dim == 1 ? A.rows()+B.rows() : A.rows(),
 | |
|       dim == 1 ? A.cols()          : A.cols()+B.cols());
 | |
|   C.reserve(A.nonZeros() + B.nonZeros());
 | |
|   C.setFromTriplets(CIJV.begin(),CIJV.end());
 | |
| #else
 | |
|   C = SparseMatrix<Scalar>( 
 | |
|       dim == 1 ? A.rows()+B.rows() : A.rows(),
 | |
|       dim == 1 ? A.cols()          : A.cols()+B.cols());
 | |
|   Eigen::VectorXi per_col = Eigen::VectorXi::Zero(C.cols());
 | |
|   if(dim == 1)
 | |
|   {
 | |
|     assert(A.outerSize() == B.outerSize());
 | |
|     for(int k = 0;k<A.outerSize();++k)
 | |
|     {
 | |
|       for(typename SparseMatrix<Scalar>::InnerIterator it (A,k); it; ++it)
 | |
|       {
 | |
|         per_col(k)++;
 | |
|       }
 | |
|       for(typename SparseMatrix<Scalar>::InnerIterator it (B,k); it; ++it)
 | |
|       {
 | |
|         per_col(k)++;
 | |
|       }
 | |
|     }
 | |
|   }else
 | |
|   {
 | |
|     for(int k = 0;k<A.outerSize();++k)
 | |
|     {
 | |
|       for(typename SparseMatrix<Scalar>::InnerIterator it (A,k); it; ++it)
 | |
|       {
 | |
|         per_col(k)++;
 | |
|       }
 | |
|     }
 | |
|     for(int k = 0;k<B.outerSize();++k)
 | |
|     {
 | |
|       for(typename SparseMatrix<Scalar>::InnerIterator it (B,k); it; ++it)
 | |
|       {
 | |
|         per_col(A.cols() + k)++;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   C.reserve(per_col);
 | |
|   if(dim == 1)
 | |
|   {
 | |
|     for(int k = 0;k<A.outerSize();++k)
 | |
|     {
 | |
|       for(typename SparseMatrix<Scalar>::InnerIterator it (A,k); it; ++it)
 | |
|       {
 | |
|         C.insert(it.row(),k) = it.value();
 | |
|       }
 | |
|       for(typename SparseMatrix<Scalar>::InnerIterator it (B,k); it; ++it)
 | |
|       {
 | |
|         C.insert(A.rows()+it.row(),k) = it.value();
 | |
|       }
 | |
|     }
 | |
|   }else
 | |
|   {
 | |
|     for(int k = 0;k<A.outerSize();++k)
 | |
|     {
 | |
|       for(typename SparseMatrix<Scalar>::InnerIterator it (A,k); it; ++it)
 | |
|       {
 | |
|         C.insert(it.row(),k) = it.value();
 | |
|       }
 | |
|     }
 | |
|     for(int k = 0;k<B.outerSize();++k)
 | |
|     {
 | |
|       for(typename SparseMatrix<Scalar>::InnerIterator it (B,k); it; ++it)
 | |
|       {
 | |
|         C.insert(it.row(),A.cols()+k) = it.value();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   C.makeCompressed();
 | |
| 
 | |
| #endif
 | |
| 
 | |
| }
 | |
| 
 | |
| template <typename Derived, class MatC>
 | |
| IGL_INLINE void igl::cat(
 | |
|   const int dim,
 | |
|   const Eigen::MatrixBase<Derived> & A, 
 | |
|   const Eigen::MatrixBase<Derived> & B,
 | |
|   MatC & C)
 | |
| {
 | |
|   assert(dim == 1 || dim == 2);
 | |
|   // Special case if B or A is empty
 | |
|   if(A.size() == 0)
 | |
|   {
 | |
|     C = B;
 | |
|     return;
 | |
|   }
 | |
|   if(B.size() == 0)
 | |
|   {
 | |
|     C = A;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if(dim == 1)
 | |
|   {
 | |
|     assert(A.cols() == B.cols());
 | |
|     C.resize(A.rows()+B.rows(),A.cols());
 | |
|     C << A,B;
 | |
|   }else if(dim == 2)
 | |
|   {
 | |
|     assert(A.rows() == B.rows());
 | |
|     C.resize(A.rows(),A.cols()+B.cols());
 | |
|     C << A,B;
 | |
|   }else
 | |
|   {
 | |
|     fprintf(stderr,"cat.h: Error: Unsupported dimension %d\n",dim);
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <class Mat>
 | |
| IGL_INLINE Mat igl::cat(const int dim, const Mat & A, const Mat & B)
 | |
| {
 | |
|   assert(dim == 1 || dim == 2);
 | |
|   Mat C;
 | |
|   igl::cat(dim,A,B,C);
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| template <class Mat>
 | |
| IGL_INLINE void igl::cat(const std::vector<std::vector< Mat > > & A, Mat & C)
 | |
| {
 | |
|   using namespace std;
 | |
|   // Start with empty matrix
 | |
|   C.resize(0,0);
 | |
|   for(const auto & row_vec : A)
 | |
|   {
 | |
|     // Concatenate each row horizontally
 | |
|     // Start with empty matrix
 | |
|     Mat row(0,0);
 | |
|     for(const auto & element : row_vec)
 | |
|     {
 | |
|       row = cat(2,row,element);
 | |
|     }
 | |
|     // Concatenate rows vertically
 | |
|     C = cat(1,C,row);
 | |
|   }
 | |
| }
 | |
| 
 | |
| #ifdef IGL_STATIC_LIBRARY
 | |
| // Explicit template instantiation
 | |
| // generated by autoexplicit.sh
 | |
| template Eigen::Matrix<double, -1, -1, 0, -1, -1> igl::cat<Eigen::Matrix<double, -1, -1, 0, -1, -1> >(int, Eigen::Matrix<double, -1, -1, 0, -1, -1> const&, Eigen::Matrix<double, -1, -1, 0, -1, -1> const&);
 | |
| // generated by autoexplicit.sh
 | |
| template Eigen::SparseMatrix<double, 0, int> igl::cat<Eigen::SparseMatrix<double, 0, int> >(int, Eigen::SparseMatrix<double, 0, int> const&, Eigen::SparseMatrix<double, 0, int> const&);
 | |
| // generated by autoexplicit.sh
 | |
| template Eigen::Matrix<int, -1, -1, 0, -1, -1> igl::cat<Eigen::Matrix<int, -1, -1, 0, -1, -1> >(int, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&);
 | |
| template void igl::cat<Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1> >(int, Eigen::MatrixBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::Matrix<double, -1, 1, 0, -1, 1>&);
 | |
| template Eigen::Matrix<int, -1, 1, 0, -1, 1> igl::cat<Eigen::Matrix<int, -1, 1, 0, -1, 1> >(int, Eigen::Matrix<int, -1, 1, 0, -1, 1> const&, Eigen::Matrix<int, -1, 1, 0, -1, 1> const&);
 | |
| template Eigen::Matrix<double, -1, 1, 0, -1, 1> igl::cat<Eigen::Matrix<double, -1, 1, 0, -1, 1> >(int, Eigen::Matrix<double, -1, 1, 0, -1, 1> const&, Eigen::Matrix<double, -1, 1, 0, -1, 1> const&);
 | |
| template void igl::cat<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(int, Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<double, -1, -1, 0, -1, -1>&);
 | |
| template void igl::cat<Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1> >(int, Eigen::MatrixBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, -1, 0, -1, -1>&);
 | |
| #endif
 | 
