mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-11-02 20:51:23 -07:00 
			
		
		
		
	* Initial port of the new ensure vertical thickness algorithm from PrusaSlicer. Based on prusa3d/PrusaSlicer@1a0d8f5130 * Remove code related to "Detect narrow internal solid infill" as it's handled by the new ensuring code * Support different internal solid infill pattern * Ignore removed options --------- Co-authored-by: Pavel Mikuš <pavel.mikus.mail@seznam.cz> Co-authored-by: SoftFever <softfeverever@gmail.com>
		
			
				
	
	
		
			4187 lines
		
	
	
	
		
			128 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			4187 lines
		
	
	
	
		
			128 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*******************************************************************************
 | 
						|
*                                                                              *
 | 
						|
* Author    :  Angus Johnson                                                   *
 | 
						|
* Version   :  6.2.9                                                           *
 | 
						|
* Date      :  16 February 2015                                                *
 | 
						|
* Website   :  http://www.angusj.com                                           *
 | 
						|
* Copyright :  Angus Johnson 2010-2015                                         *
 | 
						|
*                                                                              *
 | 
						|
* License:                                                                     *
 | 
						|
* Use, modification & distribution is subject to Boost Software License Ver 1. *
 | 
						|
* http://www.boost.org/LICENSE_1_0.txt                                         *
 | 
						|
*                                                                              *
 | 
						|
* Attributions:                                                                *
 | 
						|
* The code in this library is an extension of Bala Vatti's clipping algorithm: *
 | 
						|
* "A generic solution to polygon clipping"                                     *
 | 
						|
* Communications of the ACM, Vol 35, Issue 7 (July 1992) pp 56-63.             *
 | 
						|
* http://portal.acm.org/citation.cfm?id=129906                                 *
 | 
						|
*                                                                              *
 | 
						|
* Computer graphics and geometric modeling: implementation and algorithms      *
 | 
						|
* By Max K. Agoston                                                            *
 | 
						|
* Springer; 1 edition (January 4, 2005)                                        *
 | 
						|
* http://books.google.com/books?q=vatti+clipping+agoston                       *
 | 
						|
*                                                                              *
 | 
						|
* See also:                                                                    *
 | 
						|
* "Polygon Offsetting by Computing Winding Numbers"                            *
 | 
						|
* Paper no. DETC2005-85513 pp. 565-575                                         *
 | 
						|
* ASME 2005 International Design Engineering Technical Conferences             *
 | 
						|
* and Computers and Information in Engineering Conference (IDETC/CIE2005)      *
 | 
						|
* September 24-28, 2005 , Long Beach, California, USA                          *
 | 
						|
* http://www.me.berkeley.edu/~mcmains/pubs/DAC05OffsetPolygon.pdf              *
 | 
						|
*                                                                              *
 | 
						|
*******************************************************************************/
 | 
						|
 | 
						|
/*******************************************************************************
 | 
						|
*                                                                              *
 | 
						|
* This is a translation of the Delphi Clipper library and the naming style     *
 | 
						|
* used has retained a Delphi flavour.                                          *
 | 
						|
*                                                                              *
 | 
						|
*******************************************************************************/
 | 
						|
 | 
						|
#include "clipper.hpp"
 | 
						|
#include <cmath>
 | 
						|
#include <vector>
 | 
						|
#include <algorithm>
 | 
						|
#include <stdexcept>
 | 
						|
#include <cstring>
 | 
						|
#include <cstdlib>
 | 
						|
#include <ostream>
 | 
						|
#include <functional>
 | 
						|
#include <assert.h>
 | 
						|
#include <libslic3r/Int128.hpp>
 | 
						|
 | 
						|
// Profiling support using the Shiny intrusive profiler
 | 
						|
//#define CLIPPERLIB_PROFILE
 | 
						|
#if defined(SLIC3R_PROFILE) && defined(CLIPPERLIB_PROFILE)
 | 
						|
	#include <Shiny/Shiny.h>
 | 
						|
	#define CLIPPERLIB_PROFILE_FUNC() PROFILE_FUNC()
 | 
						|
	#define CLIPPERLIB_PROFILE_BLOCK(name) PROFILE_BLOCK(name)
 | 
						|
#else
 | 
						|
	#define CLIPPERLIB_PROFILE_FUNC()
 | 
						|
	#define CLIPPERLIB_PROFILE_BLOCK(name)
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CLIPPERLIB_NAMESPACE_PREFIX
 | 
						|
namespace CLIPPERLIB_NAMESPACE_PREFIX {
 | 
						|
#endif // CLIPPERLIB_NAMESPACE_PREFIX
 | 
						|
 | 
						|
#ifdef CLIPPERLIB_USE_XYZ
 | 
						|
namespace ClipperLib_Z {
 | 
						|
#else /* CLIPPERLIB_USE_XYZ */
 | 
						|
namespace ClipperLib {
 | 
						|
#endif /* CLIPPERLIB_USE_XYZ */
 | 
						|
 | 
						|
static double const pi = 3.141592653589793238;
 | 
						|
static double const two_pi = pi *2;
 | 
						|
static double const def_arc_tolerance = 0.25;
 | 
						|
 | 
						|
enum Direction { dRightToLeft, dLeftToRight };
 | 
						|
 | 
						|
static int const Unassigned = -1;  //edge not currently 'owning' a solution
 | 
						|
static int const Skip = -2;        //edge that would otherwise close a path
 | 
						|
 | 
						|
#define HORIZONTAL (-1.0E+40)
 | 
						|
#define TOLERANCE (1.0e-20)
 | 
						|
#define NEAR_ZERO(val) (((val) > -TOLERANCE) && ((val) < TOLERANCE))
 | 
						|
 | 
						|
// Output polygon.
 | 
						|
struct OutRec {
 | 
						|
  int       Idx;
 | 
						|
  bool      IsHole;
 | 
						|
  bool      IsOpen;
 | 
						|
  //The 'FirstLeft' field points to another OutRec that contains or is the
 | 
						|
  //'parent' of OutRec. It is 'first left' because the ActiveEdgeList (AEL) is
 | 
						|
  //parsed left from the current edge (owning OutRec) until the owner OutRec
 | 
						|
  //is found. This field simplifies sorting the polygons into a tree structure
 | 
						|
  //which reflects the parent/child relationships of all polygons.
 | 
						|
  //This field should be renamed Parent, and will be later.
 | 
						|
  OutRec   *FirstLeft;
 | 
						|
  // Used only by void Clipper::BuildResult2(PolyTree& polytree)
 | 
						|
  PolyNode *PolyNd;
 | 
						|
  // Linked list of output points, dynamically allocated.
 | 
						|
  OutPt    *Pts;
 | 
						|
  OutPt    *BottomPt;
 | 
						|
};
 | 
						|
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
inline IntPoint IntPoint2d(cInt x, cInt y)
 | 
						|
{
 | 
						|
  return IntPoint(x, y
 | 
						|
#ifdef CLIPPERLIB_USE_XYZ
 | 
						|
    , 0
 | 
						|
#endif // CLIPPERLIB_USE_XYZ
 | 
						|
    );
 | 
						|
}
 | 
						|
 | 
						|
inline cInt Round(double val)
 | 
						|
{
 | 
						|
  return static_cast<cInt>((val < 0) ? (val - 0.5) : (val + 0.5));
 | 
						|
}
 | 
						|
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
// PolyTree methods ...
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
int PolyTree::Total() const
 | 
						|
{
 | 
						|
  int result = (int)AllNodes.size();
 | 
						|
  //with negative offsets, ignore the hidden outer polygon ...
 | 
						|
  if (result > 0 && Childs.front() != &AllNodes.front()) result--;
 | 
						|
  return result;
 | 
						|
}
 | 
						|
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
// PolyNode methods ...
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void PolyNode::AddChild(PolyNode& child)
 | 
						|
{
 | 
						|
  unsigned cnt = (unsigned)Childs.size();
 | 
						|
  Childs.push_back(&child);
 | 
						|
  child.Parent = this;
 | 
						|
  child.Index = cnt;
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
// Edge delimits a hole if it has an odd number of parent loops.
 | 
						|
bool PolyNode::IsHole() const
 | 
						|
{ 
 | 
						|
  bool result = true;
 | 
						|
  PolyNode* node = Parent;
 | 
						|
  while (node)
 | 
						|
  {
 | 
						|
      result = !result;
 | 
						|
      node = node->Parent;
 | 
						|
  }
 | 
						|
  return result;
 | 
						|
}
 | 
						|
 | 
						|
void PolyTree::RemoveOutermostPolygon()
 | 
						|
{
 | 
						|
    if (this->ChildCount() == 1 && this->Childs[0]->ChildCount() > 0) {
 | 
						|
        PolyNode *outerNode = this->Childs[0];
 | 
						|
        this->Childs.reserve(outerNode->ChildCount());
 | 
						|
        this->Childs[0] = outerNode->Childs[0];
 | 
						|
        this->Childs[0]->Parent = outerNode->Parent;
 | 
						|
        for (int i = 1; i < outerNode->ChildCount(); ++i)
 | 
						|
            this->AddChild(*outerNode->Childs[i]);
 | 
						|
    } else
 | 
						|
        this->Clear();
 | 
						|
}
 | 
						|
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
// Miscellaneous global functions
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
double Area(const Path &poly)
 | 
						|
{
 | 
						|
  int size = (int)poly.size();
 | 
						|
  if (size < 3) return 0;
 | 
						|
 | 
						|
  double a = 0;
 | 
						|
  for (int i = 0, j = size -1; i < size; ++i)
 | 
						|
  {
 | 
						|
    a += ((double)poly[j].x() + poly[i].x()) * ((double)poly[j].y() - poly[i].y());
 | 
						|
    j = i;
 | 
						|
  }
 | 
						|
  return -a * 0.5;
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
double Area(const OutRec &outRec)
 | 
						|
{
 | 
						|
  OutPt *op = outRec.Pts;
 | 
						|
  if (!op) return 0;
 | 
						|
  double a = 0;
 | 
						|
  do {
 | 
						|
    a +=  (double)(op->Prev->Pt.x() + op->Pt.x()) * (double)(op->Prev->Pt.y() - op->Pt.y());
 | 
						|
    op = op->Next;
 | 
						|
  } while (op != outRec.Pts);
 | 
						|
  return a * 0.5;
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
bool PointIsVertex(const IntPoint &Pt, OutPt *pp)
 | 
						|
{
 | 
						|
  OutPt *pp2 = pp;
 | 
						|
  do
 | 
						|
  {
 | 
						|
    if (pp2->Pt == Pt) return true;
 | 
						|
    pp2 = pp2->Next;
 | 
						|
  }
 | 
						|
  while (pp2 != pp);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
//See "The Point in Polygon Problem for Arbitrary Polygons" by Hormann & Agathos
 | 
						|
//http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.88.5498&rep=rep1&type=pdf
 | 
						|
int PointInPolygon(const IntPoint &pt, const Path &path)
 | 
						|
{
 | 
						|
  //returns 0 if false, +1 if true, -1 if pt ON polygon boundary
 | 
						|
  int result = 0;
 | 
						|
  size_t cnt = path.size();
 | 
						|
  if (cnt < 3) return 0;
 | 
						|
  IntPoint ip = path[0];
 | 
						|
  for(size_t i = 1; i <= cnt; ++i)
 | 
						|
  {
 | 
						|
    IntPoint ipNext = (i == cnt ? path[0] : path[i]);
 | 
						|
    if (ipNext.y() == pt.y() && ((ipNext.x() == pt.x()) || (ip.y() == pt.y() && ((ipNext.x() > pt.x()) == (ip.x() < pt.x())))))
 | 
						|
      return -1;
 | 
						|
    if ((ip.y() < pt.y()) != (ipNext.y() < pt.y()))
 | 
						|
    {
 | 
						|
      if (ip.x() >= pt.x())
 | 
						|
      {
 | 
						|
        if (ipNext.x() > pt.x()) result = 1 - result;
 | 
						|
        else
 | 
						|
        {
 | 
						|
          double d = (double)(ip.x() - pt.x()) * (ipNext.y() - pt.y()) - (double)(ipNext.x() - pt.x()) * (ip.y() - pt.y());
 | 
						|
          if (!d) return -1;
 | 
						|
          if ((d > 0) == (ipNext.y() > ip.y())) result = 1 - result;
 | 
						|
        }
 | 
						|
      } else
 | 
						|
      {
 | 
						|
        if (ipNext.x() > pt.x())
 | 
						|
        {
 | 
						|
          double d = (double)(ip.x() - pt.x()) * (ipNext.y() - pt.y()) - (double)(ipNext.x() - pt.x()) * (ip.y() - pt.y());
 | 
						|
          if (!d) return -1;
 | 
						|
          if ((d > 0) == (ipNext.y() > ip.y())) result = 1 - result;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    ip = ipNext;
 | 
						|
  } 
 | 
						|
  return result;
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
// Called by Poly2ContainsPoly1()
 | 
						|
int PointInPolygon (const IntPoint &pt, OutPt *op)
 | 
						|
{
 | 
						|
  //returns 0 if false, +1 if true, -1 if pt ON polygon boundary
 | 
						|
  int result = 0;
 | 
						|
  OutPt* startOp = op;
 | 
						|
  do
 | 
						|
  {
 | 
						|
    if (op->Next->Pt.y() == pt.y())
 | 
						|
    {
 | 
						|
        if ((op->Next->Pt.x() == pt.x()) || (op->Pt.y() == pt.y() && 
 | 
						|
          ((op->Next->Pt.x() > pt.x()) == (op->Pt.x() < pt.x())))) return -1;
 | 
						|
    }
 | 
						|
    if ((op->Pt.y() < pt.y()) != (op->Next->Pt.y() < pt.y()))
 | 
						|
    {
 | 
						|
      if (op->Pt.x() >= pt.x())
 | 
						|
      {
 | 
						|
        if (op->Next->Pt.x() > pt.x()) result = 1 - result;
 | 
						|
        else
 | 
						|
        {
 | 
						|
          double d = (double)(op->Pt.x() - pt.x()) * (op->Next->Pt.y() - pt.y()) - (double)(op->Next->Pt.x() - pt.x()) * (op->Pt.y() - pt.y());
 | 
						|
          if (!d) return -1;
 | 
						|
          if ((d > 0) == (op->Next->Pt.y() > op->Pt.y())) result = 1 - result;
 | 
						|
        }
 | 
						|
      } else
 | 
						|
      {
 | 
						|
        if (op->Next->Pt.x() > pt.x())
 | 
						|
        {
 | 
						|
          double d = (double)(op->Pt.x() - pt.x()) * (op->Next->Pt.y() - pt.y()) - (double)(op->Next->Pt.x() - pt.x()) * (op->Pt.y() - pt.y());
 | 
						|
          if (!d) return -1;
 | 
						|
          if ((d > 0) == (op->Next->Pt.y() > op->Pt.y())) result = 1 - result;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } 
 | 
						|
    op = op->Next;
 | 
						|
  } while (startOp != op);
 | 
						|
  return result;
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
// This is potentially very expensive! O(n^2)!
 | 
						|
bool Poly2ContainsPoly1(OutPt *OutPt1, OutPt *OutPt2)
 | 
						|
{
 | 
						|
  CLIPPERLIB_PROFILE_FUNC();
 | 
						|
  OutPt* op = OutPt1;
 | 
						|
  do
 | 
						|
  {
 | 
						|
    //nb: PointInPolygon returns 0 if false, +1 if true, -1 if pt on polygon
 | 
						|
    int res = PointInPolygon(op->Pt, OutPt2);
 | 
						|
    if (res >= 0) return res > 0;
 | 
						|
    op = op->Next; 
 | 
						|
  }
 | 
						|
  while (op != OutPt1);
 | 
						|
  return true; 
 | 
						|
}
 | 
						|
//----------------------------------------------------------------------
 | 
						|
 | 
						|
#ifdef CLIPPERLIB_INT32
 | 
						|
inline bool SlopesEqual(const cInt dx1, const cInt dy1, const cInt dx2, const cInt dy2, bool /* UseFullInt64Range */) {
 | 
						|
  return int64_t(dy1) * int64_t(dx2) == int64_t(dx1) * int64_t(dy2);
 | 
						|
}
 | 
						|
#else
 | 
						|
inline bool SlopesEqual(const cInt dx1, const cInt dy1, const cInt dx2, const cInt dy2, bool UseFullInt64Range) {
 | 
						|
  return (UseFullInt64Range) ?
 | 
						|
    // |dx1| < 2^63, |dx2| < 2^63 etc,
 | 
						|
    Int128::sign_determinant_2x2_filtered(dx1, dy1, dx2, dy2) == 0 :
 | 
						|
//    Int128::sign_determinant_2x2(dx1, dy1, dx2, dy2) == 0 :
 | 
						|
    // |dx1| < 2^31, |dx2| < 2^31 etc,
 | 
						|
    // therefore the following computation could be done with 64bit arithmetics. 
 | 
						|
    dy1 * dx2 == dx1 * dy2;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
inline bool SlopesEqual(const TEdge &e1, const TEdge &e2, bool UseFullInt64Range)
 | 
						|
  { return SlopesEqual(e1.Delta.x(), e1.Delta.y(), e2.Delta.x(), e2.Delta.y(), UseFullInt64Range); }
 | 
						|
inline bool SlopesEqual(const IntPoint &pt1, const IntPoint &pt2, const IntPoint &pt3, bool UseFullInt64Range)
 | 
						|
  { return SlopesEqual(pt1.x()-pt2.x(), pt1.y()-pt2.y(), pt2.x()-pt3.x(), pt2.y()-pt3.y(), UseFullInt64Range); }
 | 
						|
inline bool SlopesEqual(const IntPoint &pt1, const IntPoint &pt2, const IntPoint &pt3, const IntPoint &pt4, bool UseFullInt64Range)
 | 
						|
  { return SlopesEqual(pt1.x()-pt2.x(), pt1.y()-pt2.y(), pt3.x()-pt4.x(), pt3.y()-pt4.y(), UseFullInt64Range); }
 | 
						|
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
inline bool IsHorizontal(TEdge &e)
 | 
						|
{
 | 
						|
  return e.Delta.y() == 0;
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
inline double GetDx(const IntPoint &pt1, const IntPoint &pt2)
 | 
						|
{
 | 
						|
  return (pt1.y() == pt2.y()) ?
 | 
						|
    HORIZONTAL : (double)(pt2.x() - pt1.x()) / (pt2.y() - pt1.y());
 | 
						|
}
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
 | 
						|
inline cInt TopX(TEdge &edge, const cInt currentY)
 | 
						|
{
 | 
						|
  return (currentY == edge.Top.y()) ?
 | 
						|
    edge.Top.x() : 
 | 
						|
    edge.Bot.x() + Round(edge.Dx *(currentY - edge.Bot.y()));
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void IntersectPoint(TEdge &Edge1, TEdge &Edge2, IntPoint &ip)
 | 
						|
{
 | 
						|
#ifdef CLIPPERLIB_USE_XYZ  
 | 
						|
  ip.z() = 0;
 | 
						|
#endif
 | 
						|
 | 
						|
  double b1, b2;
 | 
						|
  if (Edge1.Dx == Edge2.Dx)
 | 
						|
  {
 | 
						|
    ip.y() = Edge1.Curr.y();
 | 
						|
    ip.x() = TopX(Edge1, ip.y());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  else if (Edge1.Delta.x() == 0)
 | 
						|
  {
 | 
						|
    ip.x() = Edge1.Bot.x();
 | 
						|
    if (IsHorizontal(Edge2))
 | 
						|
      ip.y() = Edge2.Bot.y();
 | 
						|
    else
 | 
						|
    {
 | 
						|
      b2 = Edge2.Bot.y() - (Edge2.Bot.x() / Edge2.Dx);
 | 
						|
      ip.y() = Round(ip.x() / Edge2.Dx + b2);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else if (Edge2.Delta.x() == 0)
 | 
						|
  {
 | 
						|
    ip.x() = Edge2.Bot.x();
 | 
						|
    if (IsHorizontal(Edge1))
 | 
						|
      ip.y() = Edge1.Bot.y();
 | 
						|
    else
 | 
						|
    {
 | 
						|
      b1 = Edge1.Bot.y() - (Edge1.Bot.x() / Edge1.Dx);
 | 
						|
      ip.y() = Round(ip.x() / Edge1.Dx + b1);
 | 
						|
    }
 | 
						|
  } 
 | 
						|
  else 
 | 
						|
  {
 | 
						|
    b1 = double(Edge1.Bot.x()) - double(Edge1.Bot.y()) * Edge1.Dx;
 | 
						|
    b2 = double(Edge2.Bot.x()) - double(Edge2.Bot.y()) * Edge2.Dx;
 | 
						|
    double q = (b2-b1) / (Edge1.Dx - Edge2.Dx);
 | 
						|
    ip.y() = Round(q);
 | 
						|
    ip.x() = (std::fabs(Edge1.Dx) < std::fabs(Edge2.Dx)) ? 
 | 
						|
      Round(Edge1.Dx * q + b1) :
 | 
						|
      Round(Edge2.Dx * q + b2);
 | 
						|
  }
 | 
						|
 | 
						|
  if (ip.y() < Edge1.Top.y() || ip.y() < Edge2.Top.y()) 
 | 
						|
  {
 | 
						|
    if (Edge1.Top.y() > Edge2.Top.y())
 | 
						|
      ip.y() = Edge1.Top.y();
 | 
						|
    else
 | 
						|
      ip.y() = Edge2.Top.y();
 | 
						|
    if (std::fabs(Edge1.Dx) < std::fabs(Edge2.Dx))
 | 
						|
      ip.x() = TopX(Edge1, ip.y());
 | 
						|
    else
 | 
						|
      ip.x() = TopX(Edge2, ip.y());
 | 
						|
  } 
 | 
						|
  //finally, don't allow 'ip' to be BELOW curr.y() (ie bottom of scanbeam) ...
 | 
						|
  if (ip.y() > Edge1.Curr.y())
 | 
						|
  {
 | 
						|
    ip.y() = Edge1.Curr.y();
 | 
						|
    //use the more vertical edge to derive X ...
 | 
						|
    if (std::fabs(Edge1.Dx) > std::fabs(Edge2.Dx))
 | 
						|
      ip.x() = TopX(Edge2, ip.y()); else
 | 
						|
      ip.x() = TopX(Edge1, ip.y());
 | 
						|
  }
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
// Reverse a linked loop of points representing a closed polygon.
 | 
						|
// This has a time complexity of O(n)
 | 
						|
void ReversePolyPtLinks(OutPt *pp)
 | 
						|
{
 | 
						|
  if (!pp) return;
 | 
						|
  OutPt *pp1 = pp;
 | 
						|
  do {
 | 
						|
    OutPt *pp2 = pp1->Next;
 | 
						|
    pp1->Next = pp1->Prev;
 | 
						|
    pp1->Prev = pp2;
 | 
						|
    pp1 = pp2;
 | 
						|
  } while( pp1 != pp );
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
inline void InitEdge(TEdge* e, TEdge* eNext, TEdge* ePrev, const IntPoint& Pt)
 | 
						|
{
 | 
						|
  std::memset(e, 0, sizeof(TEdge));
 | 
						|
  e->Next = eNext;
 | 
						|
  e->Prev = ePrev;
 | 
						|
  e->Curr = Pt;
 | 
						|
  e->OutIdx = Unassigned;
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void InitEdge2(TEdge& e, PolyType Pt)
 | 
						|
{
 | 
						|
  if (e.Curr.y() >= e.Next->Curr.y())
 | 
						|
  {
 | 
						|
    e.Bot = e.Curr;
 | 
						|
    e.Top = e.Next->Curr;
 | 
						|
  } else
 | 
						|
  {
 | 
						|
    e.Top = e.Curr;
 | 
						|
    e.Bot = e.Next->Curr;
 | 
						|
  }
 | 
						|
 | 
						|
  e.Delta.x() = (e.Top.x() - e.Bot.x());
 | 
						|
  e.Delta.y() = (e.Top.y() - e.Bot.y());
 | 
						|
 | 
						|
  if (e.Delta.y() == 0) e.Dx = HORIZONTAL;
 | 
						|
  else e.Dx = (double)(e.Delta.x()) / e.Delta.y();
 | 
						|
 | 
						|
  e.PolyTyp = Pt;
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
// Called from ClipperBase::AddPathInternal() to remove collinear and duplicate points.
 | 
						|
inline TEdge* RemoveEdge(TEdge* e)
 | 
						|
{
 | 
						|
  //removes e from double_linked_list (but without removing from memory)
 | 
						|
  e->Prev->Next = e->Next;
 | 
						|
  e->Next->Prev = e->Prev;
 | 
						|
  TEdge* result = e->Next;
 | 
						|
  e->Prev = 0; //flag as removed (see ClipperBase.Clear)
 | 
						|
  return result;
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
inline void ReverseHorizontal(TEdge &e)
 | 
						|
{
 | 
						|
  //swap horizontal edges' Top and Bottom x's so they follow the natural
 | 
						|
  //progression of the bounds - ie so their xbots will align with the
 | 
						|
  //adjoining lower edge. [Helpful in the ProcessHorizontal() method.]
 | 
						|
  std::swap(e.Top.x(), e.Bot.x());
 | 
						|
#ifdef CLIPPERLIB_USE_XYZ  
 | 
						|
  std::swap(e.Top.z(), e.Bot.z());
 | 
						|
#endif
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
bool GetOverlapSegment(IntPoint pt1a, IntPoint pt1b, IntPoint pt2a,
 | 
						|
  IntPoint pt2b, IntPoint &pt1, IntPoint &pt2)
 | 
						|
{
 | 
						|
  //precondition: segments are Collinear.
 | 
						|
  if (std::abs(pt1a.x() - pt1b.x()) > std::abs(pt1a.y() - pt1b.y()))
 | 
						|
  {
 | 
						|
    if (pt1a.x() > pt1b.x()) std::swap(pt1a, pt1b);
 | 
						|
    if (pt2a.x() > pt2b.x()) std::swap(pt2a, pt2b);
 | 
						|
    if (pt1a.x() > pt2a.x()) pt1 = pt1a; else pt1 = pt2a;
 | 
						|
    if (pt1b.x() < pt2b.x()) pt2 = pt1b; else pt2 = pt2b;
 | 
						|
    return pt1.x() < pt2.x();
 | 
						|
  } else
 | 
						|
  {
 | 
						|
    if (pt1a.y() < pt1b.y()) std::swap(pt1a, pt1b);
 | 
						|
    if (pt2a.y() < pt2b.y()) std::swap(pt2a, pt2b);
 | 
						|
    if (pt1a.y() < pt2a.y()) pt1 = pt1a; else pt1 = pt2a;
 | 
						|
    if (pt1b.y() > pt2b.y()) pt2 = pt1b; else pt2 = pt2b;
 | 
						|
    return pt1.y() > pt2.y();
 | 
						|
  }
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
bool FirstIsBottomPt(const OutPt* btmPt1, const OutPt* btmPt2)
 | 
						|
{
 | 
						|
  OutPt *p = btmPt1->Prev;
 | 
						|
  while ((p->Pt == btmPt1->Pt) && (p != btmPt1)) p = p->Prev;
 | 
						|
  double dx1p = std::fabs(GetDx(btmPt1->Pt, p->Pt));
 | 
						|
  p = btmPt1->Next;
 | 
						|
  while ((p->Pt == btmPt1->Pt) && (p != btmPt1)) p = p->Next;
 | 
						|
  double dx1n = std::fabs(GetDx(btmPt1->Pt, p->Pt));
 | 
						|
 | 
						|
  p = btmPt2->Prev;
 | 
						|
  while ((p->Pt == btmPt2->Pt) && (p != btmPt2)) p = p->Prev;
 | 
						|
  double dx2p = std::fabs(GetDx(btmPt2->Pt, p->Pt));
 | 
						|
  p = btmPt2->Next;
 | 
						|
  while ((p->Pt == btmPt2->Pt) && (p != btmPt2)) p = p->Next;
 | 
						|
  double dx2n = std::fabs(GetDx(btmPt2->Pt, p->Pt));
 | 
						|
  return (dx1p >= dx2p && dx1p >= dx2n) || (dx1n >= dx2p && dx1n >= dx2n);
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
// Called by GetLowermostRec()
 | 
						|
OutPt* GetBottomPt(OutPt *pp)
 | 
						|
{
 | 
						|
  OutPt* dups = 0;
 | 
						|
  OutPt* p = pp->Next;
 | 
						|
  while (p != pp)
 | 
						|
  {
 | 
						|
    if (p->Pt.y() > pp->Pt.y())
 | 
						|
    {
 | 
						|
      pp = p;
 | 
						|
      dups = 0;
 | 
						|
    }
 | 
						|
    else if (p->Pt.y() == pp->Pt.y() && p->Pt.x() <= pp->Pt.x())
 | 
						|
    {
 | 
						|
      if (p->Pt.x() < pp->Pt.x())
 | 
						|
      {
 | 
						|
        dups = 0;
 | 
						|
        pp = p;
 | 
						|
      } else
 | 
						|
      {
 | 
						|
        if (p->Next != pp && p->Prev != pp) dups = p;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    p = p->Next;
 | 
						|
  }
 | 
						|
  if (dups)
 | 
						|
  {
 | 
						|
    //there appears to be at least 2 vertices at BottomPt so ...
 | 
						|
    while (dups != p)
 | 
						|
    {
 | 
						|
      if (!FirstIsBottomPt(p, dups)) pp = dups;
 | 
						|
      dups = dups->Next;
 | 
						|
      while (dups->Pt != pp->Pt) dups = dups->Next;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return pp;
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
bool Pt2IsBetweenPt1AndPt3(const IntPoint &pt1,
 | 
						|
  const IntPoint &pt2, const IntPoint &pt3)
 | 
						|
{
 | 
						|
  if ((pt1 == pt3) || (pt1 == pt2) || (pt3 == pt2))
 | 
						|
    return false;
 | 
						|
  else if (pt1.x() != pt3.x())
 | 
						|
    return (pt2.x() > pt1.x()) == (pt2.x() < pt3.x());
 | 
						|
  else
 | 
						|
    return (pt2.y() > pt1.y()) == (pt2.y() < pt3.y());
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
bool HorzSegmentsOverlap(cInt seg1a, cInt seg1b, cInt seg2a, cInt seg2b)
 | 
						|
{
 | 
						|
  if (seg1a > seg1b) std::swap(seg1a, seg1b);
 | 
						|
  if (seg2a > seg2b) std::swap(seg2a, seg2b);
 | 
						|
  return (seg1a < seg2b) && (seg2a < seg1b);
 | 
						|
}
 | 
						|
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
// ClipperBase class methods ...
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
#ifndef CLIPPERLIB_INT32
 | 
						|
// Called from ClipperBase::AddPath() to verify the scale of the input polygon coordinates.
 | 
						|
inline void RangeTest(const IntPoint& Pt, bool& useFullRange)
 | 
						|
{
 | 
						|
  if (useFullRange)
 | 
						|
  {
 | 
						|
    if (Pt.x() > hiRange || Pt.y() > hiRange || -Pt.x() > hiRange || -Pt.y() > hiRange) 
 | 
						|
      throw clipperException("Coordinate outside allowed range");
 | 
						|
  }
 | 
						|
  else if (Pt.x() > loRange|| Pt.y() > loRange || -Pt.x() > loRange || -Pt.y() > loRange) 
 | 
						|
  {
 | 
						|
    useFullRange = true;
 | 
						|
    RangeTest(Pt, useFullRange);
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif // CLIPPERLIB_INT32
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
// Called from ClipperBase::AddPath() to construct the Local Minima List.
 | 
						|
// Find a local minimum edge on the path starting with E.
 | 
						|
inline TEdge* FindNextLocMin(TEdge* E)
 | 
						|
{
 | 
						|
  for (;;)
 | 
						|
  {
 | 
						|
    while (E->Bot != E->Prev->Bot || E->Curr == E->Top) E = E->Next;
 | 
						|
    if (!IsHorizontal(*E) && !IsHorizontal(*E->Prev)) break;
 | 
						|
    while (IsHorizontal(*E->Prev)) E = E->Prev;
 | 
						|
    TEdge* E2 = E;
 | 
						|
    while (IsHorizontal(*E)) E = E->Next;
 | 
						|
    if (E->Top.y() == E->Prev->Bot.y()) continue; //ie just an intermediate horz.
 | 
						|
    if (E2->Prev->Bot.x() < E->Bot.x()) E = E2;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return E;
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
// Called from ClipperBase::AddPath().
 | 
						|
TEdge* ClipperBase::ProcessBound(TEdge* E, bool NextIsForward)
 | 
						|
{
 | 
						|
  TEdge *Result = E;
 | 
						|
  TEdge *Horz = 0;
 | 
						|
 | 
						|
  if (E->OutIdx == Skip)
 | 
						|
  {
 | 
						|
    //if edges still remain in the current bound beyond the skip edge then
 | 
						|
    //create another LocMin and call ProcessBound once more
 | 
						|
    if (NextIsForward)
 | 
						|
    {
 | 
						|
      while (E->Top.y() == E->Next->Bot.y()) E = E->Next;
 | 
						|
      //don't include top horizontals when parsing a bound a second time,
 | 
						|
      //they will be contained in the opposite bound ...
 | 
						|
      while (E != Result && IsHorizontal(*E)) E = E->Prev;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      while (E->Top.y() == E->Prev->Bot.y()) E = E->Prev;
 | 
						|
      while (E != Result && IsHorizontal(*E)) E = E->Next;
 | 
						|
    }
 | 
						|
 | 
						|
    if (E == Result)
 | 
						|
    {
 | 
						|
      if (NextIsForward) Result = E->Next;
 | 
						|
      else Result = E->Prev;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      //there are more edges in the bound beyond result starting with E
 | 
						|
      if (NextIsForward)
 | 
						|
        E = Result->Next;
 | 
						|
      else
 | 
						|
        E = Result->Prev;
 | 
						|
      LocalMinimum locMin;
 | 
						|
      locMin.Y = E->Bot.y();
 | 
						|
      locMin.LeftBound = 0;
 | 
						|
      locMin.RightBound = E;
 | 
						|
      E->WindDelta = 0;
 | 
						|
      Result = ProcessBound(E, NextIsForward);
 | 
						|
      m_MinimaList.push_back(locMin);
 | 
						|
    }
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  TEdge *EStart;
 | 
						|
 | 
						|
  if (IsHorizontal(*E))
 | 
						|
  {
 | 
						|
    //We need to be careful with open paths because this may not be a
 | 
						|
    //true local minima (ie E may be following a skip edge).
 | 
						|
    //Also, consecutive horz. edges may start heading left before going right.
 | 
						|
    if (NextIsForward) 
 | 
						|
      EStart = E->Prev;
 | 
						|
    else 
 | 
						|
      EStart = E->Next;
 | 
						|
    if (IsHorizontal(*EStart)) //ie an adjoining horizontal skip edge
 | 
						|
      {
 | 
						|
        if (EStart->Bot.x() != E->Bot.x() && EStart->Top.x() != E->Bot.x())
 | 
						|
          ReverseHorizontal(*E);
 | 
						|
      }
 | 
						|
      else if (EStart->Bot.x() != E->Bot.x())
 | 
						|
        ReverseHorizontal(*E);
 | 
						|
  }
 | 
						|
  
 | 
						|
  EStart = E;
 | 
						|
  if (NextIsForward)
 | 
						|
  {
 | 
						|
    while (Result->Top.y() == Result->Next->Bot.y() && Result->Next->OutIdx != Skip)
 | 
						|
      Result = Result->Next;
 | 
						|
    if (IsHorizontal(*Result) && Result->Next->OutIdx != Skip)
 | 
						|
    {
 | 
						|
      //nb: at the top of a bound, horizontals are added to the bound
 | 
						|
      //only when the preceding edge attaches to the horizontal's left vertex
 | 
						|
      //unless a Skip edge is encountered when that becomes the top divide
 | 
						|
      Horz = Result;
 | 
						|
      while (IsHorizontal(*Horz->Prev)) Horz = Horz->Prev;
 | 
						|
      if (Horz->Prev->Top.x() > Result->Next->Top.x()) Result = Horz->Prev;
 | 
						|
    }
 | 
						|
    while (E != Result) 
 | 
						|
    {
 | 
						|
      E->NextInLML = E->Next;
 | 
						|
      if (IsHorizontal(*E) && E != EStart &&
 | 
						|
        E->Bot.x() != E->Prev->Top.x()) ReverseHorizontal(*E);
 | 
						|
      E = E->Next;
 | 
						|
    }
 | 
						|
    if (IsHorizontal(*E) && E != EStart && E->Bot.x() != E->Prev->Top.x()) 
 | 
						|
      ReverseHorizontal(*E);
 | 
						|
    Result = Result->Next; //move to the edge just beyond current bound
 | 
						|
  } else
 | 
						|
  {
 | 
						|
    while (Result->Top.y() == Result->Prev->Bot.y() && Result->Prev->OutIdx != Skip) 
 | 
						|
      Result = Result->Prev;
 | 
						|
    if (IsHorizontal(*Result) && Result->Prev->OutIdx != Skip)
 | 
						|
    {
 | 
						|
      Horz = Result;
 | 
						|
      while (IsHorizontal(*Horz->Next)) Horz = Horz->Next;
 | 
						|
      if (Horz->Next->Top.x() == Result->Prev->Top.x() ||
 | 
						|
          Horz->Next->Top.x() > Result->Prev->Top.x()) Result = Horz->Next;
 | 
						|
    }
 | 
						|
 | 
						|
    while (E != Result)
 | 
						|
    {
 | 
						|
      E->NextInLML = E->Prev;
 | 
						|
      if (IsHorizontal(*E) && E != EStart && E->Bot.x() != E->Next->Top.x()) 
 | 
						|
        ReverseHorizontal(*E);
 | 
						|
      E = E->Prev;
 | 
						|
    }
 | 
						|
    if (IsHorizontal(*E) && E != EStart && E->Bot.x() != E->Next->Top.x()) 
 | 
						|
      ReverseHorizontal(*E);
 | 
						|
    Result = Result->Prev; //move to the edge just beyond current bound
 | 
						|
  }
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
bool ClipperBase::AddPath(const Path &pg, PolyType PolyTyp, bool Closed)
 | 
						|
{
 | 
						|
  CLIPPERLIB_PROFILE_FUNC();
 | 
						|
  // Remove duplicate end point from a closed input path.
 | 
						|
  // Remove duplicate points from the end of the input path.
 | 
						|
  int highI = (int)pg.size() -1;
 | 
						|
  if (Closed) 
 | 
						|
    while (highI > 0 && (pg[highI] == pg[0])) 
 | 
						|
      --highI;
 | 
						|
  while (highI > 0 && (pg[highI] == pg[highI -1])) 
 | 
						|
    --highI;
 | 
						|
  if ((Closed && highI < 2) || (!Closed && highI < 1))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Allocate a new edge array.
 | 
						|
  std::vector<TEdge> edges(highI + 1);
 | 
						|
  // Fill in the edge array.
 | 
						|
  bool result = AddPathInternal(pg, highI, PolyTyp, Closed, edges.data());
 | 
						|
  if (result)
 | 
						|
    // Success, remember the edge array.
 | 
						|
    m_edges.emplace_back(std::move(edges));
 | 
						|
  return result;
 | 
						|
}
 | 
						|
 | 
						|
bool ClipperBase::AddPathInternal(const Path &pg, int highI, PolyType PolyTyp, bool Closed, TEdge* edges)
 | 
						|
{
 | 
						|
  CLIPPERLIB_PROFILE_FUNC();
 | 
						|
#ifdef use_lines
 | 
						|
  if (!Closed && PolyTyp == ptClip)
 | 
						|
    throw clipperException("AddPath: Open paths must be subject.");
 | 
						|
#else
 | 
						|
  if (!Closed)
 | 
						|
    throw clipperException("AddPath: Open paths have been disabled.");
 | 
						|
#endif
 | 
						|
 | 
						|
  assert(highI >= 0 && highI < pg.size());
 | 
						|
 | 
						|
  //1. Basic (first) edge initialization ...
 | 
						|
  try
 | 
						|
  {
 | 
						|
    edges[1].Curr = pg[1];
 | 
						|
#ifndef CLIPPERLIB_INT32
 | 
						|
    RangeTest(pg[0], m_UseFullRange);
 | 
						|
    RangeTest(pg[highI], m_UseFullRange);
 | 
						|
#endif // CLIPPERLIB_INT32
 | 
						|
    InitEdge(&edges[0], &edges[1], &edges[highI], pg[0]);
 | 
						|
    InitEdge(&edges[highI], &edges[0], &edges[highI-1], pg[highI]);
 | 
						|
    for (int i = highI - 1; i >= 1; --i)
 | 
						|
    {
 | 
						|
#ifndef CLIPPERLIB_INT32
 | 
						|
      RangeTest(pg[i], m_UseFullRange);
 | 
						|
#endif // CLIPPERLIB_INT32
 | 
						|
      InitEdge(&edges[i], &edges[i+1], &edges[i-1], pg[i]);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  catch(...)
 | 
						|
  {
 | 
						|
    throw; //range test fails
 | 
						|
  }
 | 
						|
  TEdge *eStart = &edges[0];
 | 
						|
 | 
						|
  //2. Remove duplicate vertices, and (when closed) collinear edges ...
 | 
						|
  TEdge *E = eStart, *eLoopStop = eStart;
 | 
						|
  for (;;)
 | 
						|
  {
 | 
						|
    //nb: allows matching start and end points when not Closed ...
 | 
						|
    if (E->Curr == E->Next->Curr && (Closed || E->Next != eStart))
 | 
						|
    {
 | 
						|
      if (E == E->Next) break;
 | 
						|
      if (E == eStart) eStart = E->Next;
 | 
						|
      E = RemoveEdge(E);
 | 
						|
      eLoopStop = E;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (E->Prev == E->Next) 
 | 
						|
      break; //only two vertices
 | 
						|
    else if (Closed &&
 | 
						|
      SlopesEqual(E->Prev->Curr, E->Curr, E->Next->Curr, m_UseFullRange) && 
 | 
						|
      (!m_PreserveCollinear ||
 | 
						|
      !Pt2IsBetweenPt1AndPt3(E->Prev->Curr, E->Curr, E->Next->Curr)))
 | 
						|
    {
 | 
						|
      //Collinear edges are allowed for open paths but in closed paths
 | 
						|
      //the default is to merge adjacent collinear edges into a single edge.
 | 
						|
      //However, if the PreserveCollinear property is enabled, only overlapping
 | 
						|
      //collinear edges (ie spikes) will be removed from closed paths.
 | 
						|
      if (E == eStart) eStart = E->Next;
 | 
						|
      E = RemoveEdge(E);
 | 
						|
      E = E->Prev;
 | 
						|
      eLoopStop = E;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    E = E->Next;
 | 
						|
    if ((E == eLoopStop) || (!Closed && E->Next == eStart)) break;
 | 
						|
  }
 | 
						|
 | 
						|
  if ((!Closed && (E == E->Next)) || (Closed && (E->Prev == E->Next)))
 | 
						|
  {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Closed)
 | 
						|
  { 
 | 
						|
    m_HasOpenPaths = true;
 | 
						|
    eStart->Prev->OutIdx = Skip;
 | 
						|
  }
 | 
						|
 | 
						|
  //3. Do second stage of edge initialization ...
 | 
						|
  // IsFlat means all vertices have the same Y coordinate.
 | 
						|
  bool IsFlat = true;
 | 
						|
  E = eStart;
 | 
						|
  do
 | 
						|
  {
 | 
						|
    InitEdge2(*E, PolyTyp);
 | 
						|
    E = E->Next;
 | 
						|
    if (IsFlat && E->Curr.y() != eStart->Curr.y()) IsFlat = false;
 | 
						|
  }
 | 
						|
  while (E != eStart);
 | 
						|
 | 
						|
  //4. Finally, add edge bounds to LocalMinima list ...
 | 
						|
 | 
						|
  //Totally flat paths must be handled differently when adding them
 | 
						|
  //to LocalMinima list to avoid endless loops etc ...
 | 
						|
  if (IsFlat) 
 | 
						|
  {
 | 
						|
    if (Closed) 
 | 
						|
    {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    E->Prev->OutIdx = Skip;
 | 
						|
    LocalMinimum locMin;
 | 
						|
    locMin.Y = E->Bot.y();
 | 
						|
    locMin.LeftBound = 0;
 | 
						|
    locMin.RightBound = E;
 | 
						|
    locMin.RightBound->Side = esRight;
 | 
						|
    locMin.RightBound->WindDelta = 0;
 | 
						|
    for (;;)
 | 
						|
    {
 | 
						|
      if (E->Bot.x() != E->Prev->Top.x()) ReverseHorizontal(*E);
 | 
						|
      if (E->Next->OutIdx == Skip) break;
 | 
						|
      E->NextInLML = E->Next;
 | 
						|
      E = E->Next;
 | 
						|
    }
 | 
						|
    m_MinimaList.push_back(locMin);
 | 
						|
	  return true;
 | 
						|
  }
 | 
						|
 | 
						|
  bool leftBoundIsForward;
 | 
						|
  TEdge* EMin = 0;
 | 
						|
 | 
						|
  //workaround to avoid an endless loop in the while loop below when
 | 
						|
  //open paths have matching start and end points ...
 | 
						|
  if (E->Prev->Bot == E->Prev->Top) E = E->Next;
 | 
						|
 | 
						|
  // Find local minima and store them into a Local Minima List.
 | 
						|
  // Multiple Local Minima could be created for a single path.
 | 
						|
  for (;;)
 | 
						|
  {
 | 
						|
    E = FindNextLocMin(E);
 | 
						|
    if (E == EMin) break;
 | 
						|
    else if (!EMin) EMin = E;
 | 
						|
 | 
						|
    //E and E.Prev now share a local minima (left aligned if horizontal).
 | 
						|
    //Compare their slopes to find which starts which bound ...
 | 
						|
    LocalMinimum locMin;
 | 
						|
    locMin.Y = E->Bot.y();
 | 
						|
    if (E->Dx < E->Prev->Dx) 
 | 
						|
    {
 | 
						|
      locMin.LeftBound = E->Prev;
 | 
						|
      locMin.RightBound = E;
 | 
						|
      leftBoundIsForward = false; //Q.nextInLML = Q.prev
 | 
						|
    } else
 | 
						|
    {
 | 
						|
      locMin.LeftBound = E;
 | 
						|
      locMin.RightBound = E->Prev;
 | 
						|
      leftBoundIsForward = true; //Q.nextInLML = Q.next
 | 
						|
    }
 | 
						|
    locMin.LeftBound->Side = esLeft;
 | 
						|
    locMin.RightBound->Side = esRight;
 | 
						|
 | 
						|
    if (!Closed) locMin.LeftBound->WindDelta = 0;
 | 
						|
    else if (locMin.LeftBound->Next == locMin.RightBound)
 | 
						|
      locMin.LeftBound->WindDelta = -1;
 | 
						|
    else locMin.LeftBound->WindDelta = 1;
 | 
						|
    locMin.RightBound->WindDelta = -locMin.LeftBound->WindDelta;
 | 
						|
 | 
						|
    E = ProcessBound(locMin.LeftBound, leftBoundIsForward);
 | 
						|
    if (E->OutIdx == Skip) E = ProcessBound(E, leftBoundIsForward);
 | 
						|
 | 
						|
    TEdge* E2 = ProcessBound(locMin.RightBound, !leftBoundIsForward);
 | 
						|
    if (E2->OutIdx == Skip) E2 = ProcessBound(E2, !leftBoundIsForward);
 | 
						|
 | 
						|
    if (locMin.LeftBound->OutIdx == Skip)
 | 
						|
      locMin.LeftBound = 0;
 | 
						|
    else if (locMin.RightBound->OutIdx == Skip)
 | 
						|
      locMin.RightBound = 0;
 | 
						|
    m_MinimaList.push_back(locMin);
 | 
						|
    if (!leftBoundIsForward) E = E2;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void ClipperBase::Clear()
 | 
						|
{
 | 
						|
  CLIPPERLIB_PROFILE_FUNC();
 | 
						|
  m_MinimaList.clear();
 | 
						|
  m_edges.clear();
 | 
						|
#ifndef CLIPPERLIB_INT32
 | 
						|
  m_UseFullRange = false;
 | 
						|
#endif // CLIPPERLIB_INT32
 | 
						|
  m_HasOpenPaths = false;
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
// Initialize the Local Minima List:
 | 
						|
// Sort the LML entries, initialize the left / right bound edges of each Local Minima.
 | 
						|
void ClipperBase::Reset()
 | 
						|
{
 | 
						|
  CLIPPERLIB_PROFILE_FUNC();
 | 
						|
  if (m_MinimaList.empty()) return; //ie nothing to process
 | 
						|
  std::sort(m_MinimaList.begin(), m_MinimaList.end(), [](const LocalMinimum& lm1, const LocalMinimum& lm2){ return lm1.Y < lm2.Y; });
 | 
						|
 | 
						|
  //reset all edges ...
 | 
						|
  for (LocalMinimum &lm : m_MinimaList) {
 | 
						|
    TEdge* e = lm.LeftBound;
 | 
						|
    if (e)
 | 
						|
    {
 | 
						|
      e->Curr = e->Bot;
 | 
						|
      e->Side = esLeft;
 | 
						|
      e->OutIdx = Unassigned;
 | 
						|
    }
 | 
						|
 | 
						|
    e = lm.RightBound;
 | 
						|
    if (e)
 | 
						|
    {
 | 
						|
      e->Curr = e->Bot;
 | 
						|
      e->Side = esRight;
 | 
						|
      e->OutIdx = Unassigned;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
// Get bounds of the edges referenced by the Local Minima List.
 | 
						|
// Returns (0,0,0,0) for an empty rectangle.
 | 
						|
IntRect ClipperBase::GetBounds()
 | 
						|
{
 | 
						|
  CLIPPERLIB_PROFILE_FUNC();
 | 
						|
  IntRect result;
 | 
						|
  auto lm = m_MinimaList.begin();
 | 
						|
  if (lm == m_MinimaList.end())
 | 
						|
  {
 | 
						|
    result.left = result.top = result.right = result.bottom = 0;
 | 
						|
    return result;
 | 
						|
  }
 | 
						|
  result.left = lm->LeftBound->Bot.x();
 | 
						|
  result.top = lm->LeftBound->Bot.y();
 | 
						|
  result.right = lm->LeftBound->Bot.x();
 | 
						|
  result.bottom = lm->LeftBound->Bot.y();
 | 
						|
  while (lm != m_MinimaList.end())
 | 
						|
  {
 | 
						|
    result.bottom = std::max(result.bottom, lm->LeftBound->Bot.y());
 | 
						|
    TEdge* e = lm->LeftBound;
 | 
						|
    for (;;) {
 | 
						|
      TEdge* bottomE = e;
 | 
						|
      while (e->NextInLML)
 | 
						|
      {
 | 
						|
        if (e->Bot.x() < result.left) result.left = e->Bot.x();
 | 
						|
        if (e->Bot.x() > result.right) result.right = e->Bot.x();
 | 
						|
        e = e->NextInLML;
 | 
						|
      }
 | 
						|
      result.left = std::min(result.left, e->Bot.x());
 | 
						|
      result.right = std::max(result.right, e->Bot.x());
 | 
						|
      result.left = std::min(result.left, e->Top.x());
 | 
						|
      result.right = std::max(result.right, e->Top.x());
 | 
						|
      result.top = std::min(result.top, e->Top.y());
 | 
						|
      if (bottomE == lm->LeftBound) e = lm->RightBound;
 | 
						|
      else break;
 | 
						|
    }
 | 
						|
    ++lm;
 | 
						|
  }
 | 
						|
  return result;
 | 
						|
}
 | 
						|
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
// TClipper methods ...
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
Clipper::Clipper(int initOptions) : 
 | 
						|
  ClipperBase(),
 | 
						|
  m_OutPtsFree(nullptr),
 | 
						|
  m_OutPtsChunkSize(32),
 | 
						|
  m_OutPtsChunkLast(32),
 | 
						|
  m_ActiveEdges(nullptr),
 | 
						|
  m_SortedEdges(nullptr)
 | 
						|
{
 | 
						|
  m_ReverseOutput = ((initOptions & ioReverseSolution) != 0);
 | 
						|
  m_StrictSimple = ((initOptions & ioStrictlySimple) != 0);
 | 
						|
  m_PreserveCollinear = ((initOptions & ioPreserveCollinear) != 0);
 | 
						|
  m_HasOpenPaths = false;
 | 
						|
#ifdef CLIPPERLIB_USE_XYZ  
 | 
						|
  m_ZFill = 0;
 | 
						|
#endif
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void Clipper::Reset()
 | 
						|
{
 | 
						|
  CLIPPERLIB_PROFILE_FUNC();
 | 
						|
  ClipperBase::Reset();
 | 
						|
  m_Scanbeam = std::priority_queue<cInt>();
 | 
						|
  m_Maxima.clear();
 | 
						|
  m_ActiveEdges = 0;
 | 
						|
  m_SortedEdges = 0;
 | 
						|
  for (auto lm = m_MinimaList.rbegin(); lm != m_MinimaList.rend(); ++lm)
 | 
						|
    m_Scanbeam.push(lm->Y);
 | 
						|
}
 | 
						|
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
bool Clipper::Execute(ClipType clipType, Paths &solution,
 | 
						|
    PolyFillType subjFillType, PolyFillType clipFillType)
 | 
						|
{
 | 
						|
  CLIPPERLIB_PROFILE_FUNC();
 | 
						|
  if (m_HasOpenPaths)
 | 
						|
    throw clipperException("Error: PolyTree struct is needed for open path clipping.");
 | 
						|
  solution.clear();
 | 
						|
  m_SubjFillType = subjFillType;
 | 
						|
  m_ClipFillType = clipFillType;
 | 
						|
  m_ClipType = clipType;
 | 
						|
  m_UsingPolyTree = false;
 | 
						|
  bool succeeded = ExecuteInternal();
 | 
						|
  if (succeeded) BuildResult(solution);
 | 
						|
  DisposeAllOutRecs();
 | 
						|
  return succeeded;
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
bool Clipper::Execute(ClipType clipType, PolyTree& polytree,
 | 
						|
    PolyFillType subjFillType, PolyFillType clipFillType)
 | 
						|
{
 | 
						|
  CLIPPERLIB_PROFILE_FUNC();
 | 
						|
  m_SubjFillType = subjFillType;
 | 
						|
  m_ClipFillType = clipFillType;
 | 
						|
  m_ClipType = clipType;
 | 
						|
  m_UsingPolyTree = true;
 | 
						|
  bool succeeded = ExecuteInternal();
 | 
						|
  if (succeeded) BuildResult2(polytree);
 | 
						|
  DisposeAllOutRecs();
 | 
						|
  return succeeded;
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
bool Clipper::ExecuteInternal()
 | 
						|
{
 | 
						|
  CLIPPERLIB_PROFILE_FUNC();
 | 
						|
  bool succeeded = true;
 | 
						|
  try {
 | 
						|
   CLIPPERLIB_PROFILE_BLOCK(Clipper_ExecuteInternal_Process);
 | 
						|
    Reset();
 | 
						|
    if (m_MinimaList.empty()) return true;
 | 
						|
    cInt botY = m_Scanbeam.top();
 | 
						|
    do { m_Scanbeam.pop(); } while (! m_Scanbeam.empty() && botY == m_Scanbeam.top());
 | 
						|
    do {
 | 
						|
      InsertLocalMinimaIntoAEL(botY);
 | 
						|
      ProcessHorizontals();
 | 
						|
	    m_GhostJoins.clear();
 | 
						|
	    if (m_Scanbeam.empty()) break;
 | 
						|
      cInt topY = m_Scanbeam.top();
 | 
						|
      do { m_Scanbeam.pop(); } while (! m_Scanbeam.empty() && topY == m_Scanbeam.top());
 | 
						|
      succeeded = ProcessIntersections(topY);
 | 
						|
      if (!succeeded) break;
 | 
						|
      ProcessEdgesAtTopOfScanbeam(topY);
 | 
						|
      botY = topY;
 | 
						|
    } while (!m_Scanbeam.empty() || !m_MinimaList.empty());
 | 
						|
  }
 | 
						|
  catch(...) 
 | 
						|
  {
 | 
						|
    succeeded = false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (succeeded)
 | 
						|
  {
 | 
						|
    CLIPPERLIB_PROFILE_BLOCK(Clipper_ExecuteInternal_Fix);
 | 
						|
 | 
						|
    //fix orientations ...
 | 
						|
    //FIXME Vojtech: Does it not invalidate the loop hierarchy maintained as OutRec::FirstLeft pointers?
 | 
						|
    //FIXME Vojtech: The area is calculated with floats, it may not be numerically stable!
 | 
						|
    {
 | 
						|
      CLIPPERLIB_PROFILE_BLOCK(Clipper_ExecuteInternal_Fix_orientations);
 | 
						|
      for (OutRec *outRec : m_PolyOuts)
 | 
						|
        if (outRec->Pts && !outRec->IsOpen && (outRec->IsHole ^ m_ReverseOutput) == (Area(*outRec) > 0))
 | 
						|
          ReversePolyPtLinks(outRec->Pts);
 | 
						|
    }
 | 
						|
 | 
						|
    JoinCommonEdges();
 | 
						|
 | 
						|
    //unfortunately FixupOutPolygon() must be done after JoinCommonEdges()
 | 
						|
    {
 | 
						|
      CLIPPERLIB_PROFILE_BLOCK(Clipper_ExecuteInternal_Fix_fixup);
 | 
						|
      for (OutRec *outRec : m_PolyOuts)
 | 
						|
        if (outRec->Pts) {
 | 
						|
          if (outRec->IsOpen)
 | 
						|
            // Removes duplicate points.
 | 
						|
            FixupOutPolyline(*outRec);
 | 
						|
          else
 | 
						|
            // Removes duplicate points and simplifies consecutive parallel edges by removing the middle vertex.
 | 
						|
            FixupOutPolygon(*outRec);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    // For each polygon, search for exactly duplicate non-successive points.
 | 
						|
    // If such a point is found, the loop is split into two pieces.
 | 
						|
    // Search for the duplicate points is O(n^2)!
 | 
						|
    // http://www.angusj.com/delphi/clipper/documentation/Docs/Units/ClipperLib/Classes/Clipper/Properties/StrictlySimple.htm
 | 
						|
    if (m_StrictSimple) DoSimplePolygons();
 | 
						|
  }
 | 
						|
 | 
						|
  m_Joins.clear();
 | 
						|
  m_GhostJoins.clear();
 | 
						|
  return succeeded;
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
OutPt* Clipper::AllocateOutPt()
 | 
						|
{
 | 
						|
  OutPt *pt;
 | 
						|
  if (m_OutPtsFree) {
 | 
						|
    // Recycle some of the already released points.
 | 
						|
    pt = m_OutPtsFree;
 | 
						|
    m_OutPtsFree = pt->Next;
 | 
						|
  } else if (m_OutPtsChunkLast < m_OutPtsChunkSize) {
 | 
						|
    // Get a point from the last chunk.
 | 
						|
    pt = m_OutPts.back() + (m_OutPtsChunkLast ++);
 | 
						|
  } else {
 | 
						|
    // The last chunk is full. Allocate a new one.
 | 
						|
    m_OutPts.push_back(new OutPt[m_OutPtsChunkSize]);
 | 
						|
    m_OutPtsChunkLast = 1;
 | 
						|
    pt = m_OutPts.back();
 | 
						|
  }
 | 
						|
  return pt;
 | 
						|
}
 | 
						|
 | 
						|
void Clipper::DisposeAllOutRecs()
 | 
						|
{
 | 
						|
  for (OutPt *pts : m_OutPts)
 | 
						|
    delete[] pts;
 | 
						|
  for (OutRec *rec : m_PolyOuts)
 | 
						|
    delete rec;
 | 
						|
  m_OutPts.clear();
 | 
						|
  m_OutPtsFree = nullptr;
 | 
						|
  m_OutPtsChunkLast = m_OutPtsChunkSize;
 | 
						|
  m_PolyOuts.clear();
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void Clipper::SetWindingCount(TEdge &edge) const
 | 
						|
{
 | 
						|
  TEdge *e = edge.PrevInAEL;
 | 
						|
  //find the edge of the same polytype that immediately preceeds 'edge' in AEL
 | 
						|
  while (e  && ((e->PolyTyp != edge.PolyTyp) || (e->WindDelta == 0))) e = e->PrevInAEL;
 | 
						|
  if (!e)
 | 
						|
  {
 | 
						|
    edge.WindCnt = (edge.WindDelta == 0 ? 1 : edge.WindDelta);
 | 
						|
    edge.WindCnt2 = 0;
 | 
						|
    e = m_ActiveEdges; //ie get ready to calc WindCnt2
 | 
						|
  }   
 | 
						|
  else if (edge.WindDelta == 0 && m_ClipType != ctUnion)
 | 
						|
  {
 | 
						|
    edge.WindCnt = 1;
 | 
						|
    edge.WindCnt2 = e->WindCnt2;
 | 
						|
    e = e->NextInAEL; //ie get ready to calc WindCnt2
 | 
						|
  }
 | 
						|
  else if (IsEvenOddFillType(edge))
 | 
						|
  {
 | 
						|
    //EvenOdd filling ...
 | 
						|
    if (edge.WindDelta == 0)
 | 
						|
    {
 | 
						|
      //are we inside a subj polygon ...
 | 
						|
      bool Inside = true;
 | 
						|
      TEdge *e2 = e->PrevInAEL;
 | 
						|
      while (e2)
 | 
						|
      {
 | 
						|
        if (e2->PolyTyp == e->PolyTyp && e2->WindDelta != 0) 
 | 
						|
          Inside = !Inside;
 | 
						|
        e2 = e2->PrevInAEL;
 | 
						|
      }
 | 
						|
      edge.WindCnt = (Inside ? 0 : 1);
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      edge.WindCnt = edge.WindDelta;
 | 
						|
    }
 | 
						|
    edge.WindCnt2 = e->WindCnt2;
 | 
						|
    e = e->NextInAEL; //ie get ready to calc WindCnt2
 | 
						|
  } 
 | 
						|
  else
 | 
						|
  {
 | 
						|
    //nonZero, Positive or Negative filling ...
 | 
						|
    if (e->WindCnt * e->WindDelta < 0)
 | 
						|
    {
 | 
						|
      //prev edge is 'decreasing' WindCount (WC) toward zero
 | 
						|
      //so we're outside the previous polygon ...
 | 
						|
      if (std::abs(e->WindCnt) > 1)
 | 
						|
      {
 | 
						|
        //outside prev poly but still inside another.
 | 
						|
        //when reversing direction of prev poly use the same WC 
 | 
						|
        if (e->WindDelta * edge.WindDelta < 0) edge.WindCnt = e->WindCnt;
 | 
						|
        //otherwise continue to 'decrease' WC ...
 | 
						|
        else edge.WindCnt = e->WindCnt + edge.WindDelta;
 | 
						|
      } 
 | 
						|
      else
 | 
						|
        //now outside all polys of same polytype so set own WC ...
 | 
						|
        edge.WindCnt = (edge.WindDelta == 0 ? 1 : edge.WindDelta);
 | 
						|
    } else
 | 
						|
    {
 | 
						|
      //prev edge is 'increasing' WindCount (WC) away from zero
 | 
						|
      //so we're inside the previous polygon ...
 | 
						|
      if (edge.WindDelta == 0) 
 | 
						|
        edge.WindCnt = (e->WindCnt < 0 ? e->WindCnt - 1 : e->WindCnt + 1);
 | 
						|
      //if wind direction is reversing prev then use same WC
 | 
						|
      else if (e->WindDelta * edge.WindDelta < 0) edge.WindCnt = e->WindCnt;
 | 
						|
      //otherwise add to WC ...
 | 
						|
      else edge.WindCnt = e->WindCnt + edge.WindDelta;
 | 
						|
    }
 | 
						|
    edge.WindCnt2 = e->WindCnt2;
 | 
						|
    e = e->NextInAEL; //ie get ready to calc WindCnt2
 | 
						|
  }
 | 
						|
 | 
						|
  //update WindCnt2 ...
 | 
						|
  if (IsEvenOddAltFillType(edge))
 | 
						|
  {
 | 
						|
    //EvenOdd filling ...
 | 
						|
    while (e != &edge)
 | 
						|
    {
 | 
						|
      if (e->WindDelta != 0)
 | 
						|
        edge.WindCnt2 = (edge.WindCnt2 == 0 ? 1 : 0);
 | 
						|
      e = e->NextInAEL;
 | 
						|
    }
 | 
						|
  } else
 | 
						|
  {
 | 
						|
    //nonZero, Positive or Negative filling ...
 | 
						|
    while ( e != &edge )
 | 
						|
    {
 | 
						|
      edge.WindCnt2 += e->WindDelta;
 | 
						|
      e = e->NextInAEL;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
bool Clipper::IsContributing(const TEdge& edge) const
 | 
						|
{
 | 
						|
  PolyFillType pft, pft2;
 | 
						|
  if (edge.PolyTyp == ptSubject)
 | 
						|
  {
 | 
						|
    pft = m_SubjFillType;
 | 
						|
    pft2 = m_ClipFillType;
 | 
						|
  } else
 | 
						|
  {
 | 
						|
    pft = m_ClipFillType;
 | 
						|
    pft2 = m_SubjFillType;
 | 
						|
  }
 | 
						|
 | 
						|
  switch(pft)
 | 
						|
  {
 | 
						|
    case pftEvenOdd: 
 | 
						|
      //return false if a subj line has been flagged as inside a subj polygon
 | 
						|
      if (edge.WindDelta == 0 && edge.WindCnt != 1) return false;
 | 
						|
      break;
 | 
						|
    case pftNonZero:
 | 
						|
      if (std::abs(edge.WindCnt) != 1) return false;
 | 
						|
      break;
 | 
						|
    case pftPositive: 
 | 
						|
      if (edge.WindCnt != 1) return false;
 | 
						|
      break;
 | 
						|
    default: //pftNegative
 | 
						|
      if (edge.WindCnt != -1) return false;
 | 
						|
  }
 | 
						|
 | 
						|
  switch(m_ClipType)
 | 
						|
  {
 | 
						|
    case ctIntersection:
 | 
						|
      switch(pft2)
 | 
						|
      {
 | 
						|
        case pftEvenOdd: 
 | 
						|
        case pftNonZero: 
 | 
						|
          return (edge.WindCnt2 != 0);
 | 
						|
        case pftPositive: 
 | 
						|
          return (edge.WindCnt2 > 0);
 | 
						|
        default: 
 | 
						|
          return (edge.WindCnt2 < 0);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case ctUnion:
 | 
						|
      switch(pft2)
 | 
						|
      {
 | 
						|
        case pftEvenOdd: 
 | 
						|
        case pftNonZero: 
 | 
						|
          return (edge.WindCnt2 == 0);
 | 
						|
        case pftPositive: 
 | 
						|
          return (edge.WindCnt2 <= 0);
 | 
						|
        default: 
 | 
						|
          return (edge.WindCnt2 >= 0);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case ctDifference:
 | 
						|
      if (edge.PolyTyp == ptSubject)
 | 
						|
        switch(pft2)
 | 
						|
        {
 | 
						|
          case pftEvenOdd: 
 | 
						|
          case pftNonZero: 
 | 
						|
            return (edge.WindCnt2 == 0);
 | 
						|
          case pftPositive: 
 | 
						|
            return (edge.WindCnt2 <= 0);
 | 
						|
          default: 
 | 
						|
            return (edge.WindCnt2 >= 0);
 | 
						|
        }
 | 
						|
      else
 | 
						|
        switch(pft2)
 | 
						|
        {
 | 
						|
          case pftEvenOdd: 
 | 
						|
          case pftNonZero: 
 | 
						|
            return (edge.WindCnt2 != 0);
 | 
						|
          case pftPositive: 
 | 
						|
            return (edge.WindCnt2 > 0);
 | 
						|
          default: 
 | 
						|
            return (edge.WindCnt2 < 0);
 | 
						|
        }
 | 
						|
      break;
 | 
						|
    case ctXor:
 | 
						|
      if (edge.WindDelta == 0) //XOr always contributing unless open
 | 
						|
        switch(pft2)
 | 
						|
        {
 | 
						|
          case pftEvenOdd: 
 | 
						|
          case pftNonZero: 
 | 
						|
            return (edge.WindCnt2 == 0);
 | 
						|
          case pftPositive: 
 | 
						|
            return (edge.WindCnt2 <= 0);
 | 
						|
          default: 
 | 
						|
            return (edge.WindCnt2 >= 0);
 | 
						|
        }
 | 
						|
      else 
 | 
						|
        return true;
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
// Called from Clipper::InsertLocalMinimaIntoAEL() and Clipper::IntersectEdges().
 | 
						|
OutPt* Clipper::AddLocalMinPoly(TEdge *e1, TEdge *e2, const IntPoint &Pt)
 | 
						|
{
 | 
						|
  CLIPPERLIB_PROFILE_FUNC();
 | 
						|
  OutPt* result;
 | 
						|
  TEdge *e, *prevE;
 | 
						|
  if (IsHorizontal(*e2) || ( e1->Dx > e2->Dx ))
 | 
						|
  {
 | 
						|
    result = AddOutPt(e1, Pt);
 | 
						|
    e2->OutIdx = e1->OutIdx;
 | 
						|
    e1->Side = esLeft;
 | 
						|
    e2->Side = esRight;
 | 
						|
    e = e1;
 | 
						|
    if (e->PrevInAEL == e2)
 | 
						|
      prevE = e2->PrevInAEL; 
 | 
						|
    else
 | 
						|
      prevE = e->PrevInAEL;
 | 
						|
  } else
 | 
						|
  {
 | 
						|
    result = AddOutPt(e2, Pt);
 | 
						|
    e1->OutIdx = e2->OutIdx;
 | 
						|
    e1->Side = esRight;
 | 
						|
    e2->Side = esLeft;
 | 
						|
    e = e2;
 | 
						|
    if (e->PrevInAEL == e1)
 | 
						|
        prevE = e1->PrevInAEL;
 | 
						|
    else
 | 
						|
        prevE = e->PrevInAEL;
 | 
						|
  }
 | 
						|
 | 
						|
  if (prevE && prevE->OutIdx >= 0 &&
 | 
						|
      (TopX(*prevE, Pt.y()) == TopX(*e, Pt.y())) &&
 | 
						|
      SlopesEqual(*e, *prevE, m_UseFullRange) &&
 | 
						|
      (e->WindDelta != 0) && (prevE->WindDelta != 0))
 | 
						|
  {
 | 
						|
    OutPt* outPt = AddOutPt(prevE, Pt);
 | 
						|
    m_Joins.emplace_back(Join(result, outPt, e->Top));
 | 
						|
  }
 | 
						|
  return result;
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void Clipper::AddLocalMaxPoly(TEdge *e1, TEdge *e2, const IntPoint &Pt)
 | 
						|
{
 | 
						|
  AddOutPt( e1, Pt );
 | 
						|
  if (e2->WindDelta == 0) AddOutPt(e2, Pt);
 | 
						|
  if( e1->OutIdx == e2->OutIdx )
 | 
						|
  {
 | 
						|
    e1->OutIdx = Unassigned;
 | 
						|
    e2->OutIdx = Unassigned;
 | 
						|
  }
 | 
						|
  else if (e1->OutIdx < e2->OutIdx) 
 | 
						|
    AppendPolygon(e1, e2); 
 | 
						|
  else 
 | 
						|
    AppendPolygon(e2, e1);
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void Clipper::AddEdgeToSEL(TEdge *edge)
 | 
						|
{
 | 
						|
  //SEL pointers in PEdge are reused to build a list of horizontal edges.
 | 
						|
  //However, we don't need to worry about order with horizontal edge processing.
 | 
						|
  if( !m_SortedEdges )
 | 
						|
  {
 | 
						|
    m_SortedEdges = edge;
 | 
						|
    edge->PrevInSEL = 0;
 | 
						|
    edge->NextInSEL = 0;
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    edge->NextInSEL = m_SortedEdges;
 | 
						|
    edge->PrevInSEL = 0;
 | 
						|
    m_SortedEdges->PrevInSEL = edge;
 | 
						|
    m_SortedEdges = edge;
 | 
						|
  }
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void Clipper::CopyAELToSEL()
 | 
						|
{
 | 
						|
  TEdge* e = m_ActiveEdges;
 | 
						|
  m_SortedEdges = e;
 | 
						|
  while ( e )
 | 
						|
  {
 | 
						|
    e->PrevInSEL = e->PrevInAEL;
 | 
						|
    e->NextInSEL = e->NextInAEL;
 | 
						|
    e = e->NextInAEL;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
// Called from Clipper::ExecuteInternal()
 | 
						|
void Clipper::InsertLocalMinimaIntoAEL(const cInt botY)
 | 
						|
{
 | 
						|
  CLIPPERLIB_PROFILE_FUNC();
 | 
						|
  while (!m_MinimaList.empty() && m_MinimaList.back().Y == botY)
 | 
						|
  {
 | 
						|
    TEdge* lb = m_MinimaList.back().LeftBound;
 | 
						|
    TEdge* rb = m_MinimaList.back().RightBound;
 | 
						|
    m_MinimaList.pop_back();
 | 
						|
 | 
						|
    OutPt *Op1 = 0;
 | 
						|
    if (!lb)
 | 
						|
    {
 | 
						|
      //nb: don't insert LB into either AEL or SEL
 | 
						|
      InsertEdgeIntoAEL(rb, 0);
 | 
						|
      SetWindingCount(*rb);
 | 
						|
      if (IsContributing(*rb))
 | 
						|
        Op1 = AddOutPt(rb, rb->Bot); 
 | 
						|
    } 
 | 
						|
    else if (!rb)
 | 
						|
    {
 | 
						|
      InsertEdgeIntoAEL(lb, 0);
 | 
						|
      SetWindingCount(*lb);
 | 
						|
      if (IsContributing(*lb))
 | 
						|
        Op1 = AddOutPt(lb, lb->Bot);
 | 
						|
      m_Scanbeam.push(lb->Top.y());
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      InsertEdgeIntoAEL(lb, 0);
 | 
						|
      InsertEdgeIntoAEL(rb, lb);
 | 
						|
      SetWindingCount( *lb );
 | 
						|
      rb->WindCnt = lb->WindCnt;
 | 
						|
      rb->WindCnt2 = lb->WindCnt2;
 | 
						|
      if (IsContributing(*lb))
 | 
						|
        Op1 = AddLocalMinPoly(lb, rb, lb->Bot);      
 | 
						|
      m_Scanbeam.push(lb->Top.y());
 | 
						|
    }
 | 
						|
 | 
						|
     if (rb)
 | 
						|
     {
 | 
						|
       if(IsHorizontal(*rb)) AddEdgeToSEL(rb);
 | 
						|
       else m_Scanbeam.push(rb->Top.y());
 | 
						|
     }
 | 
						|
 | 
						|
    if (!lb || !rb) continue;
 | 
						|
 | 
						|
    //if any output polygons share an edge, they'll need joining later ...
 | 
						|
    if (Op1 && IsHorizontal(*rb) && 
 | 
						|
      m_GhostJoins.size() > 0 && (rb->WindDelta != 0))
 | 
						|
    {
 | 
						|
      for (Join &jr : m_GhostJoins)
 | 
						|
        //if the horizontal Rb and a 'ghost' horizontal overlap, then convert
 | 
						|
        //the 'ghost' join to a real join ready for later ...
 | 
						|
        if (HorzSegmentsOverlap(jr.OutPt1->Pt.x(), jr.OffPt.x(), rb->Bot.x(), rb->Top.x()))
 | 
						|
          m_Joins.emplace_back(Join(jr.OutPt1, Op1, jr.OffPt));
 | 
						|
    }
 | 
						|
 | 
						|
    if (lb->OutIdx >= 0 && lb->PrevInAEL && 
 | 
						|
      lb->PrevInAEL->Curr.x() == lb->Bot.x() &&
 | 
						|
      lb->PrevInAEL->OutIdx >= 0 &&
 | 
						|
      SlopesEqual(*lb->PrevInAEL, *lb, m_UseFullRange) &&
 | 
						|
      (lb->WindDelta != 0) && (lb->PrevInAEL->WindDelta != 0))
 | 
						|
    {
 | 
						|
        OutPt *Op2 = AddOutPt(lb->PrevInAEL, lb->Bot);
 | 
						|
        m_Joins.emplace_back(Join(Op1, Op2, lb->Top));
 | 
						|
    }
 | 
						|
 | 
						|
    if(lb->NextInAEL != rb)
 | 
						|
    {
 | 
						|
 | 
						|
      if (rb->OutIdx >= 0 && rb->PrevInAEL->OutIdx >= 0 &&
 | 
						|
        SlopesEqual(*rb->PrevInAEL, *rb, m_UseFullRange) &&
 | 
						|
        (rb->WindDelta != 0) && (rb->PrevInAEL->WindDelta != 0))
 | 
						|
      {
 | 
						|
          OutPt *Op2 = AddOutPt(rb->PrevInAEL, rb->Bot);
 | 
						|
          m_Joins.emplace_back(Join(Op1, Op2, rb->Top));
 | 
						|
      }
 | 
						|
 | 
						|
      TEdge* e = lb->NextInAEL;
 | 
						|
      if (e)
 | 
						|
      {
 | 
						|
        while( e != rb )
 | 
						|
        {
 | 
						|
          //nb: For calculating winding counts etc, IntersectEdges() assumes
 | 
						|
          //that param1 will be to the Right of param2 ABOVE the intersection ...
 | 
						|
          IntersectEdges(rb , e , lb->Curr); //order important here
 | 
						|
          e = e->NextInAEL;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
  }
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void Clipper::DeleteFromAEL(TEdge *e)
 | 
						|
{
 | 
						|
  TEdge* AelPrev = e->PrevInAEL;
 | 
						|
  TEdge* AelNext = e->NextInAEL;
 | 
						|
  if(  !AelPrev &&  !AelNext && (e != m_ActiveEdges) ) return; //already deleted
 | 
						|
  if( AelPrev ) AelPrev->NextInAEL = AelNext;
 | 
						|
  else m_ActiveEdges = AelNext;
 | 
						|
  if( AelNext ) AelNext->PrevInAEL = AelPrev;
 | 
						|
  e->NextInAEL = 0;
 | 
						|
  e->PrevInAEL = 0;
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void Clipper::DeleteFromSEL(TEdge *e)
 | 
						|
{
 | 
						|
  TEdge* SelPrev = e->PrevInSEL;
 | 
						|
  TEdge* SelNext = e->NextInSEL;
 | 
						|
  if( !SelPrev &&  !SelNext && (e != m_SortedEdges) ) return; //already deleted
 | 
						|
  if( SelPrev ) SelPrev->NextInSEL = SelNext;
 | 
						|
  else m_SortedEdges = SelNext;
 | 
						|
  if( SelNext ) SelNext->PrevInSEL = SelPrev;
 | 
						|
  e->NextInSEL = 0;
 | 
						|
  e->PrevInSEL = 0;
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
#ifdef CLIPPERLIB_USE_XYZ
 | 
						|
void Clipper::SetZ(IntPoint& pt, TEdge& e1, TEdge& e2)
 | 
						|
{
 | 
						|
  if (pt.z() != 0 || !m_ZFill) return;
 | 
						|
  else if (pt == e1.Bot) pt.z() = e1.Bot.z();
 | 
						|
  else if (pt == e1.Top) pt.z() = e1.Top.z();
 | 
						|
  else if (pt == e2.Bot) pt.z() = e2.Bot.z();
 | 
						|
  else if (pt == e2.Top) pt.z() = e2.Top.z();
 | 
						|
  else m_ZFill(e1.Bot, e1.Top, e2.Bot, e2.Top, pt);
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
#endif
 | 
						|
 | 
						|
void Clipper::IntersectEdges(TEdge *e1, TEdge *e2, IntPoint &Pt)
 | 
						|
{
 | 
						|
  bool e1Contributing = ( e1->OutIdx >= 0 );
 | 
						|
  bool e2Contributing = ( e2->OutIdx >= 0 );
 | 
						|
 | 
						|
#ifdef CLIPPERLIB_USE_XYZ
 | 
						|
        SetZ(Pt, *e1, *e2);
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef use_lines
 | 
						|
  //if either edge is on an OPEN path ...
 | 
						|
  if (e1->WindDelta == 0 || e2->WindDelta == 0)
 | 
						|
  {
 | 
						|
    //ignore subject-subject open path intersections UNLESS they
 | 
						|
    //are both open paths, AND they are both 'contributing maximas' ...
 | 
						|
	if (e1->WindDelta == 0 && e2->WindDelta == 0) return;
 | 
						|
 | 
						|
    //if intersecting a subj line with a subj poly ...
 | 
						|
    else if (e1->PolyTyp == e2->PolyTyp && 
 | 
						|
      e1->WindDelta != e2->WindDelta && m_ClipType == ctUnion)
 | 
						|
    {
 | 
						|
      if (e1->WindDelta == 0)
 | 
						|
      {
 | 
						|
        if (e2Contributing)
 | 
						|
        {
 | 
						|
          AddOutPt(e1, Pt);
 | 
						|
          if (e1Contributing) e1->OutIdx = Unassigned;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      else
 | 
						|
      {
 | 
						|
        if (e1Contributing)
 | 
						|
        {
 | 
						|
          AddOutPt(e2, Pt);
 | 
						|
          if (e2Contributing) e2->OutIdx = Unassigned;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else if (e1->PolyTyp != e2->PolyTyp)
 | 
						|
    {
 | 
						|
      //toggle subj open path OutIdx on/off when Abs(clip.WndCnt) == 1 ...
 | 
						|
      if ((e1->WindDelta == 0) && std::abs(e2->WindCnt) == 1 && 
 | 
						|
        (m_ClipType != ctUnion || e2->WindCnt2 == 0))
 | 
						|
      {
 | 
						|
        AddOutPt(e1, Pt);
 | 
						|
        if (e1Contributing) e1->OutIdx = Unassigned;
 | 
						|
      }
 | 
						|
      else if ((e2->WindDelta == 0) && (std::abs(e1->WindCnt) == 1) && 
 | 
						|
        (m_ClipType != ctUnion || e1->WindCnt2 == 0))
 | 
						|
      {
 | 
						|
        AddOutPt(e2, Pt);
 | 
						|
        if (e2Contributing) e2->OutIdx = Unassigned;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  //update winding counts...
 | 
						|
  //assumes that e1 will be to the Right of e2 ABOVE the intersection
 | 
						|
  if ( e1->PolyTyp == e2->PolyTyp )
 | 
						|
  {
 | 
						|
    if ( IsEvenOddFillType( *e1) )
 | 
						|
    {
 | 
						|
      int oldE1WindCnt = e1->WindCnt;
 | 
						|
      e1->WindCnt = e2->WindCnt;
 | 
						|
      e2->WindCnt = oldE1WindCnt;
 | 
						|
    } else
 | 
						|
    {
 | 
						|
      if (e1->WindCnt + e2->WindDelta == 0 ) e1->WindCnt = -e1->WindCnt;
 | 
						|
      else e1->WindCnt += e2->WindDelta;
 | 
						|
      if ( e2->WindCnt - e1->WindDelta == 0 ) e2->WindCnt = -e2->WindCnt;
 | 
						|
      else e2->WindCnt -= e1->WindDelta;
 | 
						|
    }
 | 
						|
  } else
 | 
						|
  {
 | 
						|
    if (!IsEvenOddFillType(*e2)) e1->WindCnt2 += e2->WindDelta;
 | 
						|
    else e1->WindCnt2 = ( e1->WindCnt2 == 0 ) ? 1 : 0;
 | 
						|
    if (!IsEvenOddFillType(*e1)) e2->WindCnt2 -= e1->WindDelta;
 | 
						|
    else e2->WindCnt2 = ( e2->WindCnt2 == 0 ) ? 1 : 0;
 | 
						|
  }
 | 
						|
 | 
						|
  PolyFillType e1FillType, e2FillType, e1FillType2, e2FillType2;
 | 
						|
  if (e1->PolyTyp == ptSubject)
 | 
						|
  {
 | 
						|
    e1FillType = m_SubjFillType;
 | 
						|
    e1FillType2 = m_ClipFillType;
 | 
						|
  } else
 | 
						|
  {
 | 
						|
    e1FillType = m_ClipFillType;
 | 
						|
    e1FillType2 = m_SubjFillType;
 | 
						|
  }
 | 
						|
  if (e2->PolyTyp == ptSubject)
 | 
						|
  {
 | 
						|
    e2FillType = m_SubjFillType;
 | 
						|
    e2FillType2 = m_ClipFillType;
 | 
						|
  } else
 | 
						|
  {
 | 
						|
    e2FillType = m_ClipFillType;
 | 
						|
    e2FillType2 = m_SubjFillType;
 | 
						|
  }
 | 
						|
 | 
						|
  cInt e1Wc, e2Wc;
 | 
						|
  switch (e1FillType)
 | 
						|
  {
 | 
						|
    case pftPositive: e1Wc = e1->WindCnt; break;
 | 
						|
    case pftNegative: e1Wc = -e1->WindCnt; break;
 | 
						|
    default: e1Wc = std::abs(e1->WindCnt);
 | 
						|
  }
 | 
						|
  switch(e2FillType)
 | 
						|
  {
 | 
						|
    case pftPositive: e2Wc = e2->WindCnt; break;
 | 
						|
    case pftNegative: e2Wc = -e2->WindCnt; break;
 | 
						|
    default: e2Wc = std::abs(e2->WindCnt);
 | 
						|
  }
 | 
						|
 | 
						|
  if ( e1Contributing && e2Contributing )
 | 
						|
  {
 | 
						|
    if ((e1Wc != 0 && e1Wc != 1) || (e2Wc != 0 && e2Wc != 1) ||
 | 
						|
      (e1->PolyTyp != e2->PolyTyp && m_ClipType != ctXor) )
 | 
						|
    {
 | 
						|
      AddLocalMaxPoly(e1, e2, Pt); 
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      AddOutPt(e1, Pt);
 | 
						|
      AddOutPt(e2, Pt);
 | 
						|
      std::swap(e1->Side, e2->Side);
 | 
						|
      std::swap(e1->OutIdx, e2->OutIdx);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else if ( e1Contributing )
 | 
						|
  {
 | 
						|
    if (e2Wc == 0 || e2Wc == 1) 
 | 
						|
    {
 | 
						|
      AddOutPt(e1, Pt);
 | 
						|
      std::swap(e1->Side, e2->Side);
 | 
						|
      std::swap(e1->OutIdx, e2->OutIdx);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else if ( e2Contributing )
 | 
						|
  {
 | 
						|
    if (e1Wc == 0 || e1Wc == 1) 
 | 
						|
    {
 | 
						|
      AddOutPt(e2, Pt);
 | 
						|
      std::swap(e1->Side, e2->Side);
 | 
						|
      std::swap(e1->OutIdx, e2->OutIdx);
 | 
						|
    }
 | 
						|
  } 
 | 
						|
  else if ( (e1Wc == 0 || e1Wc == 1) && (e2Wc == 0 || e2Wc == 1))
 | 
						|
  {
 | 
						|
    //neither edge is currently contributing ...
 | 
						|
 | 
						|
    cInt e1Wc2, e2Wc2;
 | 
						|
    switch (e1FillType2)
 | 
						|
    {
 | 
						|
      case pftPositive: e1Wc2 = e1->WindCnt2; break;
 | 
						|
      case pftNegative : e1Wc2 = -e1->WindCnt2; break;
 | 
						|
      default: e1Wc2 = std::abs(e1->WindCnt2);
 | 
						|
    }
 | 
						|
    switch (e2FillType2)
 | 
						|
    {
 | 
						|
      case pftPositive: e2Wc2 = e2->WindCnt2; break;
 | 
						|
      case pftNegative: e2Wc2 = -e2->WindCnt2; break;
 | 
						|
      default: e2Wc2 = std::abs(e2->WindCnt2);
 | 
						|
    }
 | 
						|
 | 
						|
    if (e1->PolyTyp != e2->PolyTyp)
 | 
						|
    {
 | 
						|
      AddLocalMinPoly(e1, e2, Pt);
 | 
						|
    }
 | 
						|
    else if (e1Wc == 1 && e2Wc == 1)
 | 
						|
      switch( m_ClipType ) {
 | 
						|
        case ctIntersection:
 | 
						|
          if (e1Wc2 > 0 && e2Wc2 > 0)
 | 
						|
            AddLocalMinPoly(e1, e2, Pt);
 | 
						|
          break;
 | 
						|
        case ctUnion:
 | 
						|
          if ( e1Wc2 <= 0 && e2Wc2 <= 0 )
 | 
						|
            AddLocalMinPoly(e1, e2, Pt);
 | 
						|
          break;
 | 
						|
        case ctDifference:
 | 
						|
          if (((e1->PolyTyp == ptClip) && (e1Wc2 > 0) && (e2Wc2 > 0)) ||
 | 
						|
              ((e1->PolyTyp == ptSubject) && (e1Wc2 <= 0) && (e2Wc2 <= 0)))
 | 
						|
                AddLocalMinPoly(e1, e2, Pt);
 | 
						|
          break;
 | 
						|
        case ctXor:
 | 
						|
          AddLocalMinPoly(e1, e2, Pt);
 | 
						|
      }
 | 
						|
    else
 | 
						|
      std::swap(e1->Side, e2->Side);
 | 
						|
  }
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void Clipper::SetHoleState(TEdge *e, OutRec *outrec) const
 | 
						|
{
 | 
						|
  bool IsHole = false;
 | 
						|
  TEdge *e2 = e->PrevInAEL;
 | 
						|
  while (e2)
 | 
						|
  {
 | 
						|
    if (e2->OutIdx >= 0 && e2->WindDelta != 0)
 | 
						|
    {
 | 
						|
      IsHole = !IsHole;
 | 
						|
      if (! outrec->FirstLeft)
 | 
						|
        outrec->FirstLeft = m_PolyOuts[e2->OutIdx];
 | 
						|
    }
 | 
						|
    e2 = e2->PrevInAEL;
 | 
						|
  }
 | 
						|
  if (IsHole) outrec->IsHole = true;
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
OutRec* GetLowermostRec(OutRec *outRec1, OutRec *outRec2)
 | 
						|
{
 | 
						|
  //work out which polygon fragment has the correct hole state ...
 | 
						|
  if (!outRec1->BottomPt) 
 | 
						|
    outRec1->BottomPt = GetBottomPt(outRec1->Pts);
 | 
						|
  if (!outRec2->BottomPt) 
 | 
						|
    outRec2->BottomPt = GetBottomPt(outRec2->Pts);
 | 
						|
  OutPt *OutPt1 = outRec1->BottomPt;
 | 
						|
  OutPt *OutPt2 = outRec2->BottomPt;
 | 
						|
  if (OutPt1->Pt.y() > OutPt2->Pt.y()) return outRec1;
 | 
						|
  else if (OutPt1->Pt.y() < OutPt2->Pt.y()) return outRec2;
 | 
						|
  else if (OutPt1->Pt.x() < OutPt2->Pt.x()) return outRec1;
 | 
						|
  else if (OutPt1->Pt.x() > OutPt2->Pt.x()) return outRec2;
 | 
						|
  else if (OutPt1->Next == OutPt1) return outRec2;
 | 
						|
  else if (OutPt2->Next == OutPt2) return outRec1;
 | 
						|
  else if (FirstIsBottomPt(OutPt1, OutPt2)) return outRec1;
 | 
						|
  else return outRec2;
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
bool Param1RightOfParam2(OutRec* outRec1, OutRec* outRec2)
 | 
						|
{
 | 
						|
  do
 | 
						|
  {
 | 
						|
    outRec1 = outRec1->FirstLeft;
 | 
						|
    if (outRec1 == outRec2) return true;
 | 
						|
  } while (outRec1);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
OutRec* Clipper::GetOutRec(int Idx)
 | 
						|
{
 | 
						|
  OutRec* outrec = m_PolyOuts[Idx];
 | 
						|
  while (outrec != m_PolyOuts[outrec->Idx])
 | 
						|
    outrec = m_PolyOuts[outrec->Idx];
 | 
						|
  return outrec;
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void Clipper::AppendPolygon(TEdge *e1, TEdge *e2) const
 | 
						|
{
 | 
						|
  //get the start and ends of both output polygons ...
 | 
						|
  OutRec *outRec1 = m_PolyOuts[e1->OutIdx];
 | 
						|
  OutRec *outRec2 = m_PolyOuts[e2->OutIdx];
 | 
						|
 | 
						|
  OutRec *holeStateRec;
 | 
						|
  if (Param1RightOfParam2(outRec1, outRec2)) 
 | 
						|
    holeStateRec = outRec2;
 | 
						|
  else if (Param1RightOfParam2(outRec2, outRec1)) 
 | 
						|
    holeStateRec = outRec1;
 | 
						|
  else 
 | 
						|
    holeStateRec = GetLowermostRec(outRec1, outRec2);
 | 
						|
 | 
						|
  //get the start and ends of both output polygons and
 | 
						|
  //join e2 poly onto e1 poly and delete pointers to e2 ...
 | 
						|
 | 
						|
  OutPt* p1_lft = outRec1->Pts;
 | 
						|
  OutPt* p1_rt = p1_lft->Prev;
 | 
						|
  OutPt* p2_lft = outRec2->Pts;
 | 
						|
  OutPt* p2_rt = p2_lft->Prev;
 | 
						|
 | 
						|
  EdgeSide Side;
 | 
						|
  //join e2 poly onto e1 poly and delete pointers to e2 ...
 | 
						|
  if(  e1->Side == esLeft )
 | 
						|
  {
 | 
						|
    if(  e2->Side == esLeft )
 | 
						|
    {
 | 
						|
      //z y x a b c
 | 
						|
      ReversePolyPtLinks(p2_lft);
 | 
						|
      p2_lft->Next = p1_lft;
 | 
						|
      p1_lft->Prev = p2_lft;
 | 
						|
      p1_rt->Next = p2_rt;
 | 
						|
      p2_rt->Prev = p1_rt;
 | 
						|
      outRec1->Pts = p2_rt;
 | 
						|
    } else
 | 
						|
    {
 | 
						|
      //x y z a b c
 | 
						|
      p2_rt->Next = p1_lft;
 | 
						|
      p1_lft->Prev = p2_rt;
 | 
						|
      p2_lft->Prev = p1_rt;
 | 
						|
      p1_rt->Next = p2_lft;
 | 
						|
      outRec1->Pts = p2_lft;
 | 
						|
    }
 | 
						|
    Side = esLeft;
 | 
						|
  } else
 | 
						|
  {
 | 
						|
    if(  e2->Side == esRight )
 | 
						|
    {
 | 
						|
      //a b c z y x
 | 
						|
      ReversePolyPtLinks(p2_lft);
 | 
						|
      p1_rt->Next = p2_rt;
 | 
						|
      p2_rt->Prev = p1_rt;
 | 
						|
      p2_lft->Next = p1_lft;
 | 
						|
      p1_lft->Prev = p2_lft;
 | 
						|
    } else
 | 
						|
    {
 | 
						|
      //a b c x y z
 | 
						|
      p1_rt->Next = p2_lft;
 | 
						|
      p2_lft->Prev = p1_rt;
 | 
						|
      p1_lft->Prev = p2_rt;
 | 
						|
      p2_rt->Next = p1_lft;
 | 
						|
    }
 | 
						|
    Side = esRight;
 | 
						|
  }
 | 
						|
 | 
						|
  outRec1->BottomPt = 0;
 | 
						|
  if (holeStateRec == outRec2)
 | 
						|
  {
 | 
						|
    if (outRec2->FirstLeft != outRec1)
 | 
						|
      outRec1->FirstLeft = outRec2->FirstLeft;
 | 
						|
    outRec1->IsHole = outRec2->IsHole;
 | 
						|
  }
 | 
						|
  outRec2->Pts = 0;
 | 
						|
  outRec2->BottomPt = 0;
 | 
						|
  outRec2->FirstLeft = outRec1;
 | 
						|
 | 
						|
  int OKIdx = e1->OutIdx;
 | 
						|
  int ObsoleteIdx = e2->OutIdx;
 | 
						|
 | 
						|
  e1->OutIdx = Unassigned; //nb: safe because we only get here via AddLocalMaxPoly
 | 
						|
  e2->OutIdx = Unassigned;
 | 
						|
 | 
						|
  TEdge* e = m_ActiveEdges;
 | 
						|
  while( e )
 | 
						|
  {
 | 
						|
    if( e->OutIdx == ObsoleteIdx )
 | 
						|
    {
 | 
						|
      e->OutIdx = OKIdx;
 | 
						|
      e->Side = Side;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    e = e->NextInAEL;
 | 
						|
  }
 | 
						|
 | 
						|
  outRec2->Idx = outRec1->Idx;
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
OutRec* Clipper::CreateOutRec()
 | 
						|
{
 | 
						|
  OutRec* result = new OutRec;
 | 
						|
  result->IsHole = false;
 | 
						|
  result->IsOpen = false;
 | 
						|
  result->FirstLeft = 0;
 | 
						|
  result->Pts = 0;
 | 
						|
  result->BottomPt = 0;
 | 
						|
  result->PolyNd = 0;
 | 
						|
  m_PolyOuts.push_back(result);
 | 
						|
  result->Idx = (int)m_PolyOuts.size()-1;
 | 
						|
  return result;
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
OutPt* Clipper::AddOutPt(TEdge *e, const IntPoint &pt)
 | 
						|
{
 | 
						|
  if(  e->OutIdx < 0 )
 | 
						|
  {
 | 
						|
    OutRec *outRec = CreateOutRec();
 | 
						|
    outRec->IsOpen = (e->WindDelta == 0);
 | 
						|
    OutPt* newOp = this->AllocateOutPt();
 | 
						|
    outRec->Pts = newOp;
 | 
						|
    newOp->Idx = outRec->Idx;
 | 
						|
    newOp->Pt = pt;
 | 
						|
    newOp->Next = newOp;
 | 
						|
    newOp->Prev = newOp;
 | 
						|
    if (!outRec->IsOpen)
 | 
						|
      SetHoleState(e, outRec);
 | 
						|
    e->OutIdx = outRec->Idx;
 | 
						|
    return newOp;
 | 
						|
  } else
 | 
						|
  {
 | 
						|
    OutRec *outRec = m_PolyOuts[e->OutIdx];
 | 
						|
    //OutRec.Pts is the 'Left-most' point & OutRec.Pts.Prev is the 'Right-most'
 | 
						|
    OutPt* op = outRec->Pts;
 | 
						|
 | 
						|
	bool ToFront = (e->Side == esLeft);
 | 
						|
	if (ToFront && (pt == op->Pt)) return op;
 | 
						|
    else if (!ToFront && (pt == op->Prev->Pt)) return op->Prev;
 | 
						|
 | 
						|
    OutPt* newOp = this->AllocateOutPt();
 | 
						|
    newOp->Idx = outRec->Idx;
 | 
						|
    newOp->Pt = pt;
 | 
						|
    newOp->Next = op;
 | 
						|
    newOp->Prev = op->Prev;
 | 
						|
    newOp->Prev->Next = newOp;
 | 
						|
    op->Prev = newOp;
 | 
						|
    if (ToFront) outRec->Pts = newOp;
 | 
						|
    return newOp;
 | 
						|
  }
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
OutPt* Clipper::GetLastOutPt(TEdge *e)
 | 
						|
{
 | 
						|
	OutRec *outRec = m_PolyOuts[e->OutIdx];
 | 
						|
	if (e->Side == esLeft)
 | 
						|
		return outRec->Pts;
 | 
						|
	else
 | 
						|
		return outRec->Pts->Prev;
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void Clipper::ProcessHorizontals()
 | 
						|
{
 | 
						|
  CLIPPERLIB_PROFILE_FUNC();
 | 
						|
  TEdge* horzEdge = m_SortedEdges;
 | 
						|
  while(horzEdge)
 | 
						|
  {
 | 
						|
    DeleteFromSEL(horzEdge);
 | 
						|
    ProcessHorizontal(horzEdge);
 | 
						|
    horzEdge = m_SortedEdges;
 | 
						|
  }
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
inline bool IsMaxima(TEdge *e, const cInt Y)
 | 
						|
{
 | 
						|
  return e && e->Top.y() == Y && !e->NextInLML;
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
inline bool IsIntermediate(TEdge *e, const cInt Y)
 | 
						|
{
 | 
						|
  return e->Top.y() == Y && e->NextInLML;
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
inline TEdge *GetMaximaPair(TEdge *e)
 | 
						|
{
 | 
						|
  TEdge* result = 0;
 | 
						|
  if ((e->Next->Top == e->Top) && !e->Next->NextInLML)
 | 
						|
    result = e->Next;
 | 
						|
  else if ((e->Prev->Top == e->Top) && !e->Prev->NextInLML)
 | 
						|
    result = e->Prev;
 | 
						|
 | 
						|
  if (result && (result->OutIdx == Skip ||
 | 
						|
    //result is false if both NextInAEL & PrevInAEL are nil & not horizontal ...
 | 
						|
    (result->NextInAEL == result->PrevInAEL && !IsHorizontal(*result))))
 | 
						|
      return 0;
 | 
						|
  return result;
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void Clipper::SwapPositionsInAEL(TEdge *Edge1, TEdge *Edge2)
 | 
						|
{
 | 
						|
  //check that one or other edge hasn't already been removed from AEL ...
 | 
						|
  if (Edge1->NextInAEL == Edge1->PrevInAEL || 
 | 
						|
    Edge2->NextInAEL == Edge2->PrevInAEL) return;
 | 
						|
 | 
						|
  if(  Edge1->NextInAEL == Edge2 )
 | 
						|
  {
 | 
						|
    TEdge* Next = Edge2->NextInAEL;
 | 
						|
    if( Next ) Next->PrevInAEL = Edge1;
 | 
						|
    TEdge* Prev = Edge1->PrevInAEL;
 | 
						|
    if( Prev ) Prev->NextInAEL = Edge2;
 | 
						|
    Edge2->PrevInAEL = Prev;
 | 
						|
    Edge2->NextInAEL = Edge1;
 | 
						|
    Edge1->PrevInAEL = Edge2;
 | 
						|
    Edge1->NextInAEL = Next;
 | 
						|
  }
 | 
						|
  else if(  Edge2->NextInAEL == Edge1 )
 | 
						|
  {
 | 
						|
    TEdge* Next = Edge1->NextInAEL;
 | 
						|
    if( Next ) Next->PrevInAEL = Edge2;
 | 
						|
    TEdge* Prev = Edge2->PrevInAEL;
 | 
						|
    if( Prev ) Prev->NextInAEL = Edge1;
 | 
						|
    Edge1->PrevInAEL = Prev;
 | 
						|
    Edge1->NextInAEL = Edge2;
 | 
						|
    Edge2->PrevInAEL = Edge1;
 | 
						|
    Edge2->NextInAEL = Next;
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    TEdge* Next = Edge1->NextInAEL;
 | 
						|
    TEdge* Prev = Edge1->PrevInAEL;
 | 
						|
    Edge1->NextInAEL = Edge2->NextInAEL;
 | 
						|
    if( Edge1->NextInAEL ) Edge1->NextInAEL->PrevInAEL = Edge1;
 | 
						|
    Edge1->PrevInAEL = Edge2->PrevInAEL;
 | 
						|
    if( Edge1->PrevInAEL ) Edge1->PrevInAEL->NextInAEL = Edge1;
 | 
						|
    Edge2->NextInAEL = Next;
 | 
						|
    if( Edge2->NextInAEL ) Edge2->NextInAEL->PrevInAEL = Edge2;
 | 
						|
    Edge2->PrevInAEL = Prev;
 | 
						|
    if( Edge2->PrevInAEL ) Edge2->PrevInAEL->NextInAEL = Edge2;
 | 
						|
  }
 | 
						|
 | 
						|
  if( !Edge1->PrevInAEL ) m_ActiveEdges = Edge1;
 | 
						|
  else if( !Edge2->PrevInAEL ) m_ActiveEdges = Edge2;
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void Clipper::SwapPositionsInSEL(TEdge *Edge1, TEdge *Edge2)
 | 
						|
{
 | 
						|
  if(  !( Edge1->NextInSEL ) &&  !( Edge1->PrevInSEL ) ) return;
 | 
						|
  if(  !( Edge2->NextInSEL ) &&  !( Edge2->PrevInSEL ) ) return;
 | 
						|
 | 
						|
  if(  Edge1->NextInSEL == Edge2 )
 | 
						|
  {
 | 
						|
    TEdge* Next = Edge2->NextInSEL;
 | 
						|
    if( Next ) Next->PrevInSEL = Edge1;
 | 
						|
    TEdge* Prev = Edge1->PrevInSEL;
 | 
						|
    if( Prev ) Prev->NextInSEL = Edge2;
 | 
						|
    Edge2->PrevInSEL = Prev;
 | 
						|
    Edge2->NextInSEL = Edge1;
 | 
						|
    Edge1->PrevInSEL = Edge2;
 | 
						|
    Edge1->NextInSEL = Next;
 | 
						|
  }
 | 
						|
  else if(  Edge2->NextInSEL == Edge1 )
 | 
						|
  {
 | 
						|
    TEdge* Next = Edge1->NextInSEL;
 | 
						|
    if( Next ) Next->PrevInSEL = Edge2;
 | 
						|
    TEdge* Prev = Edge2->PrevInSEL;
 | 
						|
    if( Prev ) Prev->NextInSEL = Edge1;
 | 
						|
    Edge1->PrevInSEL = Prev;
 | 
						|
    Edge1->NextInSEL = Edge2;
 | 
						|
    Edge2->PrevInSEL = Edge1;
 | 
						|
    Edge2->NextInSEL = Next;
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    TEdge* Next = Edge1->NextInSEL;
 | 
						|
    TEdge* Prev = Edge1->PrevInSEL;
 | 
						|
    Edge1->NextInSEL = Edge2->NextInSEL;
 | 
						|
    if( Edge1->NextInSEL ) Edge1->NextInSEL->PrevInSEL = Edge1;
 | 
						|
    Edge1->PrevInSEL = Edge2->PrevInSEL;
 | 
						|
    if( Edge1->PrevInSEL ) Edge1->PrevInSEL->NextInSEL = Edge1;
 | 
						|
    Edge2->NextInSEL = Next;
 | 
						|
    if( Edge2->NextInSEL ) Edge2->NextInSEL->PrevInSEL = Edge2;
 | 
						|
    Edge2->PrevInSEL = Prev;
 | 
						|
    if( Edge2->PrevInSEL ) Edge2->PrevInSEL->NextInSEL = Edge2;
 | 
						|
  }
 | 
						|
 | 
						|
  if( !Edge1->PrevInSEL ) m_SortedEdges = Edge1;
 | 
						|
  else if( !Edge2->PrevInSEL ) m_SortedEdges = Edge2;
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
inline void GetHorzDirection(TEdge& HorzEdge, Direction& Dir, cInt& Left, cInt& Right)
 | 
						|
{
 | 
						|
  if (HorzEdge.Bot.x() < HorzEdge.Top.x())
 | 
						|
  {
 | 
						|
    Left = HorzEdge.Bot.x();
 | 
						|
    Right = HorzEdge.Top.x();
 | 
						|
    Dir = dLeftToRight;
 | 
						|
  } else
 | 
						|
  {
 | 
						|
    Left = HorzEdge.Top.x();
 | 
						|
    Right = HorzEdge.Bot.x();
 | 
						|
    Dir = dRightToLeft;
 | 
						|
  }
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------
 | 
						|
 | 
						|
/*******************************************************************************
 | 
						|
* Notes: Horizontal edges (HEs) at scanline intersections (ie at the Top or    *
 | 
						|
* Bottom of a scanbeam) are processed as if layered. The order in which HEs    *
 | 
						|
* are processed doesn't matter. HEs intersect with other HE Bot.x()s only [#]    *
 | 
						|
* (or they could intersect with Top.x()s only, ie EITHER Bot.x()s OR Top.x()s),      *
 | 
						|
* and with other non-horizontal edges [*]. Once these intersections are        *
 | 
						|
* processed, intermediate HEs then 'promote' the Edge above (NextInLML) into   *
 | 
						|
* the AEL. These 'promoted' edges may in turn intersect [%] with other HEs.    *
 | 
						|
*******************************************************************************/
 | 
						|
 | 
						|
void Clipper::ProcessHorizontal(TEdge *horzEdge)
 | 
						|
{
 | 
						|
  Direction dir;
 | 
						|
  cInt horzLeft, horzRight;
 | 
						|
  bool IsOpen = (horzEdge->OutIdx >= 0 && m_PolyOuts[horzEdge->OutIdx]->IsOpen);
 | 
						|
 | 
						|
  GetHorzDirection(*horzEdge, dir, horzLeft, horzRight);
 | 
						|
 | 
						|
  TEdge* eLastHorz = horzEdge, *eMaxPair = 0;
 | 
						|
  while (eLastHorz->NextInLML && IsHorizontal(*eLastHorz->NextInLML)) 
 | 
						|
    eLastHorz = eLastHorz->NextInLML;
 | 
						|
  if (!eLastHorz->NextInLML)
 | 
						|
    eMaxPair = GetMaximaPair(eLastHorz);
 | 
						|
 | 
						|
  std::vector<cInt>::const_iterator maxIt;
 | 
						|
  std::vector<cInt>::const_reverse_iterator maxRit;
 | 
						|
  if (!m_Maxima.empty())
 | 
						|
  {
 | 
						|
      //get the first maxima in range (X) ...
 | 
						|
      if (dir == dLeftToRight)
 | 
						|
      {
 | 
						|
          maxIt = m_Maxima.begin();
 | 
						|
          while (maxIt != m_Maxima.end() && *maxIt <= horzEdge->Bot.x()) ++maxIt;
 | 
						|
          if (maxIt != m_Maxima.end() && *maxIt >= eLastHorz->Top.x())
 | 
						|
              maxIt = m_Maxima.end();
 | 
						|
      }
 | 
						|
      else
 | 
						|
      {
 | 
						|
          maxRit = m_Maxima.rbegin();
 | 
						|
          while (maxRit != m_Maxima.rend() && *maxRit > horzEdge->Bot.x()) ++maxRit;
 | 
						|
          if (maxRit != m_Maxima.rend() && *maxRit <= eLastHorz->Top.x())
 | 
						|
              maxRit = m_Maxima.rend();
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  OutPt* op1 = 0;
 | 
						|
 | 
						|
  for (;;) //loop through consec. horizontal edges
 | 
						|
  {
 | 
						|
		  
 | 
						|
    bool IsLastHorz = (horzEdge == eLastHorz);
 | 
						|
    TEdge* e = (dir == dLeftToRight) ? horzEdge->NextInAEL : horzEdge->PrevInAEL;
 | 
						|
    while(e)
 | 
						|
    {
 | 
						|
 | 
						|
        //this code block inserts extra coords into horizontal edges (in output
 | 
						|
        //polygons) whereever maxima touch these horizontal edges. This helps
 | 
						|
        //'simplifying' polygons (ie if the Simplify property is set).
 | 
						|
        if (!m_Maxima.empty())
 | 
						|
        {
 | 
						|
            if (dir == dLeftToRight)
 | 
						|
            {
 | 
						|
                while (maxIt != m_Maxima.end() && *maxIt < e->Curr.x()) 
 | 
						|
                {
 | 
						|
                  if (horzEdge->OutIdx >= 0 && !IsOpen)
 | 
						|
                    AddOutPt(horzEdge, IntPoint2d(*maxIt, horzEdge->Bot.y()));
 | 
						|
                  ++maxIt;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                while (maxRit != m_Maxima.rend() && *maxRit > e->Curr.x())
 | 
						|
                {
 | 
						|
                  if (horzEdge->OutIdx >= 0 && !IsOpen)
 | 
						|
                    AddOutPt(horzEdge, IntPoint2d(*maxRit, horzEdge->Bot.y()));
 | 
						|
                  ++maxRit;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        };
 | 
						|
 | 
						|
        if ((dir == dLeftToRight && e->Curr.x() > horzRight) ||
 | 
						|
			(dir == dRightToLeft && e->Curr.x() < horzLeft)) break;
 | 
						|
 | 
						|
		//Also break if we've got to the end of an intermediate horizontal edge ...
 | 
						|
		//nb: Smaller Dx's are to the right of larger Dx's ABOVE the horizontal.
 | 
						|
		if (e->Curr.x() == horzEdge->Top.x() && horzEdge->NextInLML && 
 | 
						|
			e->Dx < horzEdge->NextInLML->Dx) break;
 | 
						|
 | 
						|
    if (horzEdge->OutIdx >= 0 && !IsOpen)  //note: may be done multiple times
 | 
						|
		{
 | 
						|
            op1 = AddOutPt(horzEdge, e->Curr);
 | 
						|
			TEdge* eNextHorz = m_SortedEdges;
 | 
						|
			while (eNextHorz)
 | 
						|
			{
 | 
						|
				if (eNextHorz->OutIdx >= 0 &&
 | 
						|
					HorzSegmentsOverlap(horzEdge->Bot.x(),
 | 
						|
					horzEdge->Top.x(), eNextHorz->Bot.x(), eNextHorz->Top.x()))
 | 
						|
				{
 | 
						|
                    OutPt* op2 = GetLastOutPt(eNextHorz);
 | 
						|
                    m_Joins.emplace_back(Join(op2, op1, eNextHorz->Top));
 | 
						|
				}
 | 
						|
				eNextHorz = eNextHorz->NextInSEL;
 | 
						|
			}
 | 
						|
      m_GhostJoins.emplace_back(Join(op1, 0, horzEdge->Bot));
 | 
						|
		}
 | 
						|
		
 | 
						|
		//OK, so far we're still in range of the horizontal Edge  but make sure
 | 
						|
        //we're at the last of consec. horizontals when matching with eMaxPair
 | 
						|
        if(e == eMaxPair && IsLastHorz)
 | 
						|
        {
 | 
						|
          if (horzEdge->OutIdx >= 0)
 | 
						|
            AddLocalMaxPoly(horzEdge, eMaxPair, horzEdge->Top);
 | 
						|
          DeleteFromAEL(horzEdge);
 | 
						|
          DeleteFromAEL(eMaxPair);
 | 
						|
          return;
 | 
						|
        }
 | 
						|
        
 | 
						|
		if(dir == dLeftToRight)
 | 
						|
        {
 | 
						|
          IntPoint Pt = IntPoint2d(e->Curr.x(), horzEdge->Curr.y());
 | 
						|
          IntersectEdges(horzEdge, e, Pt);
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
          IntPoint Pt = IntPoint2d(e->Curr.x(), horzEdge->Curr.y());
 | 
						|
          IntersectEdges( e, horzEdge, Pt);
 | 
						|
        }
 | 
						|
        TEdge* eNext = (dir == dLeftToRight) ? e->NextInAEL : e->PrevInAEL;
 | 
						|
        SwapPositionsInAEL( horzEdge, e );
 | 
						|
        e = eNext;
 | 
						|
    } //end while(e)
 | 
						|
 | 
						|
	//Break out of loop if HorzEdge.NextInLML is not also horizontal ...
 | 
						|
	if (!horzEdge->NextInLML || !IsHorizontal(*horzEdge->NextInLML)) break;
 | 
						|
 | 
						|
	UpdateEdgeIntoAEL(horzEdge);
 | 
						|
    if (horzEdge->OutIdx >= 0) AddOutPt(horzEdge, horzEdge->Bot);
 | 
						|
    GetHorzDirection(*horzEdge, dir, horzLeft, horzRight);
 | 
						|
 | 
						|
  } //end for (;;)
 | 
						|
 | 
						|
  if (horzEdge->OutIdx >= 0 && !op1)
 | 
						|
  {
 | 
						|
      op1 = GetLastOutPt(horzEdge);
 | 
						|
      TEdge* eNextHorz = m_SortedEdges;
 | 
						|
      while (eNextHorz)
 | 
						|
      {
 | 
						|
          if (eNextHorz->OutIdx >= 0 &&
 | 
						|
              HorzSegmentsOverlap(horzEdge->Bot.x(),
 | 
						|
              horzEdge->Top.x(), eNextHorz->Bot.x(), eNextHorz->Top.x()))
 | 
						|
          {
 | 
						|
              OutPt* op2 = GetLastOutPt(eNextHorz);
 | 
						|
              m_Joins.emplace_back(Join(op2, op1, eNextHorz->Top));
 | 
						|
          }
 | 
						|
          eNextHorz = eNextHorz->NextInSEL;
 | 
						|
      }
 | 
						|
      m_GhostJoins.emplace_back(Join(op1, 0, horzEdge->Top));
 | 
						|
  }
 | 
						|
 | 
						|
  if (horzEdge->NextInLML)
 | 
						|
  {
 | 
						|
    if(horzEdge->OutIdx >= 0)
 | 
						|
    {
 | 
						|
      op1 = AddOutPt( horzEdge, horzEdge->Top);
 | 
						|
      UpdateEdgeIntoAEL(horzEdge);
 | 
						|
      if (horzEdge->WindDelta == 0) return;
 | 
						|
      //nb: HorzEdge is no longer horizontal here
 | 
						|
      TEdge* ePrev = horzEdge->PrevInAEL;
 | 
						|
      TEdge* eNext = horzEdge->NextInAEL;
 | 
						|
      if (ePrev && ePrev->Curr.x() == horzEdge->Bot.x() &&
 | 
						|
        ePrev->Curr.y() == horzEdge->Bot.y() && ePrev->WindDelta != 0 &&
 | 
						|
        (ePrev->OutIdx >= 0 && ePrev->Curr.y() > ePrev->Top.y() &&
 | 
						|
        SlopesEqual(*horzEdge, *ePrev, m_UseFullRange)))
 | 
						|
      {
 | 
						|
        OutPt* op2 = AddOutPt(ePrev, horzEdge->Bot);
 | 
						|
        m_Joins.emplace_back(Join(op1, op2, horzEdge->Top));
 | 
						|
      }
 | 
						|
      else if (eNext && eNext->Curr.x() == horzEdge->Bot.x() &&
 | 
						|
        eNext->Curr.y() == horzEdge->Bot.y() && eNext->WindDelta != 0 &&
 | 
						|
        eNext->OutIdx >= 0 && eNext->Curr.y() > eNext->Top.y() &&
 | 
						|
        SlopesEqual(*horzEdge, *eNext, m_UseFullRange))
 | 
						|
      {
 | 
						|
        OutPt* op2 = AddOutPt(eNext, horzEdge->Bot);
 | 
						|
        m_Joins.emplace_back(Join(op1, op2, horzEdge->Top));
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else
 | 
						|
      UpdateEdgeIntoAEL(horzEdge); 
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    if (horzEdge->OutIdx >= 0) AddOutPt(horzEdge, horzEdge->Top);
 | 
						|
    DeleteFromAEL(horzEdge);
 | 
						|
  }
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void Clipper::UpdateEdgeIntoAEL(TEdge *&e)
 | 
						|
{
 | 
						|
  if( !e->NextInLML ) 
 | 
						|
    throw clipperException("UpdateEdgeIntoAEL: invalid call");
 | 
						|
 | 
						|
  e->NextInLML->OutIdx = e->OutIdx;
 | 
						|
  TEdge* AelPrev = e->PrevInAEL;
 | 
						|
  TEdge* AelNext = e->NextInAEL;
 | 
						|
  if (AelPrev) AelPrev->NextInAEL = e->NextInLML;
 | 
						|
  else m_ActiveEdges = e->NextInLML;
 | 
						|
  if (AelNext) AelNext->PrevInAEL = e->NextInLML;
 | 
						|
  e->NextInLML->Side = e->Side;
 | 
						|
  e->NextInLML->WindDelta = e->WindDelta;
 | 
						|
  e->NextInLML->WindCnt = e->WindCnt;
 | 
						|
  e->NextInLML->WindCnt2 = e->WindCnt2;
 | 
						|
  e = e->NextInLML;
 | 
						|
  e->Curr = e->Bot;
 | 
						|
  e->PrevInAEL = AelPrev;
 | 
						|
  e->NextInAEL = AelNext;
 | 
						|
  if (!IsHorizontal(*e)) 
 | 
						|
    m_Scanbeam.push(e->Top.y());
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
bool Clipper::ProcessIntersections(const cInt topY)
 | 
						|
{
 | 
						|
  CLIPPERLIB_PROFILE_FUNC();
 | 
						|
  if( !m_ActiveEdges ) return true;
 | 
						|
  try {
 | 
						|
    BuildIntersectList(topY);
 | 
						|
    size_t IlSize = m_IntersectList.size();
 | 
						|
    if (IlSize == 0) return true;
 | 
						|
    if (IlSize == 1 || FixupIntersectionOrder()) {
 | 
						|
      for (IntersectNode &iNode : m_IntersectList) {
 | 
						|
        IntersectEdges( iNode.Edge1, iNode.Edge2, iNode.Pt);
 | 
						|
        SwapPositionsInAEL( iNode.Edge1 , iNode.Edge2 );
 | 
						|
      }
 | 
						|
      m_IntersectList.clear();
 | 
						|
    }
 | 
						|
    else return false;
 | 
						|
  }
 | 
						|
  catch(...) 
 | 
						|
  {
 | 
						|
    m_SortedEdges = 0;
 | 
						|
    m_IntersectList.clear();
 | 
						|
    throw clipperException("ProcessIntersections error");
 | 
						|
  }
 | 
						|
  m_SortedEdges = 0;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void Clipper::BuildIntersectList(const cInt topY)
 | 
						|
{
 | 
						|
  if ( !m_ActiveEdges ) return;
 | 
						|
 | 
						|
  //prepare for sorting ...
 | 
						|
  TEdge* e = m_ActiveEdges;
 | 
						|
  m_SortedEdges = e;
 | 
						|
  while( e )
 | 
						|
  {
 | 
						|
    e->PrevInSEL = e->PrevInAEL;
 | 
						|
    e->NextInSEL = e->NextInAEL;
 | 
						|
    e->Curr.x() = TopX( *e, topY );
 | 
						|
    e = e->NextInAEL;
 | 
						|
  }
 | 
						|
 | 
						|
  //bubblesort ...
 | 
						|
  bool isModified;
 | 
						|
  do
 | 
						|
  {
 | 
						|
    isModified = false;
 | 
						|
    e = m_SortedEdges;
 | 
						|
    while( e->NextInSEL )
 | 
						|
    {
 | 
						|
      TEdge *eNext = e->NextInSEL;
 | 
						|
      IntPoint Pt;
 | 
						|
      if(e->Curr.x() > eNext->Curr.x())
 | 
						|
      {
 | 
						|
        IntersectPoint(*e, *eNext, Pt);
 | 
						|
        m_IntersectList.emplace_back(IntersectNode(e, eNext, Pt));
 | 
						|
        SwapPositionsInSEL(e, eNext);
 | 
						|
        isModified = true;
 | 
						|
      }
 | 
						|
      else
 | 
						|
        e = eNext;
 | 
						|
    }
 | 
						|
    if( e->PrevInSEL ) e->PrevInSEL->NextInSEL = 0;
 | 
						|
    else break;
 | 
						|
  }
 | 
						|
  while ( isModified );
 | 
						|
  m_SortedEdges = 0; //important
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
 | 
						|
inline bool EdgesAdjacent(const IntersectNode &inode)
 | 
						|
{
 | 
						|
  return (inode.Edge1->NextInSEL == inode.Edge2) ||
 | 
						|
    (inode.Edge1->PrevInSEL == inode.Edge2);
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
bool Clipper::FixupIntersectionOrder()
 | 
						|
{
 | 
						|
  //pre-condition: intersections are sorted Bottom-most first.
 | 
						|
  //Now it's crucial that intersections are made only between adjacent edges,
 | 
						|
  //so to ensure this the order of intersections may need adjusting ...
 | 
						|
  CopyAELToSEL();
 | 
						|
  std::sort(m_IntersectList.begin(), m_IntersectList.end(), [](const IntersectNode &node1, const IntersectNode &node2) { return node2.Pt.y() < node1.Pt.y(); });
 | 
						|
 | 
						|
  size_t cnt = m_IntersectList.size();
 | 
						|
  for (size_t i = 0; i < cnt; ++i) 
 | 
						|
  {
 | 
						|
    if (!EdgesAdjacent(m_IntersectList[i]))
 | 
						|
    {
 | 
						|
      size_t j = i + 1;
 | 
						|
      while (j < cnt && !EdgesAdjacent(m_IntersectList[j])) j++;
 | 
						|
      if (j == cnt)  return false;
 | 
						|
      std::swap(m_IntersectList[i], m_IntersectList[j]);
 | 
						|
    }
 | 
						|
    SwapPositionsInSEL(m_IntersectList[i].Edge1, m_IntersectList[i].Edge2);
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void Clipper::DoMaxima(TEdge *e)
 | 
						|
{
 | 
						|
  TEdge* eMaxPair = GetMaximaPair(e);
 | 
						|
  if (!eMaxPair)
 | 
						|
  {
 | 
						|
    if (e->OutIdx >= 0)
 | 
						|
      AddOutPt(e, e->Top);
 | 
						|
    DeleteFromAEL(e);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  TEdge* eNext = e->NextInAEL;
 | 
						|
  while(eNext && eNext != eMaxPair)
 | 
						|
  {
 | 
						|
    IntersectEdges(e, eNext, e->Top);
 | 
						|
    SwapPositionsInAEL(e, eNext);
 | 
						|
    eNext = e->NextInAEL;
 | 
						|
  }
 | 
						|
 | 
						|
  if(e->OutIdx == Unassigned && eMaxPair->OutIdx == Unassigned)
 | 
						|
  {
 | 
						|
    DeleteFromAEL(e);
 | 
						|
    DeleteFromAEL(eMaxPair);
 | 
						|
  }
 | 
						|
  else if( e->OutIdx >= 0 && eMaxPair->OutIdx >= 0 )
 | 
						|
  {
 | 
						|
    if (e->OutIdx >= 0) AddLocalMaxPoly(e, eMaxPair, e->Top);
 | 
						|
    DeleteFromAEL(e);
 | 
						|
    DeleteFromAEL(eMaxPair);
 | 
						|
  }
 | 
						|
#ifdef use_lines
 | 
						|
  else if (e->WindDelta == 0)
 | 
						|
  {
 | 
						|
    if (e->OutIdx >= 0) 
 | 
						|
    {
 | 
						|
      AddOutPt(e, e->Top);
 | 
						|
      e->OutIdx = Unassigned;
 | 
						|
    }
 | 
						|
    DeleteFromAEL(e);
 | 
						|
 | 
						|
    if (eMaxPair->OutIdx >= 0)
 | 
						|
    {
 | 
						|
      AddOutPt(eMaxPair, e->Top);
 | 
						|
      eMaxPair->OutIdx = Unassigned;
 | 
						|
    }
 | 
						|
    DeleteFromAEL(eMaxPair);
 | 
						|
  } 
 | 
						|
#endif
 | 
						|
  else throw clipperException("DoMaxima error");
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void Clipper::ProcessEdgesAtTopOfScanbeam(const cInt topY)
 | 
						|
{
 | 
						|
  CLIPPERLIB_PROFILE_FUNC();
 | 
						|
  TEdge* e = m_ActiveEdges;
 | 
						|
  while( e )
 | 
						|
  {
 | 
						|
    //1. process maxima, treating them as if they're 'bent' horizontal edges,
 | 
						|
    //   but exclude maxima with horizontal edges. nb: e can't be a horizontal.
 | 
						|
    bool IsMaximaEdge = IsMaxima(e, topY);
 | 
						|
 | 
						|
    if(IsMaximaEdge)
 | 
						|
    {
 | 
						|
      TEdge* eMaxPair = GetMaximaPair(e);
 | 
						|
      IsMaximaEdge = (!eMaxPair || !IsHorizontal(*eMaxPair));
 | 
						|
    }
 | 
						|
 | 
						|
    if(IsMaximaEdge)
 | 
						|
    {
 | 
						|
      if (m_StrictSimple) m_Maxima.push_back(e->Top.x());
 | 
						|
      TEdge* ePrev = e->PrevInAEL;
 | 
						|
      DoMaxima(e);
 | 
						|
      if( !ePrev ) e = m_ActiveEdges;
 | 
						|
      else e = ePrev->NextInAEL;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      //2. promote horizontal edges, otherwise update Curr.x() and Curr.y() ...
 | 
						|
      if (IsIntermediate(e, topY) && IsHorizontal(*e->NextInLML))
 | 
						|
      {
 | 
						|
        UpdateEdgeIntoAEL(e);
 | 
						|
        if (e->OutIdx >= 0)
 | 
						|
          AddOutPt(e, e->Bot);
 | 
						|
        AddEdgeToSEL(e);
 | 
						|
      } 
 | 
						|
      else
 | 
						|
      {
 | 
						|
        e->Curr.x() = TopX( *e, topY );
 | 
						|
        e->Curr.y() = topY;
 | 
						|
      }
 | 
						|
 | 
						|
      //When StrictlySimple and 'e' is being touched by another edge, then
 | 
						|
      //make sure both edges have a vertex here ...
 | 
						|
      if (m_StrictSimple)
 | 
						|
      {  
 | 
						|
        TEdge* ePrev = e->PrevInAEL;
 | 
						|
        if ((e->OutIdx >= 0) && (e->WindDelta != 0) && ePrev && (ePrev->OutIdx >= 0) &&
 | 
						|
          (ePrev->Curr.x() == e->Curr.x()) && (ePrev->WindDelta != 0))
 | 
						|
        {
 | 
						|
          IntPoint pt = e->Curr;
 | 
						|
#ifdef CLIPPERLIB_USE_XYZ
 | 
						|
          SetZ(pt, *ePrev, *e);
 | 
						|
#endif
 | 
						|
          OutPt* op = AddOutPt(ePrev, pt);
 | 
						|
          OutPt* op2 = AddOutPt(e, pt);
 | 
						|
          m_Joins.emplace_back(Join(op, op2, pt)); //StrictlySimple (type-3) join
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      e = e->NextInAEL;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  //3. Process horizontals at the Top of the scanbeam ...
 | 
						|
  std::sort(m_Maxima.begin(), m_Maxima.end());
 | 
						|
  ProcessHorizontals();
 | 
						|
  m_Maxima.clear();
 | 
						|
 | 
						|
  //4. Promote intermediate vertices ...
 | 
						|
  e = m_ActiveEdges;
 | 
						|
  while(e)
 | 
						|
  {
 | 
						|
    if(IsIntermediate(e, topY))
 | 
						|
    {
 | 
						|
      OutPt* op = 0;
 | 
						|
      if( e->OutIdx >= 0 ) 
 | 
						|
        op = AddOutPt(e, e->Top);
 | 
						|
      UpdateEdgeIntoAEL(e);
 | 
						|
 | 
						|
      //if output polygons share an edge, they'll need joining later ...
 | 
						|
      TEdge* ePrev = e->PrevInAEL;
 | 
						|
      TEdge* eNext = e->NextInAEL;
 | 
						|
      if (ePrev && ePrev->Curr.x() == e->Bot.x() &&
 | 
						|
        ePrev->Curr.y() == e->Bot.y() && op &&
 | 
						|
        ePrev->OutIdx >= 0 && ePrev->Curr.y() > ePrev->Top.y() &&
 | 
						|
        SlopesEqual(*e, *ePrev, m_UseFullRange) &&
 | 
						|
        (e->WindDelta != 0) && (ePrev->WindDelta != 0))
 | 
						|
      {
 | 
						|
        OutPt* op2 = AddOutPt(ePrev, e->Bot);
 | 
						|
        m_Joins.emplace_back(Join(op, op2, e->Top));
 | 
						|
      }
 | 
						|
      else if (eNext && eNext->Curr.x() == e->Bot.x() &&
 | 
						|
        eNext->Curr.y() == e->Bot.y() && op &&
 | 
						|
        eNext->OutIdx >= 0 && eNext->Curr.y() > eNext->Top.y() &&
 | 
						|
        SlopesEqual(*e, *eNext, m_UseFullRange) &&
 | 
						|
        (e->WindDelta != 0) && (eNext->WindDelta != 0))
 | 
						|
      {
 | 
						|
        OutPt* op2 = AddOutPt(eNext, e->Bot);
 | 
						|
        m_Joins.emplace_back(Join(op, op2, e->Top));
 | 
						|
      }
 | 
						|
    }
 | 
						|
    e = e->NextInAEL;
 | 
						|
  }
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void Clipper::FixupOutPolyline(OutRec &outrec)
 | 
						|
{
 | 
						|
  OutPt *pp = outrec.Pts;
 | 
						|
  OutPt *lastPP = pp->Prev;
 | 
						|
  while (pp != lastPP)
 | 
						|
  {
 | 
						|
    pp = pp->Next;
 | 
						|
    if (pp->Pt == pp->Prev->Pt)
 | 
						|
    {
 | 
						|
      if (pp == lastPP) lastPP = pp->Prev;
 | 
						|
      OutPt *tmpPP = pp->Prev;
 | 
						|
      tmpPP->Next = pp->Next;
 | 
						|
      pp->Next->Prev = tmpPP;
 | 
						|
      this->DisposeOutPt(pp);
 | 
						|
      pp = tmpPP;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (pp == pp->Prev)
 | 
						|
  {
 | 
						|
    this->DisposeOutPts(pp);
 | 
						|
    outrec.Pts = 0;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void Clipper::FixupOutPolygon(OutRec &outrec)
 | 
						|
{
 | 
						|
    //FixupOutPolygon() - removes duplicate points and simplifies consecutive
 | 
						|
    //parallel edges by removing the middle vertex.
 | 
						|
    OutPt *lastOK = nullptr;
 | 
						|
    outrec.BottomPt = nullptr;
 | 
						|
    OutPt *pp = outrec.Pts;
 | 
						|
    bool preserveCol = m_PreserveCollinear || m_StrictSimple;
 | 
						|
 | 
						|
    for (;;)
 | 
						|
    {
 | 
						|
        if (pp->Prev == pp || pp->Prev == pp->Next)
 | 
						|
        {
 | 
						|
            // Empty loop or a stick. Release the polygon.
 | 
						|
            this->DisposeOutPts(pp);
 | 
						|
            outrec.Pts = nullptr;
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        //test for duplicate points and collinear edges ...
 | 
						|
        if ((pp->Pt == pp->Next->Pt) || (pp->Pt == pp->Prev->Pt) ||
 | 
						|
            (SlopesEqual(pp->Prev->Pt, pp->Pt, pp->Next->Pt, m_UseFullRange) &&
 | 
						|
            (!preserveCol || !Pt2IsBetweenPt1AndPt3(pp->Prev->Pt, pp->Pt, pp->Next->Pt))))
 | 
						|
        {
 | 
						|
            lastOK = nullptr;
 | 
						|
            OutPt *tmp = pp;
 | 
						|
            pp->Prev->Next = pp->Next;
 | 
						|
            pp->Next->Prev = pp->Prev;
 | 
						|
            pp = pp->Prev;
 | 
						|
            this->DisposeOutPt(tmp);
 | 
						|
        }
 | 
						|
        else if (pp == lastOK) break;
 | 
						|
        else
 | 
						|
        {
 | 
						|
            if (!lastOK) lastOK = pp;
 | 
						|
            pp = pp->Next;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    outrec.Pts = pp;
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
// Count the number of points in a closed linked loop starting with Pts.
 | 
						|
int PointCount(OutPt *Pts)
 | 
						|
{
 | 
						|
    if (!Pts) return 0;
 | 
						|
    int result = 0;
 | 
						|
    OutPt* p = Pts;
 | 
						|
    do
 | 
						|
    {
 | 
						|
        result++;
 | 
						|
        p = p->Next;
 | 
						|
    }
 | 
						|
    while (p != Pts);
 | 
						|
    return result;
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void Clipper::BuildResult(Paths &polys)
 | 
						|
{
 | 
						|
  polys.reserve(m_PolyOuts.size());
 | 
						|
  for (OutRec* outRec : m_PolyOuts)
 | 
						|
  {
 | 
						|
    assert(! outRec->IsOpen);
 | 
						|
    if (!outRec->Pts) continue;
 | 
						|
    Path pg;
 | 
						|
    OutPt* p = outRec->Pts->Prev;
 | 
						|
    int cnt = PointCount(p);
 | 
						|
    if (cnt < 2) continue;
 | 
						|
    pg.reserve(cnt);
 | 
						|
    for (int i = 0; i < cnt; ++i)
 | 
						|
    {
 | 
						|
      pg.emplace_back(p->Pt);
 | 
						|
      p = p->Prev;
 | 
						|
    }
 | 
						|
    polys.emplace_back(std::move(pg));
 | 
						|
  }
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void Clipper::BuildResult2(PolyTree& polytree)
 | 
						|
{
 | 
						|
    polytree.Clear();
 | 
						|
    polytree.AllNodes.reserve(m_PolyOuts.size());
 | 
						|
    //add each output polygon/contour to polytree ...
 | 
						|
    for (OutRec* outRec : m_PolyOuts)
 | 
						|
    {
 | 
						|
        int cnt = PointCount(outRec->Pts);
 | 
						|
        if ((outRec->IsOpen && cnt < 2) || (!outRec->IsOpen && cnt < 3))
 | 
						|
          // Ignore an invalid output loop or a polyline.
 | 
						|
          continue;
 | 
						|
 | 
						|
        //skip OutRecs that (a) contain outermost polygons or
 | 
						|
        //(b) already have the correct owner/child linkage ...
 | 
						|
        if (outRec->FirstLeft &&
 | 
						|
            (outRec->IsHole == outRec->FirstLeft->IsHole || ! outRec->FirstLeft->Pts)) {
 | 
						|
          OutRec* orfl = outRec->FirstLeft;
 | 
						|
          while (orfl && ((orfl->IsHole == outRec->IsHole) || !orfl->Pts))
 | 
						|
              orfl = orfl->FirstLeft;
 | 
						|
          outRec->FirstLeft = orfl;
 | 
						|
        }
 | 
						|
 | 
						|
        //nb: polytree takes ownership of all the PolyNodes
 | 
						|
        polytree.AllNodes.emplace_back(PolyNode());
 | 
						|
        PolyNode* pn = &polytree.AllNodes.back();
 | 
						|
        outRec->PolyNd = pn;
 | 
						|
        pn->Parent = 0;
 | 
						|
        pn->Index = 0;
 | 
						|
        pn->Contour.reserve(cnt);
 | 
						|
        OutPt *op = outRec->Pts->Prev;
 | 
						|
        for (int j = 0; j < cnt; j++)
 | 
						|
        {
 | 
						|
            pn->Contour.emplace_back(op->Pt);
 | 
						|
            op = op->Prev;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    //fixup PolyNode links etc ...
 | 
						|
    polytree.Childs.reserve(m_PolyOuts.size());
 | 
						|
    for (OutRec* outRec : m_PolyOuts)
 | 
						|
    {
 | 
						|
        if (!outRec->PolyNd) continue;
 | 
						|
        if (outRec->IsOpen) 
 | 
						|
        {
 | 
						|
          outRec->PolyNd->m_IsOpen = true;
 | 
						|
          polytree.AddChild(*outRec->PolyNd);
 | 
						|
        }
 | 
						|
        else if (outRec->FirstLeft && outRec->FirstLeft->PolyNd) 
 | 
						|
          outRec->FirstLeft->PolyNd->AddChild(*outRec->PolyNd);
 | 
						|
        else
 | 
						|
          polytree.AddChild(*outRec->PolyNd);
 | 
						|
    }
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
inline bool E2InsertsBeforeE1(TEdge &e1, TEdge &e2)
 | 
						|
{
 | 
						|
  if (e2.Curr.x() == e1.Curr.x()) 
 | 
						|
  {
 | 
						|
    if (e2.Top.y() > e1.Top.y())
 | 
						|
      return e2.Top.x() < TopX(e1, e2.Top.y()); 
 | 
						|
      else return e1.Top.x() > TopX(e2, e1.Top.y());
 | 
						|
  } 
 | 
						|
  else return e2.Curr.x() < e1.Curr.x();
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
bool GetOverlap(const cInt a1, const cInt a2, const cInt b1, const cInt b2, 
 | 
						|
    cInt& Left, cInt& Right)
 | 
						|
{
 | 
						|
  if (a1 < a2)
 | 
						|
  {
 | 
						|
    if (b1 < b2) {Left = std::max(a1,b1); Right = std::min(a2,b2);}
 | 
						|
    else {Left = std::max(a1,b2); Right = std::min(a2,b1);}
 | 
						|
  } 
 | 
						|
  else
 | 
						|
  {
 | 
						|
    if (b1 < b2) {Left = std::max(a2,b1); Right = std::min(a1,b2);}
 | 
						|
    else {Left = std::max(a2,b2); Right = std::min(a1,b1);}
 | 
						|
  }
 | 
						|
  return Left < Right;
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
// Make all points of outrec point to outrec.Idx
 | 
						|
inline void UpdateOutPtIdxs(OutRec& outrec)
 | 
						|
{  
 | 
						|
  OutPt* op = outrec.Pts;
 | 
						|
  do
 | 
						|
  {
 | 
						|
    op->Idx = outrec.Idx;
 | 
						|
    op = op->Prev;
 | 
						|
  }
 | 
						|
  while(op != outrec.Pts);
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void Clipper::InsertEdgeIntoAEL(TEdge *edge, TEdge* startEdge)
 | 
						|
{
 | 
						|
  if(!m_ActiveEdges)
 | 
						|
  {
 | 
						|
    edge->PrevInAEL = 0;
 | 
						|
    edge->NextInAEL = 0;
 | 
						|
    m_ActiveEdges = edge;
 | 
						|
  }
 | 
						|
  else if(!startEdge && E2InsertsBeforeE1(*m_ActiveEdges, *edge))
 | 
						|
  {
 | 
						|
      edge->PrevInAEL = 0;
 | 
						|
      edge->NextInAEL = m_ActiveEdges;
 | 
						|
      m_ActiveEdges->PrevInAEL = edge;
 | 
						|
      m_ActiveEdges = edge;
 | 
						|
  } 
 | 
						|
  else
 | 
						|
  {
 | 
						|
    if(!startEdge) startEdge = m_ActiveEdges;
 | 
						|
    while(startEdge->NextInAEL  && 
 | 
						|
      !E2InsertsBeforeE1(*startEdge->NextInAEL , *edge))
 | 
						|
        startEdge = startEdge->NextInAEL;
 | 
						|
    edge->NextInAEL = startEdge->NextInAEL;
 | 
						|
    if(startEdge->NextInAEL) startEdge->NextInAEL->PrevInAEL = edge;
 | 
						|
    edge->PrevInAEL = startEdge;
 | 
						|
    startEdge->NextInAEL = edge;
 | 
						|
  }
 | 
						|
}
 | 
						|
//----------------------------------------------------------------------
 | 
						|
 | 
						|
OutPt* Clipper::DupOutPt(OutPt* outPt, bool InsertAfter)
 | 
						|
{
 | 
						|
  OutPt* result = this->AllocateOutPt();
 | 
						|
  result->Pt = outPt->Pt;
 | 
						|
  result->Idx = outPt->Idx;
 | 
						|
  if (InsertAfter)
 | 
						|
  {
 | 
						|
    result->Next = outPt->Next;
 | 
						|
    result->Prev = outPt;
 | 
						|
    outPt->Next->Prev = result;
 | 
						|
    outPt->Next = result;
 | 
						|
  } 
 | 
						|
  else
 | 
						|
  {
 | 
						|
    result->Prev = outPt->Prev;
 | 
						|
    result->Next = outPt;
 | 
						|
    outPt->Prev->Next = result;
 | 
						|
    outPt->Prev = result;
 | 
						|
  }
 | 
						|
  return result;
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
bool Clipper::JoinHorz(OutPt* op1, OutPt* op1b, OutPt* op2, OutPt* op2b,
 | 
						|
  const IntPoint &Pt, bool DiscardLeft)
 | 
						|
{
 | 
						|
  Direction Dir1 = (op1->Pt.x() > op1b->Pt.x() ? dRightToLeft : dLeftToRight);
 | 
						|
  Direction Dir2 = (op2->Pt.x() > op2b->Pt.x() ? dRightToLeft : dLeftToRight);
 | 
						|
  if (Dir1 == Dir2) return false;
 | 
						|
 | 
						|
  //When DiscardLeft, we want Op1b to be on the Left of Op1, otherwise we
 | 
						|
  //want Op1b to be on the Right. (And likewise with Op2 and Op2b.)
 | 
						|
  //So, to facilitate this while inserting Op1b and Op2b ...
 | 
						|
  //when DiscardLeft, make sure we're AT or RIGHT of Pt before adding Op1b,
 | 
						|
  //otherwise make sure we're AT or LEFT of Pt. (Likewise with Op2b.)
 | 
						|
  if (Dir1 == dLeftToRight) 
 | 
						|
  {
 | 
						|
    while (op1->Next->Pt.x() <= Pt.x() && 
 | 
						|
      op1->Next->Pt.x() >= op1->Pt.x() && op1->Next->Pt.y() == Pt.y())  
 | 
						|
        op1 = op1->Next;
 | 
						|
    if (DiscardLeft && (op1->Pt.x() != Pt.x())) op1 = op1->Next;
 | 
						|
    op1b = this->DupOutPt(op1, !DiscardLeft);
 | 
						|
    if (op1b->Pt != Pt) 
 | 
						|
    {
 | 
						|
      op1 = op1b;
 | 
						|
      op1->Pt = Pt;
 | 
						|
      op1b = this->DupOutPt(op1, !DiscardLeft);
 | 
						|
    }
 | 
						|
  } 
 | 
						|
  else
 | 
						|
  {
 | 
						|
    while (op1->Next->Pt.x() >= Pt.x() && 
 | 
						|
      op1->Next->Pt.x() <= op1->Pt.x() && op1->Next->Pt.y() == Pt.y()) 
 | 
						|
        op1 = op1->Next;
 | 
						|
    if (!DiscardLeft && (op1->Pt.x() != Pt.x())) op1 = op1->Next;
 | 
						|
    op1b = this->DupOutPt(op1, DiscardLeft);
 | 
						|
    if (op1b->Pt != Pt)
 | 
						|
    {
 | 
						|
      op1 = op1b;
 | 
						|
      op1->Pt = Pt;
 | 
						|
      op1b = this->DupOutPt(op1, DiscardLeft);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Dir2 == dLeftToRight)
 | 
						|
  {
 | 
						|
    while (op2->Next->Pt.x() <= Pt.x() && 
 | 
						|
      op2->Next->Pt.x() >= op2->Pt.x() && op2->Next->Pt.y() == Pt.y())
 | 
						|
        op2 = op2->Next;
 | 
						|
    if (DiscardLeft && (op2->Pt.x() != Pt.x())) op2 = op2->Next;
 | 
						|
    op2b = this->DupOutPt(op2, !DiscardLeft);
 | 
						|
    if (op2b->Pt != Pt)
 | 
						|
    {
 | 
						|
      op2 = op2b;
 | 
						|
      op2->Pt = Pt;
 | 
						|
      op2b = this->DupOutPt(op2, !DiscardLeft);
 | 
						|
    };
 | 
						|
  } else
 | 
						|
  {
 | 
						|
    while (op2->Next->Pt.x() >= Pt.x() && 
 | 
						|
      op2->Next->Pt.x() <= op2->Pt.x() && op2->Next->Pt.y() == Pt.y()) 
 | 
						|
        op2 = op2->Next;
 | 
						|
    if (!DiscardLeft && (op2->Pt.x() != Pt.x())) op2 = op2->Next;
 | 
						|
    op2b = this->DupOutPt(op2, DiscardLeft);
 | 
						|
    if (op2b->Pt != Pt)
 | 
						|
    {
 | 
						|
      op2 = op2b;
 | 
						|
      op2->Pt = Pt;
 | 
						|
      op2b = this->DupOutPt(op2, DiscardLeft);
 | 
						|
    };
 | 
						|
  };
 | 
						|
 | 
						|
  if ((Dir1 == dLeftToRight) == DiscardLeft)
 | 
						|
  {
 | 
						|
    op1->Prev = op2;
 | 
						|
    op2->Next = op1;
 | 
						|
    op1b->Next = op2b;
 | 
						|
    op2b->Prev = op1b;
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    op1->Next = op2;
 | 
						|
    op2->Prev = op1;
 | 
						|
    op1b->Prev = op2b;
 | 
						|
    op2b->Next = op1b;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
bool Clipper::JoinPoints(Join *j, OutRec* outRec1, OutRec* outRec2)
 | 
						|
{
 | 
						|
  OutPt *op1 = j->OutPt1, *op1b;
 | 
						|
  OutPt *op2 = j->OutPt2, *op2b;
 | 
						|
 | 
						|
  //There are 3 kinds of joins for output polygons ...
 | 
						|
  //1. Horizontal joins where Join.OutPt1 & Join.OutPt2 are vertices anywhere
 | 
						|
  //along (horizontal) collinear edges (& Join.OffPt is on the same horizontal).
 | 
						|
  //2. Non-horizontal joins where Join.OutPt1 & Join.OutPt2 are at the same
 | 
						|
  //location at the Bottom of the overlapping segment (& Join.OffPt is above).
 | 
						|
  //3. StrictSimple joins where edges touch but are not collinear and where
 | 
						|
  //Join.OutPt1, Join.OutPt2 & Join.OffPt all share the same point.
 | 
						|
  bool isHorizontal = (j->OutPt1->Pt.y() == j->OffPt.y());
 | 
						|
 | 
						|
  if (isHorizontal  && (j->OffPt == j->OutPt1->Pt) &&
 | 
						|
  (j->OffPt == j->OutPt2->Pt))
 | 
						|
  {
 | 
						|
    //Strictly Simple join ...
 | 
						|
    if (outRec1 != outRec2) return false;
 | 
						|
    op1b = j->OutPt1->Next;
 | 
						|
    while (op1b != op1 && (op1b->Pt == j->OffPt)) 
 | 
						|
      op1b = op1b->Next;
 | 
						|
    bool reverse1 = (op1b->Pt.y() > j->OffPt.y());
 | 
						|
    op2b = j->OutPt2->Next;
 | 
						|
    while (op2b != op2 && (op2b->Pt == j->OffPt)) 
 | 
						|
      op2b = op2b->Next;
 | 
						|
    bool reverse2 = (op2b->Pt.y() > j->OffPt.y());
 | 
						|
    if (reverse1 == reverse2) return false;
 | 
						|
    if (reverse1)
 | 
						|
    {
 | 
						|
      op1b = this->DupOutPt(op1, false);
 | 
						|
      op2b = this->DupOutPt(op2, true);
 | 
						|
      op1->Prev = op2;
 | 
						|
      op2->Next = op1;
 | 
						|
      op1b->Next = op2b;
 | 
						|
      op2b->Prev = op1b;
 | 
						|
      j->OutPt1 = op1;
 | 
						|
      j->OutPt2 = op1b;
 | 
						|
      return true;
 | 
						|
    } else
 | 
						|
    {
 | 
						|
      op1b = this->DupOutPt(op1, true);
 | 
						|
      op2b = this->DupOutPt(op2, false);
 | 
						|
      op1->Next = op2;
 | 
						|
      op2->Prev = op1;
 | 
						|
      op1b->Prev = op2b;
 | 
						|
      op2b->Next = op1b;
 | 
						|
      j->OutPt1 = op1;
 | 
						|
      j->OutPt2 = op1b;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  } 
 | 
						|
  else if (isHorizontal)
 | 
						|
  {
 | 
						|
    //treat horizontal joins differently to non-horizontal joins since with
 | 
						|
    //them we're not yet sure where the overlapping is. OutPt1.Pt & OutPt2.Pt
 | 
						|
    //may be anywhere along the horizontal edge.
 | 
						|
    op1b = op1;
 | 
						|
    while (op1->Prev->Pt.y() == op1->Pt.y() && op1->Prev != op1b && op1->Prev != op2)
 | 
						|
      op1 = op1->Prev;
 | 
						|
    while (op1b->Next->Pt.y() == op1b->Pt.y() && op1b->Next != op1 && op1b->Next != op2)
 | 
						|
      op1b = op1b->Next;
 | 
						|
    if (op1b->Next == op1 || op1b->Next == op2) return false; //a flat 'polygon'
 | 
						|
 | 
						|
    op2b = op2;
 | 
						|
    while (op2->Prev->Pt.y() == op2->Pt.y() && op2->Prev != op2b && op2->Prev != op1b)
 | 
						|
      op2 = op2->Prev;
 | 
						|
    while (op2b->Next->Pt.y() == op2b->Pt.y() && op2b->Next != op2 && op2b->Next != op1)
 | 
						|
      op2b = op2b->Next;
 | 
						|
    if (op2b->Next == op2 || op2b->Next == op1) return false; //a flat 'polygon'
 | 
						|
 | 
						|
    cInt Left, Right;
 | 
						|
    //Op1 --> Op1b & Op2 --> Op2b are the extremites of the horizontal edges
 | 
						|
    if (!GetOverlap(op1->Pt.x(), op1b->Pt.x(), op2->Pt.x(), op2b->Pt.x(), Left, Right))
 | 
						|
      return false;
 | 
						|
 | 
						|
    //DiscardLeftSide: when overlapping edges are joined, a spike will created
 | 
						|
    //which needs to be cleaned up. However, we don't want Op1 or Op2 caught up
 | 
						|
    //on the discard Side as either may still be needed for other joins ...
 | 
						|
    IntPoint Pt;
 | 
						|
    bool DiscardLeftSide;
 | 
						|
    if (op1->Pt.x() >= Left && op1->Pt.x() <= Right) 
 | 
						|
    {
 | 
						|
      Pt = op1->Pt; DiscardLeftSide = (op1->Pt.x() > op1b->Pt.x());
 | 
						|
    } 
 | 
						|
    else if (op2->Pt.x() >= Left&& op2->Pt.x() <= Right) 
 | 
						|
    {
 | 
						|
      Pt = op2->Pt; DiscardLeftSide = (op2->Pt.x() > op2b->Pt.x());
 | 
						|
    } 
 | 
						|
    else if (op1b->Pt.x() >= Left && op1b->Pt.x() <= Right)
 | 
						|
    {
 | 
						|
      Pt = op1b->Pt; DiscardLeftSide = op1b->Pt.x() > op1->Pt.x();
 | 
						|
    } 
 | 
						|
    else
 | 
						|
    {
 | 
						|
      Pt = op2b->Pt; DiscardLeftSide = (op2b->Pt.x() > op2->Pt.x());
 | 
						|
    }
 | 
						|
    j->OutPt1 = op1; j->OutPt2 = op2;
 | 
						|
    return JoinHorz(op1, op1b, op2, op2b, Pt, DiscardLeftSide);
 | 
						|
  } else
 | 
						|
  {
 | 
						|
    //nb: For non-horizontal joins ...
 | 
						|
    //    1. Jr.OutPt1.Pt.y() == Jr.OutPt2.Pt.y()
 | 
						|
    //    2. Jr.OutPt1.Pt > Jr.OffPt.y()
 | 
						|
 | 
						|
    //make sure the polygons are correctly oriented ...
 | 
						|
    op1b = op1->Next;
 | 
						|
    while ((op1b->Pt == op1->Pt) && (op1b != op1)) op1b = op1b->Next;
 | 
						|
    bool Reverse1 = ((op1b->Pt.y() > op1->Pt.y()) ||
 | 
						|
      !SlopesEqual(op1->Pt, op1b->Pt, j->OffPt, m_UseFullRange));
 | 
						|
    if (Reverse1)
 | 
						|
    {
 | 
						|
      op1b = op1->Prev;
 | 
						|
      while ((op1b->Pt == op1->Pt) && (op1b != op1)) op1b = op1b->Prev;
 | 
						|
      if ((op1b->Pt.y() > op1->Pt.y()) ||
 | 
						|
        !SlopesEqual(op1->Pt, op1b->Pt, j->OffPt, m_UseFullRange)) return false;
 | 
						|
    };
 | 
						|
    op2b = op2->Next;
 | 
						|
    while ((op2b->Pt == op2->Pt) && (op2b != op2))op2b = op2b->Next;
 | 
						|
    bool Reverse2 = ((op2b->Pt.y() > op2->Pt.y()) ||
 | 
						|
      !SlopesEqual(op2->Pt, op2b->Pt, j->OffPt, m_UseFullRange));
 | 
						|
    if (Reverse2)
 | 
						|
    {
 | 
						|
      op2b = op2->Prev;
 | 
						|
      while ((op2b->Pt == op2->Pt) && (op2b != op2)) op2b = op2b->Prev;
 | 
						|
      if ((op2b->Pt.y() > op2->Pt.y()) ||
 | 
						|
        !SlopesEqual(op2->Pt, op2b->Pt, j->OffPt, m_UseFullRange)) return false;
 | 
						|
    }
 | 
						|
 | 
						|
    if ((op1b == op1) || (op2b == op2) || (op1b == op2b) ||
 | 
						|
      ((outRec1 == outRec2) && (Reverse1 == Reverse2))) return false;
 | 
						|
 | 
						|
    if (Reverse1)
 | 
						|
    {
 | 
						|
      op1b = this->DupOutPt(op1, false);
 | 
						|
      op2b = this->DupOutPt(op2, true);
 | 
						|
      op1->Prev = op2;
 | 
						|
      op2->Next = op1;
 | 
						|
      op1b->Next = op2b;
 | 
						|
      op2b->Prev = op1b;
 | 
						|
      j->OutPt1 = op1;
 | 
						|
      j->OutPt2 = op1b;
 | 
						|
      return true;
 | 
						|
    } else
 | 
						|
    {
 | 
						|
      op1b = this->DupOutPt(op1, true);
 | 
						|
      op2b = this->DupOutPt(op2, false);
 | 
						|
      op1->Next = op2;
 | 
						|
      op2->Prev = op1;
 | 
						|
      op1b->Prev = op2b;
 | 
						|
      op2b->Next = op1b;
 | 
						|
      j->OutPt1 = op1;
 | 
						|
      j->OutPt2 = op1b;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
//----------------------------------------------------------------------
 | 
						|
 | 
						|
// This is potentially very expensive! O(n^3)!
 | 
						|
void Clipper::FixupFirstLefts1(OutRec* OldOutRec, OutRec* NewOutRec) const
 | 
						|
{ 
 | 
						|
  CLIPPERLIB_PROFILE_FUNC();
 | 
						|
  //tests if NewOutRec contains the polygon before reassigning FirstLeft
 | 
						|
  for (OutRec *outRec : m_PolyOuts)
 | 
						|
  {
 | 
						|
    if (!outRec->Pts || !outRec->FirstLeft) continue;
 | 
						|
    OutRec* firstLeft = outRec->FirstLeft;
 | 
						|
    // Skip empty polygons.
 | 
						|
    while (firstLeft && !firstLeft->Pts) firstLeft = firstLeft->FirstLeft;
 | 
						|
    if (firstLeft == OldOutRec && Poly2ContainsPoly1(outRec->Pts, NewOutRec->Pts))
 | 
						|
        outRec->FirstLeft = NewOutRec;
 | 
						|
  }
 | 
						|
}
 | 
						|
//----------------------------------------------------------------------
 | 
						|
 | 
						|
void Clipper::FixupFirstLefts2(OutRec* OldOutRec, OutRec* NewOutRec) const
 | 
						|
{ 
 | 
						|
  //reassigns FirstLeft WITHOUT testing if NewOutRec contains the polygon
 | 
						|
  for (OutRec *outRec : m_PolyOuts)
 | 
						|
    if (outRec->FirstLeft == OldOutRec) outRec->FirstLeft = NewOutRec;
 | 
						|
}
 | 
						|
//----------------------------------------------------------------------
 | 
						|
 | 
						|
void Clipper::JoinCommonEdges()
 | 
						|
{
 | 
						|
  CLIPPERLIB_PROFILE_FUNC();
 | 
						|
  for (Join &join : m_Joins)
 | 
						|
  {
 | 
						|
    OutRec *outRec1 = GetOutRec(join.OutPt1->Idx);
 | 
						|
    OutRec *outRec2 = GetOutRec(join.OutPt2->Idx);
 | 
						|
 | 
						|
    if (!outRec1->Pts || !outRec2->Pts) continue;
 | 
						|
    if (outRec1->IsOpen || outRec2->IsOpen) continue;
 | 
						|
 | 
						|
    //get the polygon fragment with the correct hole state (FirstLeft)
 | 
						|
    //before calling JoinPoints() ...
 | 
						|
    OutRec *holeStateRec;
 | 
						|
    if (outRec1 == outRec2) holeStateRec = outRec1;
 | 
						|
    else if (Param1RightOfParam2(outRec1, outRec2)) holeStateRec = outRec2;
 | 
						|
    else if (Param1RightOfParam2(outRec2, outRec1)) holeStateRec = outRec1;
 | 
						|
    else holeStateRec = GetLowermostRec(outRec1, outRec2);
 | 
						|
 | 
						|
    if (!JoinPoints(&join, outRec1, outRec2)) continue;
 | 
						|
 | 
						|
    if (outRec1 == outRec2)
 | 
						|
    {
 | 
						|
      //instead of joining two polygons, we've just created a new one by
 | 
						|
      //splitting one polygon into two.
 | 
						|
      outRec1->Pts = join.OutPt1;
 | 
						|
      outRec1->BottomPt = 0;
 | 
						|
      outRec2 = CreateOutRec();
 | 
						|
      outRec2->Pts = join.OutPt2;
 | 
						|
 | 
						|
      //update all OutRec2.Pts Idx's ...
 | 
						|
      UpdateOutPtIdxs(*outRec2);
 | 
						|
 | 
						|
      //We now need to check every OutRec.FirstLeft pointer. If it points
 | 
						|
      //to OutRec1 it may need to point to OutRec2 instead ...
 | 
						|
      if (m_UsingPolyTree)
 | 
						|
        for (size_t j = 0; j < m_PolyOuts.size() - 1; j++)
 | 
						|
        {
 | 
						|
          OutRec* oRec = m_PolyOuts[j];
 | 
						|
          OutRec* firstLeft = oRec->FirstLeft;
 | 
						|
          while (firstLeft && !firstLeft->Pts) firstLeft = firstLeft->FirstLeft;
 | 
						|
          if (!oRec->Pts || firstLeft != outRec1 ||
 | 
						|
            oRec->IsHole == outRec1->IsHole) continue;
 | 
						|
          if (Poly2ContainsPoly1(oRec->Pts, join.OutPt2))
 | 
						|
            oRec->FirstLeft = outRec2;
 | 
						|
        }
 | 
						|
 | 
						|
      if (Poly2ContainsPoly1(outRec2->Pts, outRec1->Pts))
 | 
						|
      {
 | 
						|
        //outRec2 is contained by outRec1 ...
 | 
						|
        outRec2->IsHole = !outRec1->IsHole;
 | 
						|
        outRec2->FirstLeft = outRec1;
 | 
						|
 | 
						|
        // For each m_PolyOuts, replace FirstLeft from outRec2 to outRec1.
 | 
						|
        if (m_UsingPolyTree) FixupFirstLefts2(outRec2, outRec1);
 | 
						|
 | 
						|
        if ((outRec2->IsHole ^ m_ReverseOutput) == (Area(*outRec2) > 0))
 | 
						|
          ReversePolyPtLinks(outRec2->Pts);
 | 
						|
            
 | 
						|
      } else if (Poly2ContainsPoly1(outRec1->Pts, outRec2->Pts))
 | 
						|
      {
 | 
						|
        //outRec1 is contained by outRec2 ...
 | 
						|
        outRec2->IsHole = outRec1->IsHole;
 | 
						|
        outRec1->IsHole = !outRec2->IsHole;
 | 
						|
        outRec2->FirstLeft = outRec1->FirstLeft;
 | 
						|
        outRec1->FirstLeft = outRec2;
 | 
						|
 | 
						|
        // For each m_PolyOuts, replace FirstLeft from outRec1 to outRec2.
 | 
						|
        if (m_UsingPolyTree) FixupFirstLefts2(outRec1, outRec2);
 | 
						|
 | 
						|
        if ((outRec1->IsHole ^ m_ReverseOutput) == (Area(*outRec1) > 0))
 | 
						|
          ReversePolyPtLinks(outRec1->Pts);
 | 
						|
      } 
 | 
						|
      else
 | 
						|
      {
 | 
						|
        //the 2 polygons are completely separate ...
 | 
						|
        outRec2->IsHole = outRec1->IsHole;
 | 
						|
        outRec2->FirstLeft = outRec1->FirstLeft;
 | 
						|
 | 
						|
        //fixup FirstLeft pointers that may need reassigning to OutRec2
 | 
						|
        // For each polygon of m_PolyOuts, replace FirstLeft from outRec1 to outRec2 if the polygon is inside outRec2.
 | 
						|
        //FIXME This is potentially very expensive! O(n^3)!
 | 
						|
        if (m_UsingPolyTree) FixupFirstLefts1(outRec1, outRec2);
 | 
						|
      }
 | 
						|
     
 | 
						|
    } else
 | 
						|
    {
 | 
						|
      //joined 2 polygons together ...
 | 
						|
 | 
						|
      outRec2->Pts = 0;
 | 
						|
      outRec2->BottomPt = 0;
 | 
						|
      outRec2->Idx = outRec1->Idx;
 | 
						|
 | 
						|
      outRec1->IsHole = holeStateRec->IsHole;
 | 
						|
      if (holeStateRec == outRec2) 
 | 
						|
        outRec1->FirstLeft = outRec2->FirstLeft;
 | 
						|
      outRec2->FirstLeft = outRec1;
 | 
						|
 | 
						|
      // For each m_PolyOuts, replace FirstLeft from outRec2 to outRec1.
 | 
						|
      if (m_UsingPolyTree) FixupFirstLefts2(outRec2, outRec1);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
// ClipperOffset support functions ...
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
DoublePoint GetUnitNormal(const IntPoint &pt1, const IntPoint &pt2)
 | 
						|
{
 | 
						|
  if(pt2.x() == pt1.x() && pt2.y() == pt1.y()) 
 | 
						|
    return DoublePoint(0, 0);
 | 
						|
 | 
						|
  double Dx = double(pt2.x() - pt1.x());
 | 
						|
  double dy = double(pt2.y() - pt1.y());
 | 
						|
  double f = 1.0 / std::sqrt( Dx*Dx + dy*dy );
 | 
						|
  Dx *= f;
 | 
						|
  dy *= f;
 | 
						|
  return DoublePoint(dy, -Dx);
 | 
						|
}
 | 
						|
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
// ClipperOffset class
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void ClipperOffset::Clear()
 | 
						|
{
 | 
						|
  for (int i = 0; i < m_polyNodes.ChildCount(); ++i)
 | 
						|
    delete m_polyNodes.Childs[i];
 | 
						|
  m_polyNodes.Childs.clear();
 | 
						|
  m_lowest.x() = -1;
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void ClipperOffset::AddPath(const Path& path, JoinType joinType, EndType endType)
 | 
						|
{
 | 
						|
  int highI = (int)path.size() - 1;
 | 
						|
  if (highI < 0) return;
 | 
						|
  PolyNode* newNode = new PolyNode();
 | 
						|
  newNode->m_jointype = joinType;
 | 
						|
  newNode->m_endtype = endType;
 | 
						|
 | 
						|
  //strip duplicate points from path and also get index to the lowest point ...
 | 
						|
  bool   has_shortest_edge_length = ShortestEdgeLength > 0.;
 | 
						|
  double shortest_edge_length2 = has_shortest_edge_length ? ShortestEdgeLength * ShortestEdgeLength : 0.;
 | 
						|
  if (endType == etClosedLine || endType == etClosedPolygon)
 | 
						|
    for (; highI > 0; -- highI) {
 | 
						|
      bool same = false;
 | 
						|
      if (has_shortest_edge_length) {
 | 
						|
        double dx = double(path[highI].x() - path[0].x());
 | 
						|
        double dy = double(path[highI].y() - path[0].y());
 | 
						|
        same = dx*dx + dy*dy < shortest_edge_length2;
 | 
						|
      } else
 | 
						|
        same = path[0] == path[highI];
 | 
						|
      if (! same)
 | 
						|
        break;
 | 
						|
    }
 | 
						|
  newNode->Contour.reserve(highI + 1);
 | 
						|
  newNode->Contour.push_back(path[0]);
 | 
						|
  int j = 0, k = 0;
 | 
						|
  for (int i = 1; i <= highI; i++) {
 | 
						|
    bool same = false;
 | 
						|
    if (has_shortest_edge_length) {
 | 
						|
      double dx = double(path[i].x() - newNode->Contour[j].x());
 | 
						|
      double dy = double(path[i].y() - newNode->Contour[j].y());
 | 
						|
      same = dx*dx + dy*dy < shortest_edge_length2;
 | 
						|
    } else
 | 
						|
      same = newNode->Contour[j] == path[i];
 | 
						|
    if (same)
 | 
						|
      continue;
 | 
						|
    j++;
 | 
						|
    newNode->Contour.push_back(path[i]);
 | 
						|
    if (path[i].y() > newNode->Contour[k].y() ||
 | 
						|
      (path[i].y() == newNode->Contour[k].y() &&
 | 
						|
      path[i].x() < newNode->Contour[k].x())) k = j;
 | 
						|
  }
 | 
						|
  if (endType == etClosedPolygon && j < 2)
 | 
						|
  {
 | 
						|
    delete newNode;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  m_polyNodes.AddChild(*newNode);
 | 
						|
 | 
						|
  //if this path's lowest pt is lower than all the others then update m_lowest
 | 
						|
  if (endType != etClosedPolygon) return;
 | 
						|
  if (m_lowest.x() < 0)
 | 
						|
    m_lowest = IntPoint2d(m_polyNodes.ChildCount() - 1, k);
 | 
						|
  else
 | 
						|
  {
 | 
						|
    IntPoint ip = m_polyNodes.Childs[(int)m_lowest.x()]->Contour[(int)m_lowest.y()];
 | 
						|
    if (newNode->Contour[k].y() > ip.y() ||
 | 
						|
      (newNode->Contour[k].y() == ip.y() &&
 | 
						|
      newNode->Contour[k].x() < ip.x()))
 | 
						|
      m_lowest = IntPoint2d(m_polyNodes.ChildCount() - 1, k);
 | 
						|
  }
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void ClipperOffset::FixOrientations()
 | 
						|
{
 | 
						|
  //fixup orientations of all closed paths if the orientation of the
 | 
						|
  //closed path with the lowermost vertex is wrong ...
 | 
						|
  if (m_lowest.x() >= 0 && 
 | 
						|
    !Orientation(m_polyNodes.Childs[(int)m_lowest.x()]->Contour))
 | 
						|
  {
 | 
						|
    for (int i = 0; i < m_polyNodes.ChildCount(); ++i)
 | 
						|
    {
 | 
						|
      PolyNode& node = *m_polyNodes.Childs[i];
 | 
						|
      if (node.m_endtype == etClosedPolygon ||
 | 
						|
        (node.m_endtype == etClosedLine && Orientation(node.Contour)))
 | 
						|
          ReversePath(node.Contour);
 | 
						|
    }
 | 
						|
  } else
 | 
						|
  {
 | 
						|
    for (int i = 0; i < m_polyNodes.ChildCount(); ++i)
 | 
						|
    {
 | 
						|
      PolyNode& node = *m_polyNodes.Childs[i];
 | 
						|
      if (node.m_endtype == etClosedLine && !Orientation(node.Contour))
 | 
						|
        ReversePath(node.Contour);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void ClipperOffset::Execute(Paths& solution, double delta)
 | 
						|
{
 | 
						|
  solution.clear();
 | 
						|
  FixOrientations();
 | 
						|
  DoOffset(delta);
 | 
						|
  
 | 
						|
  //now clean up 'corners' ...
 | 
						|
  Clipper clpr;
 | 
						|
  clpr.AddPaths(m_destPolys, ptSubject, true);
 | 
						|
  if (delta > 0)
 | 
						|
  {
 | 
						|
    clpr.Execute(ctUnion, solution, pftPositive, pftPositive);
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    IntRect r = clpr.GetBounds();
 | 
						|
    Path outer(4);
 | 
						|
    outer[0] = IntPoint2d(r.left - 10, r.bottom + 10);
 | 
						|
    outer[1] = IntPoint2d(r.right + 10, r.bottom + 10);
 | 
						|
    outer[2] = IntPoint2d(r.right + 10, r.top - 10);
 | 
						|
    outer[3] = IntPoint2d(r.left - 10, r.top - 10);
 | 
						|
 | 
						|
    clpr.AddPath(outer, ptSubject, true);
 | 
						|
    clpr.ReverseSolution(true);
 | 
						|
    clpr.Execute(ctUnion, solution, pftNegative, pftNegative);
 | 
						|
    if (! solution.empty())
 | 
						|
      solution.erase(solution.begin());
 | 
						|
  }
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void ClipperOffset::Execute(PolyTree& solution, double delta)
 | 
						|
{
 | 
						|
  solution.Clear();
 | 
						|
  FixOrientations();
 | 
						|
  DoOffset(delta);
 | 
						|
 | 
						|
  //now clean up 'corners' ...
 | 
						|
  Clipper clpr;
 | 
						|
  clpr.AddPaths(m_destPolys, ptSubject, true);
 | 
						|
  if (delta > 0)
 | 
						|
  {
 | 
						|
    clpr.Execute(ctUnion, solution, pftPositive, pftPositive);
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    IntRect r = clpr.GetBounds();
 | 
						|
    Path outer(4);
 | 
						|
    outer[0] = IntPoint2d(r.left - 10, r.bottom + 10);
 | 
						|
    outer[1] = IntPoint2d(r.right + 10, r.bottom + 10);
 | 
						|
    outer[2] = IntPoint2d(r.right + 10, r.top - 10);
 | 
						|
    outer[3] = IntPoint2d(r.left - 10, r.top - 10);
 | 
						|
 | 
						|
    clpr.AddPath(outer, ptSubject, true);
 | 
						|
    clpr.ReverseSolution(true);
 | 
						|
    clpr.Execute(ctUnion, solution, pftNegative, pftNegative);
 | 
						|
    //remove the outer PolyNode rectangle ...
 | 
						|
    solution.RemoveOutermostPolygon();
 | 
						|
  }
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void ClipperOffset::DoOffset(double delta)
 | 
						|
{
 | 
						|
  m_destPolys.clear();
 | 
						|
  m_delta = delta;
 | 
						|
 | 
						|
  //if Zero offset, just copy any CLOSED polygons to m_p and return ...
 | 
						|
  if (NEAR_ZERO(delta)) 
 | 
						|
  {
 | 
						|
    m_destPolys.reserve(m_polyNodes.ChildCount());
 | 
						|
    for (int i = 0; i < m_polyNodes.ChildCount(); i++)
 | 
						|
    {
 | 
						|
      PolyNode& node = *m_polyNodes.Childs[i];
 | 
						|
      if (node.m_endtype == etClosedPolygon)
 | 
						|
        m_destPolys.push_back(node.Contour);
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  //see offset_triginometry3.svg in the documentation folder ...
 | 
						|
  m_miterLim = (MiterLimit > 2) ? 
 | 
						|
    2. / (MiterLimit * MiterLimit) :
 | 
						|
    0.5;
 | 
						|
 | 
						|
  double y;
 | 
						|
  if (ArcTolerance <= 0.0) y = def_arc_tolerance;
 | 
						|
  else if (ArcTolerance > std::fabs(delta) * def_arc_tolerance) 
 | 
						|
    y = std::fabs(delta) * def_arc_tolerance;
 | 
						|
  else y = ArcTolerance;
 | 
						|
  //see offset_triginometry2.svg in the documentation folder ...
 | 
						|
  double steps = pi / std::acos(1 - y / std::fabs(delta));
 | 
						|
  if (steps > std::fabs(delta) * pi) 
 | 
						|
    steps = std::fabs(delta) * pi;  //ie excessive precision check
 | 
						|
  m_sin = std::sin(two_pi / steps);
 | 
						|
  m_cos = std::cos(two_pi / steps);
 | 
						|
  m_StepsPerRad = steps / two_pi;
 | 
						|
  if (delta < 0.0) m_sin = -m_sin;
 | 
						|
 | 
						|
  m_destPolys.reserve(m_polyNodes.ChildCount() * 2);
 | 
						|
  for (int i = 0; i < m_polyNodes.ChildCount(); i++)
 | 
						|
  {
 | 
						|
    PolyNode& node = *m_polyNodes.Childs[i];
 | 
						|
    m_srcPoly = node.Contour;
 | 
						|
 | 
						|
    int len = (int)m_srcPoly.size();
 | 
						|
    if (len == 0 || (delta <= 0 && (len < 3 || node.m_endtype != etClosedPolygon)))
 | 
						|
        continue;
 | 
						|
 | 
						|
    m_destPoly.clear();
 | 
						|
    if (len == 1)
 | 
						|
    {
 | 
						|
      if (node.m_jointype == jtRound)
 | 
						|
      {
 | 
						|
        double X = 1.0, Y = 0.0;
 | 
						|
        for (cInt j = 1; j <= steps; j++)
 | 
						|
        {
 | 
						|
          m_destPoly.push_back(IntPoint2d(
 | 
						|
            Round(m_srcPoly[0].x() + X * delta),
 | 
						|
            Round(m_srcPoly[0].y() + Y * delta)));
 | 
						|
          double X2 = X;
 | 
						|
          X = X * m_cos - m_sin * Y;
 | 
						|
          Y = X2 * m_sin + Y * m_cos;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      else
 | 
						|
      {
 | 
						|
        double X = -1.0, Y = -1.0;
 | 
						|
        for (int j = 0; j < 4; ++j)
 | 
						|
        {
 | 
						|
          m_destPoly.push_back(IntPoint2d(
 | 
						|
            Round(m_srcPoly[0].x() + X * delta),
 | 
						|
            Round(m_srcPoly[0].y() + Y * delta)));
 | 
						|
          if (X < 0) X = 1;
 | 
						|
          else if (Y < 0) Y = 1;
 | 
						|
          else X = -1;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      m_destPolys.push_back(m_destPoly);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    //build m_normals ...
 | 
						|
    m_normals.clear();
 | 
						|
    m_normals.reserve(len);
 | 
						|
    for (int j = 0; j < len - 1; ++j)
 | 
						|
      m_normals.push_back(GetUnitNormal(m_srcPoly[j], m_srcPoly[j + 1]));
 | 
						|
    if (node.m_endtype == etClosedLine || node.m_endtype == etClosedPolygon)
 | 
						|
      m_normals.push_back(GetUnitNormal(m_srcPoly[len - 1], m_srcPoly[0]));
 | 
						|
    else
 | 
						|
      m_normals.push_back(DoublePoint(m_normals[len - 2]));
 | 
						|
 | 
						|
    if (node.m_endtype == etClosedPolygon)
 | 
						|
    {
 | 
						|
      int k = len - 1;
 | 
						|
      for (int j = 0; j < len; ++j)
 | 
						|
        OffsetPoint(j, k, node.m_jointype);
 | 
						|
      m_destPolys.push_back(m_destPoly);
 | 
						|
    }
 | 
						|
    else if (node.m_endtype == etClosedLine)
 | 
						|
    {
 | 
						|
      int k = len - 1;
 | 
						|
      for (int j = 0; j < len; ++j)
 | 
						|
        OffsetPoint(j, k, node.m_jointype);
 | 
						|
      m_destPolys.push_back(m_destPoly);
 | 
						|
      m_destPoly.clear();
 | 
						|
      //re-build m_normals ...
 | 
						|
      DoublePoint n = m_normals[len -1];
 | 
						|
      for (int j = len - 1; j > 0; j--)
 | 
						|
        m_normals[j] = DoublePoint(-m_normals[j - 1].x(), -m_normals[j - 1].y());
 | 
						|
      m_normals[0] = DoublePoint(-n.x(), -n.y());
 | 
						|
      k = 0;
 | 
						|
      for (int j = len - 1; j >= 0; j--)
 | 
						|
        OffsetPoint(j, k, node.m_jointype);
 | 
						|
      m_destPolys.push_back(m_destPoly);
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      int k = 0;
 | 
						|
      for (int j = 1; j < len - 1; ++j)
 | 
						|
        OffsetPoint(j, k, node.m_jointype);
 | 
						|
 | 
						|
      IntPoint pt1;
 | 
						|
      if (node.m_endtype == etOpenButt)
 | 
						|
      {
 | 
						|
        int j = len - 1;
 | 
						|
        pt1 = IntPoint2d(Round(m_srcPoly[j].x() + m_normals[j].x() * delta), Round(m_srcPoly[j].y() + m_normals[j].y() * delta));
 | 
						|
        m_destPoly.push_back(pt1);
 | 
						|
        pt1 = IntPoint2d(Round(m_srcPoly[j].x() - m_normals[j].x() * delta), Round(m_srcPoly[j].y() - m_normals[j].y() * delta));
 | 
						|
        m_destPoly.push_back(pt1);
 | 
						|
      }
 | 
						|
      else
 | 
						|
      {
 | 
						|
        int j = len - 1;
 | 
						|
        k = len - 2;
 | 
						|
        m_sinA = 0;
 | 
						|
        m_normals[j] = DoublePoint(-m_normals[j].x(), -m_normals[j].y());
 | 
						|
        if (node.m_endtype == etOpenSquare)
 | 
						|
          DoSquare(j, k);
 | 
						|
        else
 | 
						|
          DoRound(j, k);
 | 
						|
      }
 | 
						|
 | 
						|
      //re-build m_normals ...
 | 
						|
      for (int j = len - 1; j > 0; j--)
 | 
						|
        m_normals[j] = DoublePoint(-m_normals[j - 1].x(), -m_normals[j - 1].y());
 | 
						|
      m_normals[0] = DoublePoint(-m_normals[1].x(), -m_normals[1].y());
 | 
						|
 | 
						|
      k = len - 1;
 | 
						|
      for (int j = k - 1; j > 0; --j) OffsetPoint(j, k, node.m_jointype);
 | 
						|
 | 
						|
      if (node.m_endtype == etOpenButt)
 | 
						|
      {
 | 
						|
        pt1 = IntPoint2d(Round(m_srcPoly[0].x() - m_normals[0].x() * delta), Round(m_srcPoly[0].y() - m_normals[0].y() * delta));
 | 
						|
        m_destPoly.push_back(pt1);
 | 
						|
        pt1 = IntPoint2d(Round(m_srcPoly[0].x() + m_normals[0].x() * delta), Round(m_srcPoly[0].y() + m_normals[0].y() * delta));
 | 
						|
        m_destPoly.push_back(pt1);
 | 
						|
      }
 | 
						|
      else
 | 
						|
      {
 | 
						|
        k = 1;
 | 
						|
        m_sinA = 0;
 | 
						|
        if (node.m_endtype == etOpenSquare)
 | 
						|
          DoSquare(0, 1);
 | 
						|
        else
 | 
						|
          DoRound(0, 1);
 | 
						|
      }
 | 
						|
      m_destPolys.push_back(m_destPoly);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void ClipperOffset::OffsetPoint(int j, int& k, JoinType jointype)
 | 
						|
{
 | 
						|
  //cross product ...
 | 
						|
  m_sinA = (m_normals[k].x() * m_normals[j].y() - m_normals[j].x() * m_normals[k].y());
 | 
						|
  if (std::fabs(m_sinA * m_delta) < 1.0) 
 | 
						|
  {
 | 
						|
    //dot product ...
 | 
						|
    double cosA = (m_normals[k].x() * m_normals[j].x() + m_normals[j].y() * m_normals[k].y() ); 
 | 
						|
    if (cosA > 0) // angle => 0 degrees
 | 
						|
    {
 | 
						|
      m_destPoly.push_back(IntPoint2d(Round(m_srcPoly[j].x() + m_normals[k].x() * m_delta),
 | 
						|
        Round(m_srcPoly[j].y() + m_normals[k].y() * m_delta)));
 | 
						|
      return; 
 | 
						|
    }
 | 
						|
    //else angle => 180 degrees   
 | 
						|
  }
 | 
						|
  else if (m_sinA > 1.0) m_sinA = 1.0;
 | 
						|
  else if (m_sinA < -1.0) m_sinA = -1.0;
 | 
						|
 | 
						|
  if (m_sinA * m_delta < 0)
 | 
						|
  {
 | 
						|
    m_destPoly.push_back(IntPoint2d(Round(m_srcPoly[j].x() + m_normals[k].x() * m_delta),
 | 
						|
      Round(m_srcPoly[j].y() + m_normals[k].y() * m_delta)));
 | 
						|
    m_destPoly.push_back(m_srcPoly[j]);
 | 
						|
    m_destPoly.push_back(IntPoint2d(Round(m_srcPoly[j].x() + m_normals[j].x() * m_delta),
 | 
						|
      Round(m_srcPoly[j].y() + m_normals[j].y() * m_delta)));
 | 
						|
  }
 | 
						|
  else
 | 
						|
    switch (jointype)
 | 
						|
    {
 | 
						|
      case jtMiter:
 | 
						|
        {
 | 
						|
          double r = 1 + (m_normals[j].x() * m_normals[k].x() +
 | 
						|
            m_normals[j].y() * m_normals[k].y());
 | 
						|
          if (r >= m_miterLim) DoMiter(j, k, r); else DoSquare(j, k);
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      case jtSquare: DoSquare(j, k); break;
 | 
						|
      case jtRound: DoRound(j, k); break;
 | 
						|
    }
 | 
						|
  k = j;
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void ClipperOffset::DoSquare(int j, int k)
 | 
						|
{
 | 
						|
  double dx = std::tan(std::atan2(m_sinA,
 | 
						|
      m_normals[k].x() * m_normals[j].x() + m_normals[k].y() * m_normals[j].y()) / 4);
 | 
						|
  m_destPoly.push_back(IntPoint2d(
 | 
						|
      Round(m_srcPoly[j].x() + m_delta * (m_normals[k].x() - m_normals[k].y() * dx)),
 | 
						|
      Round(m_srcPoly[j].y() + m_delta * (m_normals[k].y() + m_normals[k].x() * dx))));
 | 
						|
  m_destPoly.push_back(IntPoint2d(
 | 
						|
      Round(m_srcPoly[j].x() + m_delta * (m_normals[j].x() + m_normals[j].y() * dx)),
 | 
						|
      Round(m_srcPoly[j].y() + m_delta * (m_normals[j].y() - m_normals[j].x() * dx))));
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void ClipperOffset::DoMiter(int j, int k, double r)
 | 
						|
{
 | 
						|
  double q = m_delta / r;
 | 
						|
  m_destPoly.push_back(IntPoint2d(Round(m_srcPoly[j].x() + (m_normals[k].x() + m_normals[j].x()) * q),
 | 
						|
      Round(m_srcPoly[j].y() + (m_normals[k].y() + m_normals[j].y()) * q)));
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void ClipperOffset::DoRound(int j, int k)
 | 
						|
{
 | 
						|
  double a = std::atan2(m_sinA,
 | 
						|
  m_normals[k].x() * m_normals[j].x() + m_normals[k].y() * m_normals[j].y());
 | 
						|
  auto steps = std::max<int>(Round(m_StepsPerRad * std::fabs(a)), 1);
 | 
						|
 | 
						|
  double X = m_normals[k].x(), Y = m_normals[k].y(), X2;
 | 
						|
  for (int i = 0; i < steps; ++i)
 | 
						|
  {
 | 
						|
    m_destPoly.push_back(IntPoint2d(
 | 
						|
        Round(m_srcPoly[j].x() + X * m_delta),
 | 
						|
        Round(m_srcPoly[j].y() + Y * m_delta)));
 | 
						|
    X2 = X;
 | 
						|
    X = X * m_cos - m_sin * Y;
 | 
						|
    Y = X2 * m_sin + Y * m_cos;
 | 
						|
  }
 | 
						|
  m_destPoly.push_back(IntPoint2d(
 | 
						|
  Round(m_srcPoly[j].x() + m_normals[j].x() * m_delta),
 | 
						|
  Round(m_srcPoly[j].y() + m_normals[j].y() * m_delta)));
 | 
						|
}
 | 
						|
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
// Miscellaneous public functions
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
// Called by Clipper::ExecuteInternal()
 | 
						|
// For each polygon, search for exactly duplicate non-successive points.
 | 
						|
// If such a point is found, the loop is split into two pieces.
 | 
						|
// Search for the duplicate points is O(n^2)!
 | 
						|
// http://www.angusj.com/delphi/clipper/documentation/Docs/Units/ClipperLib/Classes/Clipper/Properties/StrictlySimple.htm
 | 
						|
void Clipper::DoSimplePolygons()
 | 
						|
{
 | 
						|
  CLIPPERLIB_PROFILE_FUNC();
 | 
						|
  size_t i = 0;
 | 
						|
  while (i < m_PolyOuts.size()) 
 | 
						|
  {
 | 
						|
    OutRec* outrec = m_PolyOuts[i++];
 | 
						|
    OutPt* op = outrec->Pts;
 | 
						|
    if (!op || outrec->IsOpen) continue;
 | 
						|
    do //for each Pt in Polygon until duplicate found do ...
 | 
						|
    {
 | 
						|
      OutPt* op2 = op->Next;
 | 
						|
      while (op2 != outrec->Pts) 
 | 
						|
      {
 | 
						|
        if ((op->Pt == op2->Pt) && op2->Next != op && op2->Prev != op) 
 | 
						|
        {
 | 
						|
          //split the polygon into two ...
 | 
						|
          OutPt* op3 = op->Prev;
 | 
						|
          OutPt* op4 = op2->Prev;
 | 
						|
          op->Prev = op4;
 | 
						|
          op4->Next = op;
 | 
						|
          op2->Prev = op3;
 | 
						|
          op3->Next = op2;
 | 
						|
 | 
						|
          outrec->Pts = op;
 | 
						|
          OutRec* outrec2 = CreateOutRec();
 | 
						|
          outrec2->Pts = op2;
 | 
						|
          UpdateOutPtIdxs(*outrec2);
 | 
						|
          if (Poly2ContainsPoly1(outrec2->Pts, outrec->Pts))
 | 
						|
          {
 | 
						|
            //OutRec2 is contained by OutRec1 ...
 | 
						|
            outrec2->IsHole = !outrec->IsHole;
 | 
						|
            outrec2->FirstLeft = outrec;
 | 
						|
            // For each m_PolyOuts, replace FirstLeft from outRec2 to outrec.
 | 
						|
            if (m_UsingPolyTree) FixupFirstLefts2(outrec2, outrec);
 | 
						|
          }
 | 
						|
          else
 | 
						|
            if (Poly2ContainsPoly1(outrec->Pts, outrec2->Pts))
 | 
						|
          {
 | 
						|
            //OutRec1 is contained by OutRec2 ...
 | 
						|
            outrec2->IsHole = outrec->IsHole;
 | 
						|
            outrec->IsHole = !outrec2->IsHole;
 | 
						|
            outrec2->FirstLeft = outrec->FirstLeft;
 | 
						|
            outrec->FirstLeft = outrec2;
 | 
						|
            // For each m_PolyOuts, replace FirstLeft from outrec to outrec2.
 | 
						|
            if (m_UsingPolyTree) FixupFirstLefts2(outrec, outrec2);
 | 
						|
            }
 | 
						|
            else
 | 
						|
          {
 | 
						|
            //the 2 polygons are separate ...
 | 
						|
            outrec2->IsHole = outrec->IsHole;
 | 
						|
            outrec2->FirstLeft = outrec->FirstLeft;
 | 
						|
            // For each polygon of m_PolyOuts, replace FirstLeft from outrec to outrec2 if the polygon is inside outRec2.
 | 
						|
            //FIXME This is potentially very expensive! O(n^3)!
 | 
						|
            if (m_UsingPolyTree) FixupFirstLefts1(outrec, outrec2);
 | 
						|
          }
 | 
						|
          op2 = op; //ie get ready for the Next iteration
 | 
						|
        }
 | 
						|
        op2 = op2->Next;
 | 
						|
      }
 | 
						|
      op = op->Next;
 | 
						|
    }
 | 
						|
    while (op != outrec->Pts);
 | 
						|
  }
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void ReversePath(Path& p)
 | 
						|
{
 | 
						|
  std::reverse(p.begin(), p.end());
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void ReversePaths(Paths& p)
 | 
						|
{
 | 
						|
  for (Paths::size_type i = 0; i < p.size(); ++i)
 | 
						|
    ReversePath(p[i]);
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
Paths SimplifyPolygon(const Path &in_poly, PolyFillType fillType)
 | 
						|
{
 | 
						|
  Clipper c;
 | 
						|
  c.StrictlySimple(true);
 | 
						|
  c.AddPath(in_poly, ptSubject, true);
 | 
						|
  Paths out; 
 | 
						|
  c.Execute(ctUnion, out, fillType, fillType);
 | 
						|
  return out;
 | 
						|
}
 | 
						|
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
inline double DistanceSqrd(const IntPoint& pt1, const IntPoint& pt2)
 | 
						|
{
 | 
						|
  auto Dx = double(pt1.x() - pt2.x());
 | 
						|
  auto dy = double(pt1.y() - pt2.y());
 | 
						|
  return (Dx*Dx + dy*dy);
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
double DistanceFromLineSqrd(
 | 
						|
  const IntPoint& pt, const IntPoint& ln1, const IntPoint& ln2)
 | 
						|
{
 | 
						|
  //The equation of a line in general form (Ax + By + C = 0)
 | 
						|
  //given 2 points (x¹,y¹) & (x²,y²) is ...
 | 
						|
  //(y¹ - y²)x + (x² - x¹)y + (y² - y¹)x¹ - (x² - x¹)y¹ = 0
 | 
						|
  //A = (y¹ - y²); B = (x² - x¹); C = (y² - y¹)x¹ - (x² - x¹)y¹
 | 
						|
  //perpendicular distance of point (x³,y³) = (Ax³ + By³ + C)/Sqrt(A² + B²)
 | 
						|
  //see http://en.wikipedia.org/wiki/Perpendicular_distance
 | 
						|
  double A = double(ln1.y() - ln2.y());
 | 
						|
  double B = double(ln2.x() - ln1.x());
 | 
						|
  double C = A * ln1.x()  + B * ln1.y();
 | 
						|
  C = A * pt.x() + B * pt.y() - C;
 | 
						|
  return (C * C) / (A * A + B * B);
 | 
						|
}
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
 | 
						|
bool SlopesNearCollinear(const IntPoint& pt1, 
 | 
						|
    const IntPoint& pt2, const IntPoint& pt3, double distSqrd)
 | 
						|
{
 | 
						|
  //this function is more accurate when the point that's geometrically
 | 
						|
  //between the other 2 points is the one that's tested for distance.
 | 
						|
  //ie makes it more likely to pick up 'spikes' ...
 | 
						|
	if (std::abs(pt1.x() - pt2.x()) > std::abs(pt1.y() - pt2.y()))
 | 
						|
	{
 | 
						|
    if ((pt1.x() > pt2.x()) == (pt1.x() < pt3.x()))
 | 
						|
      return DistanceFromLineSqrd(pt1, pt2, pt3) < distSqrd;
 | 
						|
    else if ((pt2.x() > pt1.x()) == (pt2.x() < pt3.x()))
 | 
						|
      return DistanceFromLineSqrd(pt2, pt1, pt3) < distSqrd;
 | 
						|
		else
 | 
						|
	    return DistanceFromLineSqrd(pt3, pt1, pt2) < distSqrd;
 | 
						|
	}
 | 
						|
	else
 | 
						|
	{
 | 
						|
    if ((pt1.y() > pt2.y()) == (pt1.y() < pt3.y()))
 | 
						|
      return DistanceFromLineSqrd(pt1, pt2, pt3) < distSqrd;
 | 
						|
    else if ((pt2.y() > pt1.y()) == (pt2.y() < pt3.y()))
 | 
						|
      return DistanceFromLineSqrd(pt2, pt1, pt3) < distSqrd;
 | 
						|
		else
 | 
						|
      return DistanceFromLineSqrd(pt3, pt1, pt2) < distSqrd;
 | 
						|
	}
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
bool PointsAreClose(IntPoint pt1, IntPoint pt2, double distSqrd)
 | 
						|
{
 | 
						|
    auto Dx = double(pt1.x() - pt2.x());
 | 
						|
    auto dy = double(pt1.y() - pt2.y());
 | 
						|
    return ((Dx * Dx) + (dy * dy) <= distSqrd);
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
OutPt* ExcludeOp(OutPt* op)
 | 
						|
{
 | 
						|
  OutPt* result = op->Prev;
 | 
						|
  result->Next = op->Next;
 | 
						|
  op->Next->Prev = result;
 | 
						|
  result->Idx = 0;
 | 
						|
  return result;
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
// Simplify a polygon using a linked list of points.
 | 
						|
void CleanPolygon(const Path& in_poly, Path& out_poly, double distance)
 | 
						|
{
 | 
						|
  //distance = proximity in units/pixels below which vertices
 | 
						|
  //will be stripped. Default ~= sqrt(2).
 | 
						|
  
 | 
						|
  size_t size = in_poly.size();
 | 
						|
  
 | 
						|
  if (size == 0) 
 | 
						|
  {
 | 
						|
    out_poly.clear();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  std::vector<OutPt> outPts(size);
 | 
						|
  for (size_t i = 0; i < size; ++i)
 | 
						|
  {
 | 
						|
    outPts[i].Pt = in_poly[i];
 | 
						|
    outPts[i].Next = &outPts[(i + 1) % size];
 | 
						|
    outPts[i].Next->Prev = &outPts[i];
 | 
						|
    outPts[i].Idx = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  double distSqrd = distance * distance;
 | 
						|
  OutPt* op = &outPts[0];
 | 
						|
  while (op->Idx == 0 && op->Next != op->Prev) 
 | 
						|
  {
 | 
						|
    if (PointsAreClose(op->Pt, op->Prev->Pt, distSqrd))
 | 
						|
    {
 | 
						|
      op = ExcludeOp(op);
 | 
						|
      size--;
 | 
						|
    } 
 | 
						|
    else if (PointsAreClose(op->Prev->Pt, op->Next->Pt, distSqrd))
 | 
						|
    {
 | 
						|
      ExcludeOp(op->Next);
 | 
						|
      op = ExcludeOp(op);
 | 
						|
      size -= 2;
 | 
						|
    }
 | 
						|
    else if (SlopesNearCollinear(op->Prev->Pt, op->Pt, op->Next->Pt, distSqrd))
 | 
						|
    {
 | 
						|
      op = ExcludeOp(op);
 | 
						|
      size--;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      op->Idx = 1;
 | 
						|
      op = op->Next;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (size < 3) size = 0;
 | 
						|
  out_poly.resize(size);
 | 
						|
  for (size_t i = 0; i < size; ++i)
 | 
						|
  {
 | 
						|
    out_poly[i] = op->Pt;
 | 
						|
    op = op->Next;
 | 
						|
  }
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void CleanPolygon(Path& poly, double distance)
 | 
						|
{
 | 
						|
  CleanPolygon(poly, poly, distance);
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void CleanPolygons(const Paths& in_polys, Paths& out_polys, double distance)
 | 
						|
{
 | 
						|
  for (Paths::size_type i = 0; i < in_polys.size(); ++i)
 | 
						|
    CleanPolygon(in_polys[i], out_polys[i], distance);
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void CleanPolygons(Paths& polys, double distance)
 | 
						|
{
 | 
						|
  CleanPolygons(polys, polys, distance);
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void Minkowski(const Path& poly, const Path& path, 
 | 
						|
  Paths& solution, bool isSum, bool isClosed)
 | 
						|
{
 | 
						|
  int delta = (isClosed ? 1 : 0);
 | 
						|
  size_t polyCnt = poly.size();
 | 
						|
  size_t pathCnt = path.size();
 | 
						|
  Paths pp;
 | 
						|
  pp.reserve(pathCnt);
 | 
						|
  if (isSum)
 | 
						|
    for (size_t i = 0; i < pathCnt; ++i)
 | 
						|
    {
 | 
						|
      Path p;
 | 
						|
      p.reserve(polyCnt);
 | 
						|
      for (size_t j = 0; j < poly.size(); ++j)
 | 
						|
        p.push_back(IntPoint2d(path[i].x() + poly[j].x(), path[i].y() + poly[j].y()));
 | 
						|
      pp.push_back(p);
 | 
						|
    }
 | 
						|
  else
 | 
						|
    for (size_t i = 0; i < pathCnt; ++i)
 | 
						|
    {
 | 
						|
      Path p;
 | 
						|
      p.reserve(polyCnt);
 | 
						|
      for (size_t j = 0; j < poly.size(); ++j)
 | 
						|
        p.push_back(IntPoint2d(path[i].x() - poly[j].x(), path[i].y() - poly[j].y()));
 | 
						|
      pp.push_back(p);
 | 
						|
    }
 | 
						|
 | 
						|
  solution.clear();
 | 
						|
  solution.reserve((pathCnt + delta) * (polyCnt + 1));
 | 
						|
  for (size_t i = 0; i < pathCnt - 1 + delta; ++i)
 | 
						|
    for (size_t j = 0; j < polyCnt; ++j)
 | 
						|
    {
 | 
						|
      Path quad;
 | 
						|
      quad.reserve(4);
 | 
						|
      quad.push_back(pp[i % pathCnt][j % polyCnt]);
 | 
						|
      quad.push_back(pp[(i + 1) % pathCnt][j % polyCnt]);
 | 
						|
      quad.push_back(pp[(i + 1) % pathCnt][(j + 1) % polyCnt]);
 | 
						|
      quad.push_back(pp[i % pathCnt][(j + 1) % polyCnt]);
 | 
						|
      if (!Orientation(quad)) ReversePath(quad);
 | 
						|
      solution.push_back(quad);
 | 
						|
    }
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void MinkowskiSum(const Path& pattern, const Path& path, Paths& solution, bool pathIsClosed)
 | 
						|
{
 | 
						|
  Minkowski(pattern, path, solution, true, pathIsClosed);
 | 
						|
  Clipper c;
 | 
						|
  c.AddPaths(solution, ptSubject, true);
 | 
						|
  c.Execute(ctUnion, solution, pftNonZero, pftNonZero);
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void TranslatePath(const Path& input, Path& output, const IntPoint& delta)
 | 
						|
{
 | 
						|
  //precondition: input != output
 | 
						|
  output.resize(input.size());
 | 
						|
  for (size_t i = 0; i < input.size(); ++i)
 | 
						|
    output[i] = IntPoint2d(input[i].x() + delta.x(), input[i].y() + delta.y());
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void MinkowskiSum(const Path& pattern, const Paths& paths, Paths& solution, bool pathIsClosed)
 | 
						|
{
 | 
						|
  Clipper c;
 | 
						|
  for (size_t i = 0; i < paths.size(); ++i)
 | 
						|
  {
 | 
						|
    Paths tmp;
 | 
						|
    Minkowski(pattern, paths[i], tmp, true, pathIsClosed);
 | 
						|
    c.AddPaths(tmp, ptSubject, true);
 | 
						|
    if (pathIsClosed)
 | 
						|
    {
 | 
						|
      Path tmp2;
 | 
						|
      TranslatePath(paths[i], tmp2, pattern[0]);
 | 
						|
      c.AddPath(tmp2, ptClip, true);
 | 
						|
    }
 | 
						|
  }
 | 
						|
    c.Execute(ctUnion, solution, pftNonZero, pftNonZero);
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void MinkowskiDiff(const Path& poly1, const Path& poly2, Paths& solution)
 | 
						|
{
 | 
						|
  Minkowski(poly1, poly2, solution, false, true);
 | 
						|
  Clipper c;
 | 
						|
  c.AddPaths(solution, ptSubject, true);
 | 
						|
  c.Execute(ctUnion, solution, pftNonZero, pftNonZero);
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
enum NodeType {ntAny, ntOpen, ntClosed};
 | 
						|
 | 
						|
void AddPolyNodeToPaths(const PolyNode& polynode, NodeType nodetype, Paths& paths)
 | 
						|
{
 | 
						|
  bool match = true;
 | 
						|
  if (nodetype == ntClosed) match = !polynode.IsOpen();
 | 
						|
  else if (nodetype == ntOpen) return;
 | 
						|
 | 
						|
  if (!polynode.Contour.empty() && match)
 | 
						|
    paths.push_back(polynode.Contour);
 | 
						|
  for (int i = 0; i < polynode.ChildCount(); ++i)
 | 
						|
    AddPolyNodeToPaths(*polynode.Childs[i], nodetype, paths);
 | 
						|
}
 | 
						|
 | 
						|
void AddPolyNodeToPaths(PolyNode&& polynode, NodeType nodetype, Paths& paths)
 | 
						|
{
 | 
						|
  bool match = true;
 | 
						|
  if (nodetype == ntClosed) match = !polynode.IsOpen();
 | 
						|
  else if (nodetype == ntOpen) return;
 | 
						|
 | 
						|
  if (!polynode.Contour.empty() && match)
 | 
						|
    paths.emplace_back(std::move(polynode.Contour));
 | 
						|
  for (int i = 0; i < polynode.ChildCount(); ++i)
 | 
						|
    AddPolyNodeToPaths(std::move(*polynode.Childs[i]), nodetype, paths);
 | 
						|
}
 | 
						|
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void PolyTreeToPaths(const PolyTree& polytree, Paths& paths)
 | 
						|
{
 | 
						|
  paths.clear();
 | 
						|
  paths.reserve(polytree.Total());
 | 
						|
  AddPolyNodeToPaths(polytree, ntAny, paths);
 | 
						|
}
 | 
						|
 | 
						|
void PolyTreeToPaths(PolyTree&& polytree, Paths& paths)
 | 
						|
{
 | 
						|
  paths.clear();
 | 
						|
  paths.reserve(polytree.Total());
 | 
						|
  AddPolyNodeToPaths(std::move(polytree), ntAny, paths);
 | 
						|
}
 | 
						|
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void ClosedPathsFromPolyTree(const PolyTree& polytree, Paths& paths)
 | 
						|
{
 | 
						|
  paths.clear();
 | 
						|
  paths.reserve(polytree.Total());
 | 
						|
  AddPolyNodeToPaths(polytree, ntClosed, paths);
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
void OpenPathsFromPolyTree(PolyTree& polytree, Paths& paths)
 | 
						|
{
 | 
						|
  paths.clear();
 | 
						|
  paths.reserve(polytree.Total());
 | 
						|
  //Open paths are top level only, so ...
 | 
						|
  for (int i = 0; i < polytree.ChildCount(); ++i)
 | 
						|
    if (polytree.Childs[i]->IsOpen())
 | 
						|
      paths.push_back(polytree.Childs[i]->Contour);
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
std::ostream& operator <<(std::ostream &s, const IntPoint &p)
 | 
						|
{
 | 
						|
  s << "(" << p.x() << "," << p.y() << ")";
 | 
						|
  return s;
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
std::ostream& operator <<(std::ostream &s, const Path &p)
 | 
						|
{
 | 
						|
  if (p.empty()) return s;
 | 
						|
  Path::size_type last = p.size() -1;
 | 
						|
  for (Path::size_type i = 0; i < last; i++)
 | 
						|
    s << "(" << p[i].x() << "," << p[i].y() << "), ";
 | 
						|
  s << "(" << p[last].x() << "," << p[last].y() << ")\n";
 | 
						|
  return s;
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
std::ostream& operator <<(std::ostream &s, const Paths &p)
 | 
						|
{
 | 
						|
  for (Paths::size_type i = 0; i < p.size(); i++)
 | 
						|
    s << p[i];
 | 
						|
  s << "\n";
 | 
						|
  return s;
 | 
						|
}
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
} //ClipperLib namespace
 | 
						|
 | 
						|
#ifdef CLIPPERLIB_NAMESPACE_PREFIX
 | 
						|
} // namespace CLIPPERLIB_NAMESPACE_PREFIX
 | 
						|
#endif // CLIPPERLIB_NAMESPACE_PREFIX
 |