mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-10-31 12:41:20 -06:00 
			
		
		
		
	 8a2a9dba2f
			
		
	
	
		8a2a9dba2f
		
	
	
	
	
		
			
			TriangleMesh newly only holds indexed_triangle_set and
TriangleMeshStats. TriangleMeshStats contains an excerpt of stl_stats.
TriangleMeshStats are updated when initializing with indexed_triangle_set.
Admesh triangle mesh fixing is newly only used when loading an STL.
AMF / 3MF / OBJ file formats are already indexed triangle sets, thus
they are no more converted to admesh stl_file format, nor fixed
through admesh repair machinery. When importing AMF / 3MF / OBJ files,
volume is calculated and if negative, all faces are flipped. Also
a bounding box and number of open edges is calculated.
Implemented its_number_of_patches(), its_num_open_edges()
Optimized its_split(), its_is_splittable() using a visitor pattern.
Reworked QHull integration into TriangleMesh:
    1) Face normals were not right.
    2) Indexed triangle set is newly emitted instead of duplicating
       vertices for each face.
Fixed cut_mesh(): Orient the triangulated faces correctly.
		
	
			
		
			
				
	
	
		
			288 lines
		
	
	
	
		
			8.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			288 lines
		
	
	
	
		
			8.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "Exception.hpp"
 | |
| #include "MeshBoolean.hpp"
 | |
| #include "libslic3r/TriangleMesh.hpp"
 | |
| #include "libslic3r/TryCatchSignal.hpp"
 | |
| #undef PI
 | |
| 
 | |
| // Include igl first. It defines "L" macro which then clashes with our localization
 | |
| #include <igl/copyleft/cgal/mesh_boolean.h>
 | |
| #undef L
 | |
| 
 | |
| // CGAL headers
 | |
| #include <CGAL/Polygon_mesh_processing/corefinement.h>
 | |
| #include <CGAL/Exact_integer.h>
 | |
| #include <CGAL/Surface_mesh.h>
 | |
| #include <CGAL/Polygon_mesh_processing/orient_polygon_soup.h>
 | |
| #include <CGAL/Polygon_mesh_processing/repair.h>
 | |
| #include <CGAL/Polygon_mesh_processing/remesh.h>
 | |
| #include <CGAL/Polygon_mesh_processing/polygon_soup_to_polygon_mesh.h>
 | |
| #include <CGAL/Polygon_mesh_processing/orientation.h>
 | |
| #include <CGAL/Cartesian_converter.h>
 | |
| 
 | |
| namespace Slic3r {
 | |
| namespace MeshBoolean {
 | |
| 
 | |
| using MapMatrixXfUnaligned = Eigen::Map<const Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor | Eigen::DontAlign>>;
 | |
| using MapMatrixXiUnaligned = Eigen::Map<const Eigen::Matrix<int,   Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor | Eigen::DontAlign>>;
 | |
| 
 | |
| TriangleMesh eigen_to_triangle_mesh(const EigenMesh &emesh)
 | |
| {
 | |
|     auto &VC = emesh.first; auto &FC = emesh.second;
 | |
|     
 | |
|     indexed_triangle_set its;
 | |
|     its.vertices.reserve(size_t(VC.rows()));
 | |
|     its.indices.reserve(size_t(FC.rows()));
 | |
|     
 | |
|     for (Eigen::Index i = 0; i < VC.rows(); ++i)
 | |
|         its.vertices.emplace_back(VC.row(i).cast<float>());
 | |
|     
 | |
|     for (Eigen::Index i = 0; i < FC.rows(); ++i)
 | |
|         its.indices.emplace_back(FC.row(i));
 | |
|     
 | |
|     return TriangleMesh { std::move(its) };
 | |
| }
 | |
| 
 | |
| EigenMesh triangle_mesh_to_eigen(const TriangleMesh &mesh)
 | |
| {
 | |
|     EigenMesh emesh;
 | |
|     emesh.first = MapMatrixXfUnaligned(mesh.its.vertices.front().data(),
 | |
|                                        Eigen::Index(mesh.its.vertices.size()),
 | |
|                                        3).cast<double>();
 | |
| 
 | |
|     emesh.second = MapMatrixXiUnaligned(mesh.its.indices.front().data(),
 | |
|                                         Eigen::Index(mesh.its.indices.size()),
 | |
|                                         3);
 | |
|     return emesh;
 | |
| }
 | |
| 
 | |
| void minus(EigenMesh &A, const EigenMesh &B)
 | |
| {
 | |
|     auto &[VA, FA] = A;
 | |
|     auto &[VB, FB] = B;
 | |
|     
 | |
|     Eigen::MatrixXd VC;
 | |
|     Eigen::MatrixXi FC;
 | |
|     igl::MeshBooleanType boolean_type(igl::MESH_BOOLEAN_TYPE_MINUS);
 | |
|     igl::copyleft::cgal::mesh_boolean(VA, FA, VB, FB, boolean_type, VC, FC);
 | |
|     
 | |
|     VA = std::move(VC); FA = std::move(FC);
 | |
| }
 | |
| 
 | |
| void minus(TriangleMesh& A, const TriangleMesh& B)
 | |
| {
 | |
|     EigenMesh eA = triangle_mesh_to_eigen(A);
 | |
|     minus(eA, triangle_mesh_to_eigen(B));
 | |
|     A = eigen_to_triangle_mesh(eA);
 | |
| }
 | |
| 
 | |
| void self_union(EigenMesh &A)
 | |
| {
 | |
|     EigenMesh result;
 | |
|     auto &[V, F] = A;
 | |
|     auto &[VC, FC] = result;
 | |
| 
 | |
|     igl::MeshBooleanType boolean_type(igl::MESH_BOOLEAN_TYPE_UNION);
 | |
|     igl::copyleft::cgal::mesh_boolean(V, F, Eigen::MatrixXd(), Eigen::MatrixXi(), boolean_type, VC, FC);
 | |
|     
 | |
|     A = std::move(result);
 | |
| }
 | |
| 
 | |
| void self_union(TriangleMesh& mesh)
 | |
| {
 | |
|     auto eM = triangle_mesh_to_eigen(mesh);
 | |
|     self_union(eM);
 | |
|     mesh = eigen_to_triangle_mesh(eM);
 | |
| }
 | |
| 
 | |
| namespace cgal {
 | |
| 
 | |
| namespace CGALProc    = CGAL::Polygon_mesh_processing;
 | |
| namespace CGALParams  = CGAL::Polygon_mesh_processing::parameters;
 | |
| 
 | |
| using EpecKernel = CGAL::Exact_predicates_exact_constructions_kernel;
 | |
| using EpicKernel = CGAL::Exact_predicates_inexact_constructions_kernel;
 | |
| using _EpicMesh = CGAL::Surface_mesh<EpicKernel::Point_3>;
 | |
| using _EpecMesh = CGAL::Surface_mesh<EpecKernel::Point_3>;
 | |
| 
 | |
| struct CGALMesh { _EpicMesh m; };
 | |
| 
 | |
| // /////////////////////////////////////////////////////////////////////////////
 | |
| // Converions from and to CGAL mesh
 | |
| // /////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| template<class _Mesh>
 | |
| void triangle_mesh_to_cgal(const std::vector<stl_vertex> &                 V,
 | |
|                            const std::vector<stl_triangle_vertex_indices> &F,
 | |
|                            _Mesh &out)
 | |
| {
 | |
|     if (F.empty()) return;
 | |
| 
 | |
|     size_t vertices_count = V.size();
 | |
|     size_t edges_count    = (F.size()* 3) / 2;
 | |
|     size_t faces_count    = F.size();
 | |
|     out.reserve(vertices_count, edges_count, faces_count);
 | |
| 
 | |
|     for (auto &v : V)
 | |
|         out.add_vertex(typename _Mesh::Point{v.x(), v.y(), v.z()});
 | |
| 
 | |
|     using VI = typename _Mesh::Vertex_index;
 | |
|     for (auto &f : F)
 | |
|         out.add_face(VI(f(0)), VI(f(1)), VI(f(2)));
 | |
| }
 | |
| 
 | |
| inline Vec3f to_vec3f(const _EpicMesh::Point& v)
 | |
| {
 | |
|     return { float(v.x()), float(v.y()), float(v.z()) };
 | |
| }
 | |
| 
 | |
| inline Vec3f to_vec3f(const _EpecMesh::Point& v)
 | |
| {
 | |
|     CGAL::Cartesian_converter<EpecKernel, EpicKernel> cvt;
 | |
|     auto iv = cvt(v);
 | |
|     return { float(iv.x()), float(iv.y()), float(iv.z()) };
 | |
| }
 | |
| 
 | |
| template<class _Mesh> TriangleMesh cgal_to_triangle_mesh(const _Mesh &cgalmesh)
 | |
| {
 | |
|     indexed_triangle_set its;
 | |
|     its.vertices.reserve(cgalmesh.num_vertices());
 | |
|     its.indices.reserve(cgalmesh.num_faces());
 | |
|     
 | |
|     for (auto &vi : cgalmesh.vertices()) {
 | |
|         auto &v = cgalmesh.point(vi); // Don't ask...
 | |
|         its.vertices.emplace_back(to_vec3f(v));
 | |
|     }
 | |
|     
 | |
|     for (auto &face : cgalmesh.faces()) {
 | |
|         auto vtc = cgalmesh.vertices_around_face(cgalmesh.halfedge(face));
 | |
| 
 | |
|         int i = 0;
 | |
|         Vec3i facet;
 | |
|         for (auto v : vtc) {
 | |
|             if (i > 2) { i = 0; break; }
 | |
|             facet(i++) = v;
 | |
|         }
 | |
| 
 | |
|         if (i == 3)
 | |
|             its.indices.emplace_back(facet);
 | |
|     }
 | |
|     
 | |
|     return TriangleMesh(std::move(its));
 | |
| }
 | |
| 
 | |
| std::unique_ptr<CGALMesh, CGALMeshDeleter>
 | |
| triangle_mesh_to_cgal(const std::vector<stl_vertex> &V,
 | |
|                       const std::vector<stl_triangle_vertex_indices> &F)
 | |
| {
 | |
|     std::unique_ptr<CGALMesh, CGALMeshDeleter> out(new CGALMesh{});
 | |
|     triangle_mesh_to_cgal(V, F, out->m);
 | |
|     return out;
 | |
| }
 | |
| 
 | |
| TriangleMesh cgal_to_triangle_mesh(const CGALMesh &cgalmesh)
 | |
| {
 | |
|     return cgal_to_triangle_mesh(cgalmesh.m);
 | |
| }
 | |
| 
 | |
| // /////////////////////////////////////////////////////////////////////////////
 | |
| // Boolean operations for CGAL meshes
 | |
| // /////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| static bool _cgal_diff(CGALMesh &A, CGALMesh &B, CGALMesh &R)
 | |
| {
 | |
|     const auto &p = CGALParams::throw_on_self_intersection(true);
 | |
|     return CGALProc::corefine_and_compute_difference(A.m, B.m, R.m, p, p);
 | |
| }
 | |
| 
 | |
| static bool _cgal_union(CGALMesh &A, CGALMesh &B, CGALMesh &R)
 | |
| {
 | |
|     const auto &p = CGALParams::throw_on_self_intersection(true);
 | |
|     return CGALProc::corefine_and_compute_union(A.m, B.m, R.m, p, p);
 | |
| }
 | |
| 
 | |
| static bool _cgal_intersection(CGALMesh &A, CGALMesh &B, CGALMesh &R)
 | |
| {
 | |
|     const auto &p = CGALParams::throw_on_self_intersection(true);
 | |
|     return CGALProc::corefine_and_compute_intersection(A.m, B.m, R.m, p, p);
 | |
| }
 | |
| 
 | |
| template<class Op> void _cgal_do(Op &&op, CGALMesh &A, CGALMesh &B)
 | |
| {
 | |
|     bool success = false;
 | |
|     bool hw_fail = false;
 | |
|     try {
 | |
|         CGALMesh result;
 | |
|         try_catch_signal({SIGSEGV, SIGFPE}, [&success, &A, &B, &result, &op] {
 | |
|             success = op(A, B, result);
 | |
|         }, [&] { hw_fail = true; });
 | |
|         A = std::move(result);      // In-place operation does not work
 | |
|     } catch (...) {
 | |
|         success = false;
 | |
|     }
 | |
| 
 | |
|     if (hw_fail)
 | |
|         throw Slic3r::HardCrash("CGAL mesh boolean operation crashed.");
 | |
| 
 | |
|     if (! success)
 | |
|         throw Slic3r::RuntimeError("CGAL mesh boolean operation failed.");
 | |
| }
 | |
| 
 | |
| void minus(CGALMesh &A, CGALMesh &B) { _cgal_do(_cgal_diff, A, B); }
 | |
| void plus(CGALMesh &A, CGALMesh &B) { _cgal_do(_cgal_union, A, B); }
 | |
| void intersect(CGALMesh &A, CGALMesh &B) { _cgal_do(_cgal_intersection, A, B); }
 | |
| bool does_self_intersect(const CGALMesh &mesh) { return CGALProc::does_self_intersect(mesh.m); }
 | |
| 
 | |
| // /////////////////////////////////////////////////////////////////////////////
 | |
| // Now the public functions for TriangleMesh input:
 | |
| // /////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| template<class Op> void _mesh_boolean_do(Op &&op, TriangleMesh &A, const TriangleMesh &B)
 | |
| {
 | |
|     CGALMesh meshA;
 | |
|     CGALMesh meshB;
 | |
|     triangle_mesh_to_cgal(A.its.vertices, A.its.indices, meshA.m);
 | |
|     triangle_mesh_to_cgal(B.its.vertices, B.its.indices, meshB.m);
 | |
|     
 | |
|     _cgal_do(op, meshA, meshB);
 | |
|     
 | |
|     A = cgal_to_triangle_mesh(meshA.m);
 | |
| }
 | |
| 
 | |
| void minus(TriangleMesh &A, const TriangleMesh &B)
 | |
| {
 | |
|     _mesh_boolean_do(_cgal_diff, A, B);
 | |
| }
 | |
| 
 | |
| void plus(TriangleMesh &A, const TriangleMesh &B)
 | |
| {
 | |
|     _mesh_boolean_do(_cgal_union, A, B);
 | |
| }
 | |
| 
 | |
| void intersect(TriangleMesh &A, const TriangleMesh &B)
 | |
| {
 | |
|     _mesh_boolean_do(_cgal_intersection, A, B);
 | |
| }
 | |
| 
 | |
| bool does_self_intersect(const TriangleMesh &mesh)
 | |
| {
 | |
|     CGALMesh cgalm;
 | |
|     triangle_mesh_to_cgal(mesh.its.vertices, mesh.its.indices, cgalm.m);
 | |
|     return CGALProc::does_self_intersect(cgalm.m);
 | |
| }
 | |
| 
 | |
| void CGALMeshDeleter::operator()(CGALMesh *ptr) { delete ptr; }
 | |
| 
 | |
| bool does_bound_a_volume(const CGALMesh &mesh)
 | |
| {
 | |
|     return CGALProc::does_bound_a_volume(mesh.m);
 | |
| }
 | |
| 
 | |
| bool empty(const CGALMesh &mesh)
 | |
| {
 | |
|     return mesh.m.is_empty();
 | |
| }
 | |
| 
 | |
| } // namespace cgal
 | |
| 
 | |
| } // namespace MeshBoolean
 | |
| } // namespace Slic3r
 |