mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-10-30 20:21:12 -06:00 
			
		
		
		
	
		
			
				
	
	
		
			2832 lines
		
	
	
	
		
			150 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2832 lines
		
	
	
	
		
			150 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "Print.hpp"
 | |
| #include "BoundingBox.hpp"
 | |
| #include "ClipperUtils.hpp"
 | |
| #include "ElephantFootCompensation.hpp"
 | |
| #include "Geometry.hpp"
 | |
| #include "I18N.hpp"
 | |
| #include "SupportMaterial.hpp"
 | |
| #include "Surface.hpp"
 | |
| #include "Slicing.hpp"
 | |
| #include "Utils.hpp"
 | |
| 
 | |
| #include <utility>
 | |
| #include <boost/log/trivial.hpp>
 | |
| #include <float.h>
 | |
| 
 | |
| #include <tbb/parallel_for.h>
 | |
| #include <tbb/atomic.h>
 | |
| 
 | |
| #include <Shiny/Shiny.h>
 | |
| 
 | |
| //! macro used to mark string used at localization,
 | |
| //! return same string
 | |
| #define L(s) Slic3r::I18N::translate(s)
 | |
| 
 | |
| #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | |
| #define SLIC3R_DEBUG
 | |
| #endif
 | |
| 
 | |
| // #define SLIC3R_DEBUG
 | |
| 
 | |
| // Make assert active if SLIC3R_DEBUG
 | |
| #ifdef SLIC3R_DEBUG
 | |
|     #undef NDEBUG
 | |
|     #define DEBUG
 | |
|     #define _DEBUG
 | |
|     #include "SVG.hpp"
 | |
|     #undef assert 
 | |
|     #include <cassert>
 | |
| #endif
 | |
| 
 | |
| namespace Slic3r {
 | |
| 
 | |
| // Constructor is called from the main thread, therefore all Model / ModelObject / ModelIntance data are valid.
 | |
| PrintObject::PrintObject(Print* print, ModelObject* model_object, const Transform3d& trafo, PrintInstances&& instances) :
 | |
|     PrintObjectBaseWithState(print, model_object),
 | |
|     m_trafo(trafo)
 | |
| {
 | |
|     // Compute centering offet to be applied to our meshes so that we work with smaller coordinates
 | |
|     // requiring less bits to represent Clipper coordinates.
 | |
| 
 | |
| 	// Snug bounding box of a rotated and scaled object by the 1st instantion, without the instance translation applied.
 | |
| 	// All the instances share the transformation matrix with the exception of translation in XY and rotation by Z,
 | |
| 	// therefore a bounding box from 1st instance of a ModelObject is good enough for calculating the object center,
 | |
| 	// snug height and an approximate bounding box in XY.
 | |
|     BoundingBoxf3  bbox        = model_object->raw_bounding_box();
 | |
|     Vec3d 		   bbox_center = bbox.center();
 | |
| 	// We may need to rotate the bbox / bbox_center from the original instance to the current instance.
 | |
| 	double z_diff = Geometry::rotation_diff_z(model_object->instances.front()->get_rotation(), instances.front().model_instance->get_rotation());
 | |
| 	if (std::abs(z_diff) > EPSILON) {
 | |
| 		auto z_rot  = Eigen::AngleAxisd(z_diff, Vec3d::UnitZ());
 | |
| 		bbox 		= bbox.transformed(Transform3d(z_rot));
 | |
| 		bbox_center = (z_rot * bbox_center).eval();
 | |
| 	}
 | |
| 
 | |
|     // Center of the transformed mesh (without translation).
 | |
|     m_center_offset = Point::new_scale(bbox_center.x(), bbox_center.y());
 | |
|     // Size of the transformed mesh. This bounding may not be snug in XY plane, but it is snug in Z.
 | |
|     m_size = (bbox.size() * (1. / SCALING_FACTOR)).cast<coord_t>();
 | |
| 
 | |
|     this->set_instances(std::move(instances));
 | |
| }
 | |
| 
 | |
| PrintBase::ApplyStatus PrintObject::set_instances(PrintInstances &&instances)
 | |
| {
 | |
|     for (PrintInstance &i : instances)
 | |
|     	// Add the center offset, which will be subtracted from the mesh when slicing.
 | |
|     	i.shift += m_center_offset;
 | |
|     // Invalidate and set copies.
 | |
|     PrintBase::ApplyStatus status = PrintBase::APPLY_STATUS_UNCHANGED;
 | |
|     bool equal_length = instances.size() == m_instances.size();
 | |
|     bool equal = equal_length && std::equal(instances.begin(), instances.end(), m_instances.begin(), 
 | |
|     	[](const PrintInstance& lhs, const PrintInstance& rhs) { return lhs.model_instance == rhs.model_instance && lhs.shift == rhs.shift; });
 | |
|     if (! equal) {
 | |
|         status = PrintBase::APPLY_STATUS_CHANGED;
 | |
|         if (m_print->invalidate_steps({ psSkirt, psBrim, psGCodeExport }) ||
 | |
|             (! equal_length && m_print->invalidate_step(psWipeTower)))
 | |
|             status = PrintBase::APPLY_STATUS_INVALIDATED;
 | |
|         m_instances = std::move(instances);
 | |
| 	    for (PrintInstance &i : m_instances)
 | |
| 	    	i.print_object = this;
 | |
|     }
 | |
|     return status;
 | |
| }
 | |
| 
 | |
| // 1) Decides Z positions of the layers,
 | |
| // 2) Initializes layers and their regions
 | |
| // 3) Slices the object meshes
 | |
| // 4) Slices the modifier meshes and reclassifies the slices of the object meshes by the slices of the modifier meshes
 | |
| // 5) Applies size compensation (offsets the slices in XY plane)
 | |
| // 6) Replaces bad slices by the slices reconstructed from the upper/lower layer
 | |
| // Resulting expolygons of layer regions are marked as Internal.
 | |
| //
 | |
| // this should be idempotent
 | |
| void PrintObject::slice()
 | |
| {
 | |
|     if (! this->set_started(posSlice))
 | |
|         return;
 | |
|     m_print->set_status(10, L("Processing triangulated mesh"));
 | |
|     std::vector<coordf_t> layer_height_profile;
 | |
|     this->update_layer_height_profile(*this->model_object(), m_slicing_params, layer_height_profile);
 | |
|     m_print->throw_if_canceled();
 | |
|     this->_slice(layer_height_profile);
 | |
|     m_print->throw_if_canceled();
 | |
|     // Fix the model.
 | |
|     //FIXME is this the right place to do? It is done repeateadly at the UI and now here at the backend.
 | |
|     std::string warning = this->_fix_slicing_errors();
 | |
|     m_print->throw_if_canceled();
 | |
|     if (! warning.empty())
 | |
|         BOOST_LOG_TRIVIAL(info) << warning;
 | |
|     // Simplify slices if required.
 | |
|     if (m_print->config().resolution)
 | |
|         this->simplify_slices(scale_(this->print()->config().resolution));
 | |
|     // Update bounding boxes
 | |
|     tbb::parallel_for(
 | |
|         tbb::blocked_range<size_t>(0, m_layers.size()),
 | |
|         [this](const tbb::blocked_range<size_t>& range) {
 | |
|             for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
 | |
|                 m_print->throw_if_canceled();
 | |
|                 Layer &layer = *m_layers[layer_idx];
 | |
|                 layer.lslices_bboxes.clear();
 | |
|                 layer.lslices_bboxes.reserve(layer.lslices.size());
 | |
|                 for (const ExPolygon &expoly : layer.lslices)
 | |
|                 	layer.lslices_bboxes.emplace_back(get_extents(expoly));
 | |
|             }
 | |
|         });
 | |
|     if (m_layers.empty())
 | |
|         throw std::runtime_error("No layers were detected. You might want to repair your STL file(s) or check their size or thickness and retry.\n");    
 | |
|     this->set_done(posSlice);
 | |
| }
 | |
| 
 | |
| // 1) Merges typed region slices into stInternal type.
 | |
| // 2) Increases an "extra perimeters" counter at region slices where needed.
 | |
| // 3) Generates perimeters, gap fills and fill regions (fill regions of type stInternal).
 | |
| void PrintObject::make_perimeters()
 | |
| {
 | |
|     // prerequisites
 | |
|     this->slice();
 | |
| 
 | |
|     if (! this->set_started(posPerimeters))
 | |
|         return;
 | |
| 
 | |
|     m_print->set_status(20, L("Generating perimeters"));
 | |
|     BOOST_LOG_TRIVIAL(info) << "Generating perimeters..." << log_memory_info();
 | |
|     
 | |
|     // merge slices if they were split into types
 | |
|     if (m_typed_slices) {
 | |
|         for (Layer *layer : m_layers) {
 | |
|             layer->merge_slices();
 | |
|             m_print->throw_if_canceled();
 | |
|         }
 | |
|         m_typed_slices = false;
 | |
|     }
 | |
|     
 | |
|     // compare each layer to the one below, and mark those slices needing
 | |
|     // one additional inner perimeter, like the top of domed objects-
 | |
|     
 | |
|     // this algorithm makes sure that at least one perimeter is overlapping
 | |
|     // but we don't generate any extra perimeter if fill density is zero, as they would be floating
 | |
|     // inside the object - infill_only_where_needed should be the method of choice for printing
 | |
|     // hollow objects
 | |
|     for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
 | |
|         const PrintRegion ®ion = *m_print->regions()[region_id];
 | |
|         if (! region.config().extra_perimeters || region.config().perimeters == 0 || region.config().fill_density == 0 || this->layer_count() < 2)
 | |
|             continue;
 | |
| 
 | |
|         BOOST_LOG_TRIVIAL(debug) << "Generating extra perimeters for region " << region_id << " in parallel - start";
 | |
|         tbb::parallel_for(
 | |
|             tbb::blocked_range<size_t>(0, m_layers.size() - 1),
 | |
|             [this, ®ion, region_id](const tbb::blocked_range<size_t>& range) {
 | |
|                 for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
 | |
|                     m_print->throw_if_canceled();
 | |
|                     LayerRegion &layerm                     = *m_layers[layer_idx]->m_regions[region_id];
 | |
|                     const LayerRegion &upper_layerm         = *m_layers[layer_idx+1]->m_regions[region_id];
 | |
|                     const Polygons upper_layerm_polygons    = upper_layerm.slices;
 | |
|                     // Filter upper layer polygons in intersection_ppl by their bounding boxes?
 | |
|                     // my $upper_layerm_poly_bboxes= [ map $_->bounding_box, @{$upper_layerm_polygons} ];
 | |
|                     const double total_loop_length      = total_length(upper_layerm_polygons);
 | |
|                     const coord_t perimeter_spacing     = layerm.flow(frPerimeter).scaled_spacing();
 | |
|                     const Flow ext_perimeter_flow       = layerm.flow(frExternalPerimeter);
 | |
|                     const coord_t ext_perimeter_width   = ext_perimeter_flow.scaled_width();
 | |
|                     const coord_t ext_perimeter_spacing = ext_perimeter_flow.scaled_spacing();
 | |
| 
 | |
|                     for (Surface &slice : layerm.slices.surfaces) {
 | |
|                         for (;;) {
 | |
|                             // compute the total thickness of perimeters
 | |
|                             const coord_t perimeters_thickness = ext_perimeter_width/2 + ext_perimeter_spacing/2
 | |
|                                 + (region.config().perimeters-1 + slice.extra_perimeters) * perimeter_spacing;
 | |
|                             // define a critical area where we don't want the upper slice to fall into
 | |
|                             // (it should either lay over our perimeters or outside this area)
 | |
|                             const coord_t critical_area_depth = coord_t(perimeter_spacing * 1.5);
 | |
|                             const Polygons critical_area = diff(
 | |
|                                 offset(slice.expolygon, float(- perimeters_thickness)),
 | |
|                                 offset(slice.expolygon, float(- perimeters_thickness - critical_area_depth))
 | |
|                             );
 | |
|                             // check whether a portion of the upper slices falls inside the critical area
 | |
|                             const Polylines intersection = intersection_pl(to_polylines(upper_layerm_polygons), critical_area);
 | |
|                             // only add an additional loop if at least 30% of the slice loop would benefit from it
 | |
|                             if (total_length(intersection) <=  total_loop_length*0.3)
 | |
|                                 break;
 | |
|                             /*
 | |
|                             if (0) {
 | |
|                                 require "Slic3r/SVG.pm";
 | |
|                                 Slic3r::SVG::output(
 | |
|                                     "extra.svg",
 | |
|                                     no_arrows   => 1,
 | |
|                                     expolygons  => union_ex($critical_area),
 | |
|                                     polylines   => [ map $_->split_at_first_point, map $_->p, @{$upper_layerm->slices} ],
 | |
|                                 );
 | |
|                             }
 | |
|                             */
 | |
|                             ++ slice.extra_perimeters;
 | |
|                         }
 | |
|                         #ifdef DEBUG
 | |
|                             if (slice.extra_perimeters > 0)
 | |
|                                 printf("  adding %d more perimeter(s) at layer %zu\n", slice.extra_perimeters, layer_idx);
 | |
|                         #endif
 | |
|                     }
 | |
|                 }
 | |
|             });
 | |
|         m_print->throw_if_canceled();
 | |
|         BOOST_LOG_TRIVIAL(debug) << "Generating extra perimeters for region " << region_id << " in parallel - end";
 | |
|     }
 | |
| 
 | |
|     BOOST_LOG_TRIVIAL(debug) << "Generating perimeters in parallel - start";
 | |
|     tbb::parallel_for(
 | |
|         tbb::blocked_range<size_t>(0, m_layers.size()),
 | |
|         [this](const tbb::blocked_range<size_t>& range) {
 | |
|             for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
 | |
|                 m_print->throw_if_canceled();
 | |
|                 m_layers[layer_idx]->make_perimeters();
 | |
|             }
 | |
|         }
 | |
|     );
 | |
|     m_print->throw_if_canceled();
 | |
|     BOOST_LOG_TRIVIAL(debug) << "Generating perimeters in parallel - end";
 | |
| 
 | |
|     this->set_done(posPerimeters);
 | |
| }
 | |
| 
 | |
| void PrintObject::prepare_infill()
 | |
| {
 | |
|     if (! this->set_started(posPrepareInfill))
 | |
|         return;
 | |
| 
 | |
|     m_print->set_status(30, L("Preparing infill"));
 | |
| 
 | |
|     // This will assign a type (top/bottom/internal) to $layerm->slices.
 | |
|     // Then the classifcation of $layerm->slices is transfered onto 
 | |
|     // the $layerm->fill_surfaces by clipping $layerm->fill_surfaces
 | |
|     // by the cummulative area of the previous $layerm->fill_surfaces.
 | |
|     this->detect_surfaces_type();
 | |
|     m_print->throw_if_canceled();
 | |
|     
 | |
|     // Decide what surfaces are to be filled.
 | |
|     // Here the stTop / stBottomBridge / stBottom infill is turned to just stInternal if zero top / bottom infill layers are configured.
 | |
|     // Also tiny stInternal surfaces are turned to stInternalSolid.
 | |
|     BOOST_LOG_TRIVIAL(info) << "Preparing fill surfaces..." << log_memory_info();
 | |
|     for (auto *layer : m_layers)
 | |
|         for (auto *region : layer->m_regions) {
 | |
|             region->prepare_fill_surfaces();
 | |
|             m_print->throw_if_canceled();
 | |
|         }
 | |
| 
 | |
|     // this will detect bridges and reverse bridges
 | |
|     // and rearrange top/bottom/internal surfaces
 | |
|     // It produces enlarged overlapping bridging areas.
 | |
|     //
 | |
|     // 1) stBottomBridge / stBottom infill is grown by 3mm and clipped by the total infill area. Bridges are detected. The areas may overlap.
 | |
|     // 2) stTop is grown by 3mm and clipped by the grown bottom areas. The areas may overlap.
 | |
|     // 3) Clip the internal surfaces by the grown top/bottom surfaces.
 | |
|     // 4) Merge surfaces with the same style. This will mostly get rid of the overlaps.
 | |
|     //FIXME This does not likely merge surfaces, which are supported by a material with different colors, but same properties.
 | |
|     this->process_external_surfaces();
 | |
|     m_print->throw_if_canceled();
 | |
| 
 | |
|     // Add solid fills to ensure the shell vertical thickness.
 | |
|     this->discover_vertical_shells();
 | |
|     m_print->throw_if_canceled();
 | |
| 
 | |
|     // Debugging output.
 | |
| #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | |
|     for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
 | |
|         for (const Layer *layer : m_layers) {
 | |
|             LayerRegion *layerm = layer->m_regions[region_id];
 | |
|             layerm->export_region_slices_to_svg_debug("6_discover_vertical_shells-final");
 | |
|             layerm->export_region_fill_surfaces_to_svg_debug("6_discover_vertical_shells-final");
 | |
|         } // for each layer
 | |
|     } // for each region
 | |
| #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | |
| 
 | |
|     // Detect, which fill surfaces are near external layers.
 | |
|     // They will be split in internal and internal-solid surfaces.
 | |
|     // The purpose is to add a configurable number of solid layers to support the TOP surfaces
 | |
|     // and to add a configurable number of solid layers above the BOTTOM / BOTTOMBRIDGE surfaces
 | |
|     // to close these surfaces reliably.
 | |
|     //FIXME Vojtech: Is this a good place to add supporting infills below sloping perimeters?
 | |
|     this->discover_horizontal_shells();
 | |
|     m_print->throw_if_canceled();
 | |
| 
 | |
| #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | |
|     for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
 | |
|         for (const Layer *layer : m_layers) {
 | |
|             LayerRegion *layerm = layer->m_regions[region_id];
 | |
|             layerm->export_region_slices_to_svg_debug("7_discover_horizontal_shells-final");
 | |
|             layerm->export_region_fill_surfaces_to_svg_debug("7_discover_horizontal_shells-final");
 | |
|         } // for each layer
 | |
|     } // for each region
 | |
| #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | |
| 
 | |
|     // Only active if config->infill_only_where_needed. This step trims the sparse infill,
 | |
|     // so it acts as an internal support. It maintains all other infill types intact.
 | |
|     // Here the internal surfaces and perimeters have to be supported by the sparse infill.
 | |
|     //FIXME The surfaces are supported by a sparse infill, but the sparse infill is only as large as the area to support.
 | |
|     // Likely the sparse infill will not be anchored correctly, so it will not work as intended.
 | |
|     // Also one wishes the perimeters to be supported by a full infill.
 | |
|     this->clip_fill_surfaces();
 | |
|     m_print->throw_if_canceled();
 | |
| 
 | |
| #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | |
|     for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
 | |
|         for (const Layer *layer : m_layers) {
 | |
|             LayerRegion *layerm = layer->m_regions[region_id];
 | |
|             layerm->export_region_slices_to_svg_debug("8_clip_surfaces-final");
 | |
|             layerm->export_region_fill_surfaces_to_svg_debug("8_clip_surfaces-final");
 | |
|         } // for each layer
 | |
|     } // for each region
 | |
| #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | |
|     
 | |
|     // the following step needs to be done before combination because it may need
 | |
|     // to remove only half of the combined infill
 | |
|     this->bridge_over_infill();
 | |
|     m_print->throw_if_canceled();
 | |
| 
 | |
|     // combine fill surfaces to honor the "infill every N layers" option
 | |
|     this->combine_infill();
 | |
|     m_print->throw_if_canceled();
 | |
| 
 | |
| #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | |
|     for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
 | |
|         for (const Layer *layer : m_layers) {
 | |
|             LayerRegion *layerm = layer->m_regions[region_id];
 | |
|             layerm->export_region_slices_to_svg_debug("9_prepare_infill-final");
 | |
|             layerm->export_region_fill_surfaces_to_svg_debug("9_prepare_infill-final");
 | |
|         } // for each layer
 | |
|     } // for each region
 | |
|     for (const Layer *layer : m_layers) {
 | |
|         layer->export_region_slices_to_svg_debug("9_prepare_infill-final");
 | |
|         layer->export_region_fill_surfaces_to_svg_debug("9_prepare_infill-final");
 | |
|     } // for each layer
 | |
| #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | |
| 
 | |
|     this->set_done(posPrepareInfill);
 | |
| }
 | |
| 
 | |
| void PrintObject::infill()
 | |
| {
 | |
|     // prerequisites
 | |
|     this->prepare_infill();
 | |
| 
 | |
|     if (this->set_started(posInfill)) {
 | |
|         BOOST_LOG_TRIVIAL(debug) << "Filling layers in parallel - start";
 | |
|         tbb::parallel_for(
 | |
|             tbb::blocked_range<size_t>(0, m_layers.size()),
 | |
|             [this](const tbb::blocked_range<size_t>& range) {
 | |
|                 for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
 | |
|                     m_print->throw_if_canceled();
 | |
|                     m_layers[layer_idx]->make_fills();
 | |
|                 }
 | |
|             }
 | |
|         );
 | |
|         m_print->throw_if_canceled();
 | |
|         BOOST_LOG_TRIVIAL(debug) << "Filling layers in parallel - end";
 | |
|         /*  we could free memory now, but this would make this step not idempotent
 | |
|         ### $_->fill_surfaces->clear for map @{$_->regions}, @{$object->layers};
 | |
|         */
 | |
|         this->set_done(posInfill);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void PrintObject::ironing()
 | |
| {
 | |
|     if (this->set_started(posIroning)) {
 | |
|         BOOST_LOG_TRIVIAL(debug) << "Ironing in parallel - start";
 | |
|         tbb::parallel_for(
 | |
|             tbb::blocked_range<size_t>(1, m_layers.size()),
 | |
|             [this](const tbb::blocked_range<size_t>& range) {
 | |
|                 for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
 | |
|                     m_print->throw_if_canceled();
 | |
|                     m_layers[layer_idx]->make_ironing();
 | |
|                 }
 | |
|             }
 | |
|         );
 | |
|         m_print->throw_if_canceled();
 | |
|         BOOST_LOG_TRIVIAL(debug) << "Ironing in parallel - end";
 | |
|         this->set_done(posIroning);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void PrintObject::generate_support_material()
 | |
| {
 | |
|     if (this->set_started(posSupportMaterial)) {
 | |
|         this->clear_support_layers();
 | |
|         if ((m_config.support_material || m_config.raft_layers > 0) && m_layers.size() > 1) {
 | |
|             m_print->set_status(85, L("Generating support material"));    
 | |
|             this->_generate_support_material();
 | |
|             m_print->throw_if_canceled();
 | |
|         } else {
 | |
| #if 0
 | |
|             // Printing without supports. Empty layer means some objects or object parts are levitating,
 | |
|             // therefore they cannot be printed without supports.
 | |
|             for (const Layer *layer : m_layers)
 | |
|                 if (layer->empty())
 | |
|                     throw std::runtime_error("Levitating objects cannot be printed without supports.");
 | |
| #endif
 | |
|         }
 | |
|         this->set_done(posSupportMaterial);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void PrintObject::clear_layers()
 | |
| {
 | |
|     for (Layer *l : m_layers)
 | |
|         delete l;
 | |
|     m_layers.clear();
 | |
| }
 | |
| 
 | |
| Layer* PrintObject::add_layer(int id, coordf_t height, coordf_t print_z, coordf_t slice_z)
 | |
| {
 | |
|     m_layers.emplace_back(new Layer(id, this, height, print_z, slice_z));
 | |
|     return m_layers.back();
 | |
| }
 | |
| 
 | |
| void PrintObject::clear_support_layers()
 | |
| {
 | |
|     for (Layer *l : m_support_layers)
 | |
|         delete l;
 | |
|     m_support_layers.clear();
 | |
| }
 | |
| 
 | |
| SupportLayer* PrintObject::add_support_layer(int id, coordf_t height, coordf_t print_z)
 | |
| {
 | |
|     m_support_layers.emplace_back(new SupportLayer(id, this, height, print_z, -1));
 | |
|     return m_support_layers.back();
 | |
| }
 | |
| 
 | |
| SupportLayerPtrs::const_iterator PrintObject::insert_support_layer(SupportLayerPtrs::const_iterator pos, size_t id, coordf_t height, coordf_t print_z, coordf_t slice_z)
 | |
| {
 | |
|     return m_support_layers.insert(pos, new SupportLayer(id, this, height, print_z, slice_z));
 | |
| }
 | |
| 
 | |
| // Called by Print::apply().
 | |
| // This method only accepts PrintObjectConfig and PrintRegionConfig option keys.
 | |
| bool PrintObject::invalidate_state_by_config_options(const std::vector<t_config_option_key> &opt_keys)
 | |
| {
 | |
|     if (opt_keys.empty())
 | |
|         return false;
 | |
| 
 | |
|     std::vector<PrintObjectStep> steps;
 | |
|     bool invalidated = false;
 | |
|     for (const t_config_option_key &opt_key : opt_keys) {
 | |
|         if (   opt_key == "perimeters"
 | |
|             || opt_key == "extra_perimeters"
 | |
|             || opt_key == "gap_fill_speed"
 | |
|             || opt_key == "overhangs"
 | |
|             || opt_key == "first_layer_extrusion_width"
 | |
|             || opt_key == "perimeter_extrusion_width"
 | |
|             || opt_key == "infill_overlap"
 | |
|             || opt_key == "thin_walls"
 | |
|             || opt_key == "external_perimeters_first") {
 | |
|             steps.emplace_back(posPerimeters);
 | |
|         } else if (
 | |
|                opt_key == "layer_height"
 | |
|             || opt_key == "first_layer_height"
 | |
|             || opt_key == "raft_layers"
 | |
|             || opt_key == "slice_closing_radius") {
 | |
|             steps.emplace_back(posSlice);
 | |
| 		} else if (
 | |
|                opt_key == "clip_multipart_objects"
 | |
|             || opt_key == "elefant_foot_compensation"
 | |
|             || opt_key == "support_material_contact_distance" 
 | |
|             || opt_key == "xy_size_compensation") {
 | |
|             steps.emplace_back(posSlice);
 | |
|         } else if (opt_key == "support_material") {
 | |
|             steps.emplace_back(posSupportMaterial);
 | |
|             if (m_config.support_material_contact_distance == 0.) {
 | |
|             	// Enabling / disabling supports while soluble support interface is enabled.
 | |
|             	// This changes the bridging logic (bridging enabled without supports, disabled with supports).
 | |
|             	// Reset everything.
 | |
|             	// See GH #1482 for details.
 | |
| 	            steps.emplace_back(posSlice);
 | |
| 	        }
 | |
|         } else if (
 | |
|         	   opt_key == "support_material_auto"
 | |
|             || opt_key == "support_material_angle"
 | |
|             || opt_key == "support_material_buildplate_only"
 | |
|             || opt_key == "support_material_enforce_layers"
 | |
|             || opt_key == "support_material_extruder"
 | |
|             || opt_key == "support_material_extrusion_width"
 | |
|             || opt_key == "support_material_interface_layers"
 | |
|             || opt_key == "support_material_interface_contact_loops"
 | |
|             || opt_key == "support_material_interface_extruder"
 | |
|             || opt_key == "support_material_interface_spacing"
 | |
|             || opt_key == "support_material_pattern"
 | |
|             || opt_key == "support_material_xy_spacing"
 | |
|             || opt_key == "support_material_spacing"
 | |
|             || opt_key == "support_material_synchronize_layers"
 | |
|             || opt_key == "support_material_threshold"
 | |
|             || opt_key == "support_material_with_sheath"
 | |
|             || opt_key == "dont_support_bridges"
 | |
|             || opt_key == "first_layer_extrusion_width") {
 | |
|             steps.emplace_back(posSupportMaterial);
 | |
|         } else if (
 | |
|                opt_key == "interface_shells"
 | |
|             || opt_key == "infill_only_where_needed"
 | |
|             || opt_key == "infill_every_layers"
 | |
|             || opt_key == "solid_infill_every_layers"
 | |
|             || opt_key == "bottom_solid_layers"
 | |
|             || opt_key == "bottom_solid_min_thickness"
 | |
|             || opt_key == "top_solid_layers"
 | |
|             || opt_key == "top_solid_min_thickness"
 | |
|             || opt_key == "solid_infill_below_area"
 | |
|             || opt_key == "infill_extruder"
 | |
|             || opt_key == "solid_infill_extruder"
 | |
|             || opt_key == "infill_extrusion_width"
 | |
|             || opt_key == "ensure_vertical_shell_thickness"
 | |
|             || opt_key == "bridge_angle") {
 | |
|             steps.emplace_back(posPrepareInfill);
 | |
|         } else if (
 | |
|                opt_key == "top_fill_pattern"
 | |
|             || opt_key == "bottom_fill_pattern"
 | |
|             || opt_key == "external_fill_link_max_length"
 | |
|             || opt_key == "fill_angle"
 | |
|             || opt_key == "fill_pattern"
 | |
|             || opt_key == "fill_link_max_length"
 | |
|             || opt_key == "top_infill_extrusion_width"
 | |
|             || opt_key == "first_layer_extrusion_width") {
 | |
|             steps.emplace_back(posInfill);
 | |
|         } else if (
 | |
|                opt_key == "fill_density"
 | |
|             || opt_key == "solid_infill_extrusion_width") {
 | |
|             steps.emplace_back(posPerimeters);
 | |
|             steps.emplace_back(posPrepareInfill);
 | |
|         } else if (
 | |
|                opt_key == "external_perimeter_extrusion_width"
 | |
|             || opt_key == "perimeter_extruder") {
 | |
|             steps.emplace_back(posPerimeters);
 | |
|             steps.emplace_back(posSupportMaterial);
 | |
|         } else if (opt_key == "bridge_flow_ratio") {
 | |
|             if (m_config.support_material_contact_distance > 0.) {
 | |
|             	// Only invalidate due to bridging if bridging is enabled.
 | |
|             	// If later "support_material_contact_distance" is modified, the complete PrintObject is invalidated anyway.
 | |
|             	steps.emplace_back(posPerimeters);
 | |
|             	steps.emplace_back(posInfill);
 | |
| 	            steps.emplace_back(posSupportMaterial);
 | |
| 	        }
 | |
|         } else if (
 | |
|                opt_key == "seam_position"
 | |
|             || opt_key == "seam_preferred_direction"
 | |
|             || opt_key == "seam_preferred_direction_jitter"
 | |
|             || opt_key == "support_material_speed"
 | |
|             || opt_key == "support_material_interface_speed"
 | |
|             || opt_key == "bridge_speed"
 | |
|             || opt_key == "external_perimeter_speed"
 | |
|             || opt_key == "infill_speed"
 | |
|             || opt_key == "perimeter_speed"
 | |
|             || opt_key == "small_perimeter_speed"
 | |
|             || opt_key == "solid_infill_speed"
 | |
|             || opt_key == "top_solid_infill_speed") {
 | |
|             invalidated |= m_print->invalidate_step(psGCodeExport);
 | |
|         } else if (
 | |
|                opt_key == "wipe_into_infill"
 | |
|             || opt_key == "wipe_into_objects") {
 | |
|             invalidated |= m_print->invalidate_step(psWipeTower);
 | |
|             invalidated |= m_print->invalidate_step(psGCodeExport);
 | |
|         } else {
 | |
|             // for legacy, if we can't handle this option let's invalidate all steps
 | |
|             this->invalidate_all_steps();
 | |
|             invalidated = true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     sort_remove_duplicates(steps);
 | |
|     for (PrintObjectStep step : steps)
 | |
|         invalidated |= this->invalidate_step(step);
 | |
|     return invalidated;
 | |
| }
 | |
| 
 | |
| bool PrintObject::invalidate_step(PrintObjectStep step)
 | |
| {
 | |
| 	bool invalidated = Inherited::invalidate_step(step);
 | |
|     
 | |
|     // propagate to dependent steps
 | |
|     if (step == posPerimeters) {
 | |
| 		invalidated |= this->invalidate_steps({ posPrepareInfill, posInfill });
 | |
|         invalidated |= m_print->invalidate_steps({ psSkirt, psBrim });
 | |
|     } else if (step == posPrepareInfill) {
 | |
|         invalidated |= this->invalidate_step(posInfill);
 | |
|     } else if (step == posInfill) {
 | |
|         invalidated |= m_print->invalidate_steps({ psSkirt, psBrim });
 | |
|     } else if (step == posSlice) {
 | |
| 		invalidated |= this->invalidate_steps({ posPerimeters, posPrepareInfill, posInfill, posSupportMaterial });
 | |
| 		invalidated |= m_print->invalidate_steps({ psSkirt, psBrim });
 | |
|         this->m_slicing_params.valid = false;
 | |
|     } else if (step == posSupportMaterial) {
 | |
|         invalidated |= m_print->invalidate_steps({ psSkirt, psBrim });
 | |
|         this->m_slicing_params.valid = false;
 | |
|     }
 | |
| 
 | |
|     // Wipe tower depends on the ordering of extruders, which in turn depends on everything.
 | |
|     // It also decides about what the wipe_into_infill / wipe_into_object features will do,
 | |
|     // and that too depends on many of the settings.
 | |
|     invalidated |= m_print->invalidate_step(psWipeTower);
 | |
|     // Invalidate G-code export in any case.
 | |
|     invalidated |= m_print->invalidate_step(psGCodeExport);
 | |
|     return invalidated;
 | |
| }
 | |
| 
 | |
| bool PrintObject::invalidate_all_steps()
 | |
| {
 | |
| 	// First call the "invalidate" functions, which may cancel background processing.
 | |
|     bool result = Inherited::invalidate_all_steps() | m_print->invalidate_all_steps();
 | |
| 	// Then reset some of the depending values.
 | |
| 	this->m_slicing_params.valid = false;
 | |
| 	this->region_volumes.clear();
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| bool PrintObject::has_support_material() const
 | |
| {
 | |
|     return m_config.support_material
 | |
|         || m_config.raft_layers > 0
 | |
|         || m_config.support_material_enforce_layers > 0;
 | |
| }
 | |
| 
 | |
| static const PrintRegion* first_printing_region(const PrintObject &print_object)
 | |
| {
 | |
|     for (size_t idx_region = 0; idx_region < print_object.region_volumes.size(); ++ idx_region)
 | |
|     	if (!print_object.region_volumes.empty())
 | |
|     		return print_object.print()->regions()[idx_region];
 | |
|     return nullptr;
 | |
| }
 | |
| 
 | |
| // This function analyzes slices of a region (SurfaceCollection slices).
 | |
| // Each region slice (instance of Surface) is analyzed, whether it is supported or whether it is the top surface.
 | |
| // Initially all slices are of type stInternal.
 | |
| // Slices are compared against the top / bottom slices and regions and classified to the following groups:
 | |
| // stTop          - Part of a region, which is not covered by any upper layer. This surface will be filled with a top solid infill.
 | |
| // stBottomBridge - Part of a region, which is not fully supported, but it hangs in the air, or it hangs losely on a support or a raft.
 | |
| // stBottom       - Part of a region, which is not supported by the same region, but it is supported either by another region, or by a soluble interface layer.
 | |
| // stInternal     - Part of a region, which is supported by the same region type.
 | |
| // If a part of a region is of stBottom and stTop, the stBottom wins.
 | |
| void PrintObject::detect_surfaces_type()
 | |
| {
 | |
|     BOOST_LOG_TRIVIAL(info) << "Detecting solid surfaces..." << log_memory_info();
 | |
| 
 | |
|     // Interface shells: the intersecting parts are treated as self standing objects supporting each other.
 | |
|     // Each of the objects will have a full number of top / bottom layers, even if these top / bottom layers
 | |
|     // are completely hidden inside a collective body of intersecting parts.
 | |
|     // This is useful if one of the parts is to be dissolved, or if it is transparent and the internal shells
 | |
|     // should be visible.
 | |
|     bool spiral_vase      = this->print()->config().spiral_vase.value;
 | |
|     bool interface_shells = ! spiral_vase && m_config.interface_shells.value;
 | |
|     size_t num_layers     = spiral_vase ? first_printing_region(*this)->config().bottom_solid_layers : m_layers.size();
 | |
| 
 | |
|     for (size_t idx_region = 0; idx_region < this->region_volumes.size(); ++ idx_region) {
 | |
|         BOOST_LOG_TRIVIAL(debug) << "Detecting solid surfaces for region " << idx_region << " in parallel - start";
 | |
| #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | |
|         for (Layer *layer : m_layers)
 | |
|             layer->m_regions[idx_region]->export_region_fill_surfaces_to_svg_debug("1_detect_surfaces_type-initial");
 | |
| #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | |
| 
 | |
|         // If interface shells are allowed, the region->surfaces cannot be overwritten as they may be used by other threads.
 | |
|         // Cache the result of the following parallel_loop.
 | |
|         std::vector<Surfaces> surfaces_new;
 | |
|         if (interface_shells)
 | |
|             surfaces_new.assign(num_layers, Surfaces());
 | |
| 
 | |
|         tbb::parallel_for(
 | |
|             tbb::blocked_range<size_t>(0, 
 | |
|             	spiral_vase ?
 | |
|             		// In spiral vase mode, reserve the last layer for the top surface if more than 1 layer is planned for the vase bottom.
 | |
|             		((num_layers > 1) ? num_layers - 1 : num_layers) :
 | |
|             		// In non-spiral vase mode, go over all layers.
 | |
|             		m_layers.size()),
 | |
|             [this, idx_region, interface_shells, &surfaces_new](const tbb::blocked_range<size_t>& range) {
 | |
|                 // If we have raft layers, consider bottom layer as a bridge just like any other bottom surface lying on the void.
 | |
|                 SurfaceType surface_type_bottom_1st =
 | |
|                     (m_config.raft_layers.value > 0 && m_config.support_material_contact_distance.value > 0) ?
 | |
|                     stBottomBridge : stBottom;
 | |
|                 // If we have soluble support material, don't bridge. The overhang will be squished against a soluble layer separating
 | |
|                 // the support from the print.
 | |
|                 SurfaceType surface_type_bottom_other =
 | |
|                     (m_config.support_material.value && m_config.support_material_contact_distance.value == 0) ?
 | |
|                     stBottom : stBottomBridge;
 | |
|                 for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
 | |
|                     m_print->throw_if_canceled();
 | |
|                     // BOOST_LOG_TRIVIAL(trace) << "Detecting solid surfaces for region " << idx_region << " and layer " << layer->print_z;
 | |
|                     Layer       *layer  = m_layers[idx_layer];
 | |
|                     LayerRegion *layerm = layer->m_regions[idx_region];
 | |
|                     // comparison happens against the *full* slices (considering all regions)
 | |
|                     // unless internal shells are requested
 | |
|                     Layer       *upper_layer = (idx_layer + 1 < this->layer_count()) ? m_layers[idx_layer + 1] : nullptr;
 | |
|                     Layer       *lower_layer = (idx_layer > 0) ? m_layers[idx_layer - 1] : nullptr;
 | |
|                     // collapse very narrow parts (using the safety offset in the diff is not enough)
 | |
|                     float        offset = layerm->flow(frExternalPerimeter).scaled_width() / 10.f;
 | |
| 
 | |
|                     Polygons     layerm_slices_surfaces = to_polygons(layerm->slices.surfaces);
 | |
| 
 | |
|                     // find top surfaces (difference between current surfaces
 | |
|                     // of current layer and upper one)
 | |
|                     Surfaces top;
 | |
|                     if (upper_layer) {
 | |
|                         Polygons upper_slices = interface_shells ? 
 | |
|                             to_polygons(upper_layer->m_regions[idx_region]->slices.surfaces) : 
 | |
|                             to_polygons(upper_layer->lslices);
 | |
|                         surfaces_append(top,
 | |
|                             //FIXME implement offset2_ex working over ExPolygons, that should be a bit more efficient than calling offset_ex twice.
 | |
|                             offset_ex(offset_ex(diff_ex(layerm_slices_surfaces, upper_slices, true), -offset), offset),
 | |
|                             stTop);
 | |
|                     } else {
 | |
|                         // if no upper layer, all surfaces of this one are solid
 | |
|                         // we clone surfaces because we're going to clear the slices collection
 | |
|                         top = layerm->slices.surfaces;
 | |
|                         for (Surface &surface : top)
 | |
|                             surface.surface_type = stTop;
 | |
|                     }
 | |
|                     
 | |
|                     // Find bottom surfaces (difference between current surfaces of current layer and lower one).
 | |
|                     Surfaces bottom;
 | |
|                     if (lower_layer) {
 | |
| #if 0
 | |
|                         //FIXME Why is this branch failing t\multi.t ?
 | |
|                         Polygons lower_slices = interface_shells ? 
 | |
|                             to_polygons(lower_layer->get_region(idx_region)->slices.surfaces) : 
 | |
|                             to_polygons(lower_layer->slices);
 | |
|                         surfaces_append(bottom,
 | |
|                             offset2_ex(diff(layerm_slices_surfaces, lower_slices, true), -offset, offset),
 | |
|                             surface_type_bottom_other);
 | |
| #else
 | |
|                         // Any surface lying on the void is a true bottom bridge (an overhang)
 | |
|                         surfaces_append(
 | |
|                             bottom,
 | |
|                             offset2_ex(
 | |
|                                 diff(layerm_slices_surfaces, to_polygons(lower_layer->lslices), true), 
 | |
|                                 -offset, offset),
 | |
|                             surface_type_bottom_other);
 | |
|                         // if user requested internal shells, we need to identify surfaces
 | |
|                         // lying on other slices not belonging to this region
 | |
|                         if (interface_shells) {
 | |
|                             // non-bridging bottom surfaces: any part of this layer lying 
 | |
|                             // on something else, excluding those lying on our own region
 | |
|                             surfaces_append(
 | |
|                                 bottom,
 | |
|                                 offset2_ex(
 | |
|                                     diff(
 | |
|                                         intersection(layerm_slices_surfaces, to_polygons(lower_layer->lslices)), // supported
 | |
|                                         to_polygons(lower_layer->m_regions[idx_region]->slices.surfaces), 
 | |
|                                         true), 
 | |
|                                     -offset, offset),
 | |
|                                 stBottom);
 | |
|                         }
 | |
| #endif
 | |
|                     } else {
 | |
|                         // if no lower layer, all surfaces of this one are solid
 | |
|                         // we clone surfaces because we're going to clear the slices collection
 | |
|                         bottom = layerm->slices.surfaces;
 | |
|                         for (Surface &surface : bottom)
 | |
|                             surface.surface_type = surface_type_bottom_1st;
 | |
|                     }
 | |
|                     
 | |
|                     // now, if the object contained a thin membrane, we could have overlapping bottom
 | |
|                     // and top surfaces; let's do an intersection to discover them and consider them
 | |
|                     // as bottom surfaces (to allow for bridge detection)
 | |
|                     if (! top.empty() && ! bottom.empty()) {
 | |
|         //                Polygons overlapping = intersection(to_polygons(top), to_polygons(bottom));
 | |
|         //                Slic3r::debugf "  layer %d contains %d membrane(s)\n", $layerm->layer->id, scalar(@$overlapping)
 | |
|         //                    if $Slic3r::debug;
 | |
|                         Polygons top_polygons = to_polygons(std::move(top));
 | |
|                         top.clear();
 | |
|                         surfaces_append(top,
 | |
|                             diff_ex(top_polygons, to_polygons(bottom), false),
 | |
|                             stTop);
 | |
|                     }
 | |
| 
 | |
|         #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | |
|                     {
 | |
|                         static int iRun = 0;
 | |
|                         std::vector<std::pair<Slic3r::ExPolygons, SVG::ExPolygonAttributes>> expolygons_with_attributes;
 | |
|                         expolygons_with_attributes.emplace_back(std::make_pair(union_ex(top),                           SVG::ExPolygonAttributes("green")));
 | |
|                         expolygons_with_attributes.emplace_back(std::make_pair(union_ex(bottom),                        SVG::ExPolygonAttributes("brown")));
 | |
|                         expolygons_with_attributes.emplace_back(std::make_pair(to_expolygons(layerm->slices.surfaces),  SVG::ExPolygonAttributes("black")));
 | |
|                         SVG::export_expolygons(debug_out_path("1_detect_surfaces_type_%d_region%d-layer_%f.svg", iRun ++, idx_region, layer->print_z).c_str(), expolygons_with_attributes);
 | |
|                     }
 | |
|         #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | |
|                     
 | |
|                     // save surfaces to layer
 | |
|                     Surfaces &surfaces_out = interface_shells ? surfaces_new[idx_layer] : layerm->slices.surfaces;
 | |
|                     surfaces_out.clear();
 | |
| 
 | |
|                     // find internal surfaces (difference between top/bottom surfaces and others)
 | |
|                     {
 | |
|                         Polygons topbottom = to_polygons(top);
 | |
|                         polygons_append(topbottom, to_polygons(bottom));
 | |
|                         surfaces_append(surfaces_out,
 | |
|                             diff_ex(layerm_slices_surfaces, topbottom, false),
 | |
|                             stInternal);
 | |
|                     }
 | |
| 
 | |
|                     surfaces_append(surfaces_out, std::move(top));
 | |
|                     surfaces_append(surfaces_out, std::move(bottom));
 | |
|                     
 | |
|         //            Slic3r::debugf "  layer %d has %d bottom, %d top and %d internal surfaces\n",
 | |
|         //                $layerm->layer->id, scalar(@bottom), scalar(@top), scalar(@internal) if $Slic3r::debug;
 | |
| 
 | |
|         #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | |
|                     layerm->export_region_slices_to_svg_debug("detect_surfaces_type-final");
 | |
|         #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | |
|                 }
 | |
|             }
 | |
|         ); // for each layer of a region
 | |
|         m_print->throw_if_canceled();
 | |
| 
 | |
|         if (interface_shells) {
 | |
|             // Move surfaces_new to layerm->slices.surfaces
 | |
|             for (size_t idx_layer = 0; idx_layer < num_layers; ++ idx_layer)
 | |
|                 m_layers[idx_layer]->m_regions[idx_region]->slices.surfaces = std::move(surfaces_new[idx_layer]);
 | |
|         }
 | |
| 
 | |
|         if (spiral_vase) {
 | |
|         	if (num_layers > 1)
 | |
| 	        	// Turn the last bottom layer infill to a top infill, so it will be extruded with a proper pattern.
 | |
| 	        	m_layers[num_layers - 1]->m_regions[idx_region]->slices.set_type(stTop);
 | |
| 	        for (size_t i = num_layers; i < m_layers.size(); ++ i)
 | |
| 	        	m_layers[i]->m_regions[idx_region]->slices.set_type(stInternal);
 | |
|         }
 | |
| 
 | |
|         BOOST_LOG_TRIVIAL(debug) << "Detecting solid surfaces for region " << idx_region << " - clipping in parallel - start";
 | |
|         // Fill in layerm->fill_surfaces by trimming the layerm->slices by the cummulative layerm->fill_surfaces.
 | |
|         tbb::parallel_for(
 | |
|             tbb::blocked_range<size_t>(0, m_layers.size()),
 | |
|             [this, idx_region, interface_shells](const tbb::blocked_range<size_t>& range) {
 | |
|                 for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
 | |
|                     m_print->throw_if_canceled();
 | |
|                     LayerRegion *layerm = m_layers[idx_layer]->m_regions[idx_region];
 | |
|                     layerm->slices_to_fill_surfaces_clipped();
 | |
| #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | |
|                     layerm->export_region_fill_surfaces_to_svg_debug("1_detect_surfaces_type-final");
 | |
| #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | |
|                 } // for each layer of a region
 | |
|             });
 | |
|         m_print->throw_if_canceled();
 | |
|         BOOST_LOG_TRIVIAL(debug) << "Detecting solid surfaces for region " << idx_region << " - clipping in parallel - end";
 | |
|     } // for each this->print->region_count
 | |
| 
 | |
|     // Mark the object to have the region slices classified (typed, which also means they are split based on whether they are supported, bridging, top layers etc.)
 | |
|     m_typed_slices = true;
 | |
| }
 | |
| 
 | |
| void PrintObject::process_external_surfaces()
 | |
| {
 | |
|     BOOST_LOG_TRIVIAL(info) << "Processing external surfaces..." << log_memory_info();
 | |
| 
 | |
|     // Cached surfaces covered by some extrusion, defining regions, over which the from the surfaces one layer higher are allowed to expand.
 | |
|     std::vector<Polygons> surfaces_covered;
 | |
|     // Is there any printing region, that has zero infill? If so, then we don't want the expansion to be performed over the complete voids, but only
 | |
|     // over voids, which are supported by the layer below.
 | |
|     bool 				  has_voids = false;
 | |
| 	for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id)
 | |
| 		if (! this->region_volumes.empty() && this->print()->regions()[region_id]->config().fill_density == 0) {
 | |
| 			has_voids = true;
 | |
| 			break;
 | |
| 		}
 | |
| 	if (has_voids && m_layers.size() > 1) {
 | |
| 	    // All but stInternal fill surfaces will get expanded and possibly trimmed.
 | |
| 	    std::vector<unsigned char> layer_expansions_and_voids(m_layers.size(), false);
 | |
| 	    for (size_t layer_idx = 0; layer_idx < m_layers.size(); ++ layer_idx) {
 | |
| 	    	const Layer *layer = m_layers[layer_idx];
 | |
| 	    	bool expansions = false;
 | |
| 	    	bool voids      = false;
 | |
| 	    	for (const LayerRegion *layerm : layer->regions()) {
 | |
| 	    		for (const Surface &surface : layerm->fill_surfaces.surfaces) {
 | |
| 	    			if (surface.surface_type == stInternal)
 | |
| 	    				voids = true;
 | |
| 	    			else
 | |
| 	    				expansions = true;
 | |
| 	    			if (voids && expansions) {
 | |
| 	    				layer_expansions_and_voids[layer_idx] = true;
 | |
| 	    				goto end;
 | |
| 	    			}
 | |
| 	    		}
 | |
| 	    	}
 | |
| 		end:;
 | |
| 		}
 | |
| 	    BOOST_LOG_TRIVIAL(debug) << "Collecting surfaces covered with extrusions in parallel - start";
 | |
| 	    surfaces_covered.resize(m_layers.size() - 1, Polygons());
 | |
|     	auto unsupported_width = - float(scale_(0.3 * EXTERNAL_INFILL_MARGIN));
 | |
| 	    tbb::parallel_for(
 | |
| 	        tbb::blocked_range<size_t>(0, m_layers.size() - 1),
 | |
| 	        [this, &surfaces_covered, &layer_expansions_and_voids, unsupported_width](const tbb::blocked_range<size_t>& range) {
 | |
| 	            for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx)
 | |
| 	            	if (layer_expansions_and_voids[layer_idx + 1]) {
 | |
| 		                m_print->throw_if_canceled();
 | |
| 		                Polygons voids;
 | |
| 		                for (const LayerRegion *layerm : m_layers[layer_idx]->regions()) {
 | |
| 		                	if (layerm->region()->config().fill_density.value == 0.)
 | |
| 		                		for (const Surface &surface : layerm->fill_surfaces.surfaces)
 | |
| 		                			// Shrink the holes, let the layer above expand slightly inside the unsupported areas.
 | |
| 		                			polygons_append(voids, offset(surface.expolygon, unsupported_width));
 | |
| 		                }
 | |
| 		                surfaces_covered[layer_idx] = diff(to_polygons(this->m_layers[layer_idx]->lslices), voids);
 | |
| 	            	}
 | |
| 	        }
 | |
| 	    );
 | |
| 	    m_print->throw_if_canceled();
 | |
| 	    BOOST_LOG_TRIVIAL(debug) << "Collecting surfaces covered with extrusions in parallel - end";
 | |
| 	}
 | |
| 
 | |
| 	for (size_t region_id = 0; region_id < this->region_volumes.size(); ++region_id) {
 | |
|         BOOST_LOG_TRIVIAL(debug) << "Processing external surfaces for region " << region_id << " in parallel - start";
 | |
|         tbb::parallel_for(
 | |
|             tbb::blocked_range<size_t>(0, m_layers.size()),
 | |
|             [this, &surfaces_covered, region_id](const tbb::blocked_range<size_t>& range) {
 | |
|                 for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
 | |
|                     m_print->throw_if_canceled();
 | |
|                     // BOOST_LOG_TRIVIAL(trace) << "Processing external surface, layer" << m_layers[layer_idx]->print_z;
 | |
|                     m_layers[layer_idx]->get_region((int)region_id)->process_external_surfaces(
 | |
|                     	(layer_idx == 0) ? nullptr : m_layers[layer_idx - 1],
 | |
|                     	(layer_idx == 0 || surfaces_covered.empty() || surfaces_covered[layer_idx - 1].empty()) ? nullptr : &surfaces_covered[layer_idx - 1]);
 | |
|                 }
 | |
|             }
 | |
|         );
 | |
|         m_print->throw_if_canceled();
 | |
|         BOOST_LOG_TRIVIAL(debug) << "Processing external surfaces for region " << region_id << " in parallel - end";
 | |
|     }
 | |
| }
 | |
| 
 | |
| void PrintObject::discover_vertical_shells()
 | |
| {
 | |
|     PROFILE_FUNC();
 | |
| 
 | |
|     BOOST_LOG_TRIVIAL(info) << "Discovering vertical shells..." << log_memory_info();
 | |
| 
 | |
|     struct DiscoverVerticalShellsCacheEntry
 | |
|     {
 | |
|         // Collected polygons, offsetted
 | |
|         Polygons    top_surfaces;
 | |
|         Polygons    bottom_surfaces;
 | |
|         Polygons    holes;
 | |
|     };
 | |
|     bool     spiral_vase      = this->print()->config().spiral_vase.value;
 | |
|     size_t   num_layers       = spiral_vase ? first_printing_region(*this)->config().bottom_solid_layers : m_layers.size();
 | |
|     coordf_t min_layer_height = this->slicing_parameters().min_layer_height;
 | |
|     // Does this region possibly produce more than 1 top or bottom layer?
 | |
|     auto has_extra_layers_fn = [min_layer_height](const PrintRegionConfig &config) {
 | |
| 	    auto num_extra_layers = [min_layer_height](int num_solid_layers, coordf_t min_shell_thickness) {
 | |
| 	    	if (num_solid_layers == 0)
 | |
| 	    		return 0;
 | |
| 	    	int n = num_solid_layers - 1;
 | |
| 	    	int n2 = int(ceil(min_shell_thickness / min_layer_height));
 | |
| 	    	return std::max(n, n2 - 1);
 | |
| 	    };
 | |
|     	return num_extra_layers(config.top_solid_layers, config.top_solid_min_thickness) +
 | |
| 	    	   num_extra_layers(config.bottom_solid_layers, config.bottom_solid_min_thickness) > 0;
 | |
|     };
 | |
|     std::vector<DiscoverVerticalShellsCacheEntry> cache_top_botom_regions(num_layers, DiscoverVerticalShellsCacheEntry());
 | |
|     bool top_bottom_surfaces_all_regions = this->region_volumes.size() > 1 && ! m_config.interface_shells.value;
 | |
|     if (top_bottom_surfaces_all_regions) {
 | |
|         // This is a multi-material print and interface_shells are disabled, meaning that the vertical shell thickness
 | |
|         // is calculated over all materials.
 | |
|         // Is the "ensure vertical wall thickness" applicable to any region?
 | |
|         bool has_extra_layers = false;
 | |
|         for (size_t idx_region = 0; idx_region < this->region_volumes.size(); ++idx_region) {
 | |
|             const PrintRegionConfig &config = m_print->get_region(idx_region)->config();
 | |
|             if (config.ensure_vertical_shell_thickness.value && has_extra_layers_fn(config)) {
 | |
|                 has_extra_layers = true;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         if (! has_extra_layers)
 | |
|             // The "ensure vertical wall thickness" feature is not applicable to any of the regions. Quit.
 | |
|             return;
 | |
|         BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells in parallel - start : cache top / bottom";
 | |
|         //FIXME Improve the heuristics for a grain size.
 | |
|         size_t grain_size = std::max(num_layers / 16, size_t(1));
 | |
|         tbb::parallel_for(
 | |
|             tbb::blocked_range<size_t>(0, num_layers, grain_size),
 | |
|             [this, &cache_top_botom_regions](const tbb::blocked_range<size_t>& range) {
 | |
|                 const SurfaceType surfaces_bottom[2] = { stBottom, stBottomBridge };
 | |
|                 const size_t num_regions = this->region_volumes.size();
 | |
|                 for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
 | |
|                     m_print->throw_if_canceled();
 | |
|                     const Layer                      &layer = *m_layers[idx_layer];
 | |
|                     DiscoverVerticalShellsCacheEntry &cache = cache_top_botom_regions[idx_layer];
 | |
|                     // Simulate single set of perimeters over all merged regions.
 | |
|                     float                             perimeter_offset = 0.f;
 | |
|                     float                             perimeter_min_spacing = FLT_MAX;
 | |
| #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | |
|                     static size_t debug_idx = 0;
 | |
|                     ++ debug_idx;
 | |
| #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | |
|                     for (size_t idx_region = 0; idx_region < num_regions; ++ idx_region) {
 | |
|                         LayerRegion &layerm                       = *layer.m_regions[idx_region];
 | |
|                         float        min_perimeter_infill_spacing = float(layerm.flow(frSolidInfill).scaled_spacing()) * 1.05f;
 | |
|                         // Top surfaces.
 | |
|                         append(cache.top_surfaces, offset(to_expolygons(layerm.slices.filter_by_type(stTop)), min_perimeter_infill_spacing));
 | |
|                         append(cache.top_surfaces, offset(to_expolygons(layerm.fill_surfaces.filter_by_type(stTop)), min_perimeter_infill_spacing));
 | |
|                         // Bottom surfaces.
 | |
|                         append(cache.bottom_surfaces, offset(to_expolygons(layerm.slices.filter_by_types(surfaces_bottom, 2)), min_perimeter_infill_spacing));
 | |
|                         append(cache.bottom_surfaces, offset(to_expolygons(layerm.fill_surfaces.filter_by_types(surfaces_bottom, 2)), min_perimeter_infill_spacing));
 | |
|                         // Calculate the maximum perimeter offset as if the slice was extruded with a single extruder only.
 | |
|                         // First find the maxium number of perimeters per region slice.
 | |
|                         unsigned int perimeters = 0;
 | |
|                         for (Surface &s : layerm.slices.surfaces)
 | |
|                             perimeters = std::max<unsigned int>(perimeters, s.extra_perimeters);
 | |
|                         perimeters += layerm.region()->config().perimeters.value;
 | |
|                         // Then calculate the infill offset.
 | |
|                         if (perimeters > 0) {
 | |
|                             Flow extflow = layerm.flow(frExternalPerimeter);
 | |
|                             Flow flow    = layerm.flow(frPerimeter);
 | |
|                             perimeter_offset = std::max(perimeter_offset,
 | |
|                                 0.5f * float(extflow.scaled_width() + extflow.scaled_spacing()) + (float(perimeters) - 1.f) * flow.scaled_spacing());
 | |
|                             perimeter_min_spacing = std::min(perimeter_min_spacing, float(std::min(extflow.scaled_spacing(), flow.scaled_spacing())));
 | |
|                         }
 | |
|                         polygons_append(cache.holes, to_polygons(layerm.fill_expolygons));
 | |
|                     }
 | |
|                     // Save some computing time by reducing the number of polygons.
 | |
|                     cache.top_surfaces    = union_(cache.top_surfaces,    false);
 | |
|                     cache.bottom_surfaces = union_(cache.bottom_surfaces, false);
 | |
|                     // For a multi-material print, simulate perimeter / infill split as if only a single extruder has been used for the whole print.
 | |
|                     if (perimeter_offset > 0.) {
 | |
|                         // The layer.lslices are forced to merge by expanding them first.
 | |
|                         polygons_append(cache.holes, offset(offset_ex(layer.lslices, 0.3f * perimeter_min_spacing), - perimeter_offset - 0.3f * perimeter_min_spacing));
 | |
| #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | |
|                         {
 | |
|                             Slic3r::SVG svg(debug_out_path("discover_vertical_shells-extra-holes-%d.svg", debug_idx), get_extents(layer.lslices));
 | |
|                             svg.draw(layer.lslices, "blue");
 | |
|                             svg.draw(union_ex(cache.holes), "red");
 | |
|                             svg.draw_outline(union_ex(cache.holes), "black", "blue", scale_(0.05));
 | |
|                             svg.Close(); 
 | |
|                         }
 | |
| #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | |
|                     }
 | |
|                     cache.holes = union_(cache.holes, false);
 | |
|                 }
 | |
|             });
 | |
|         m_print->throw_if_canceled();
 | |
|         BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells in parallel - end : cache top / bottom";
 | |
|     }
 | |
| 
 | |
|     for (size_t idx_region = 0; idx_region < this->region_volumes.size(); ++ idx_region) {
 | |
|         PROFILE_BLOCK(discover_vertical_shells_region);
 | |
| 
 | |
|         const PrintRegion ®ion = *m_print->get_region(idx_region);
 | |
|         if (! region.config().ensure_vertical_shell_thickness.value)
 | |
|             // This region will be handled by discover_horizontal_shells().
 | |
|             continue;
 | |
|         if (! has_extra_layers_fn(region.config()))
 | |
|             // Zero or 1 layer, there is no additional vertical wall thickness enforced.
 | |
|             continue;
 | |
| 
 | |
|         //FIXME Improve the heuristics for a grain size.
 | |
|         size_t grain_size = std::max(num_layers / 16, size_t(1));
 | |
| 
 | |
|         if (! top_bottom_surfaces_all_regions) {
 | |
|             // This is either a single material print, or a multi-material print and interface_shells are enabled, meaning that the vertical shell thickness
 | |
|             // is calculated over a single material.
 | |
|             BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells for region " << idx_region << " in parallel - start : cache top / bottom";
 | |
|             tbb::parallel_for(
 | |
|                 tbb::blocked_range<size_t>(0, num_layers, grain_size),
 | |
|                 [this, idx_region, &cache_top_botom_regions](const tbb::blocked_range<size_t>& range) {
 | |
|                     const SurfaceType surfaces_bottom[2] = { stBottom, stBottomBridge };
 | |
|                     for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
 | |
|                         m_print->throw_if_canceled();
 | |
|                         Layer       &layer                        = *m_layers[idx_layer];
 | |
|                         LayerRegion &layerm                       = *layer.m_regions[idx_region];
 | |
|                         float        min_perimeter_infill_spacing = float(layerm.flow(frSolidInfill).scaled_spacing()) * 1.05f;
 | |
|                         // Top surfaces.
 | |
|                         auto &cache = cache_top_botom_regions[idx_layer];
 | |
|                         cache.top_surfaces = offset(to_expolygons(layerm.slices.filter_by_type(stTop)), min_perimeter_infill_spacing);
 | |
|                         append(cache.top_surfaces, offset(to_expolygons(layerm.fill_surfaces.filter_by_type(stTop)), min_perimeter_infill_spacing));
 | |
|                         // Bottom surfaces.
 | |
|                         cache.bottom_surfaces = offset(to_expolygons(layerm.slices.filter_by_types(surfaces_bottom, 2)), min_perimeter_infill_spacing);
 | |
|                         append(cache.bottom_surfaces, offset(to_expolygons(layerm.fill_surfaces.filter_by_types(surfaces_bottom, 2)), min_perimeter_infill_spacing));
 | |
|                         // Holes over all regions. Only collect them once, they are valid for all idx_region iterations.
 | |
|                         if (cache.holes.empty()) {
 | |
|                             for (size_t idx_region = 0; idx_region < layer.regions().size(); ++ idx_region)
 | |
|                                 polygons_append(cache.holes, to_polygons(layer.regions()[idx_region]->fill_expolygons));
 | |
|                         }
 | |
|                     }
 | |
|                 });
 | |
|             m_print->throw_if_canceled();
 | |
|             BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells for region " << idx_region << " in parallel - end : cache top / bottom";
 | |
|         }
 | |
| 
 | |
|         BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells for region " << idx_region << " in parallel - start : ensure vertical wall thickness";
 | |
|         tbb::parallel_for(
 | |
|             tbb::blocked_range<size_t>(0, num_layers, grain_size),
 | |
|             [this, idx_region, &cache_top_botom_regions]
 | |
|             (const tbb::blocked_range<size_t>& range) {
 | |
|                 // printf("discover_vertical_shells from %d to %d\n", range.begin(), range.end());
 | |
|                 for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
 | |
|                     PROFILE_BLOCK(discover_vertical_shells_region_layer);
 | |
|                     m_print->throw_if_canceled();
 | |
| #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | |
|         			static size_t debug_idx = 0;
 | |
|         			++ debug_idx;
 | |
| #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | |
| 
 | |
|                     Layer       	        *layer          = m_layers[idx_layer];
 | |
|                     LayerRegion 	        *layerm         = layer->m_regions[idx_region];
 | |
|                     const PrintRegionConfig ®ion_config  = layerm->region()->config();
 | |
| 
 | |
| #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | |
|                     layerm->export_region_slices_to_svg_debug("4_discover_vertical_shells-initial");
 | |
|                     layerm->export_region_fill_surfaces_to_svg_debug("4_discover_vertical_shells-initial");
 | |
| #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | |
| 
 | |
|                     Flow         solid_infill_flow   = layerm->flow(frSolidInfill);
 | |
|                     coord_t      infill_line_spacing = solid_infill_flow.scaled_spacing(); 
 | |
|                     // Find a union of perimeters below / above this surface to guarantee a minimum shell thickness.
 | |
|                     Polygons shell;
 | |
|                     Polygons holes;
 | |
| #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | |
|                     ExPolygons shell_ex;
 | |
| #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | |
|                     float min_perimeter_infill_spacing = float(infill_line_spacing) * 1.05f;
 | |
|                     {
 | |
|                         PROFILE_BLOCK(discover_vertical_shells_region_layer_collect);
 | |
| #if 0
 | |
| // #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | |
|                         {
 | |
|         					Slic3r::SVG svg_cummulative(debug_out_path("discover_vertical_shells-perimeters-before-union-run%d.svg", debug_idx), this->bounding_box());
 | |
|                             for (int n = (int)idx_layer - n_extra_bottom_layers; n <= (int)idx_layer + n_extra_top_layers; ++ n) {
 | |
|                                 if (n < 0 || n >= (int)m_layers.size())
 | |
|                                     continue;
 | |
|                                 ExPolygons &expolys = m_layers[n]->perimeter_expolygons;
 | |
|                                 for (size_t i = 0; i < expolys.size(); ++ i) {
 | |
|         							Slic3r::SVG svg(debug_out_path("discover_vertical_shells-perimeters-before-union-run%d-layer%d-expoly%d.svg", debug_idx, n, i), get_extents(expolys[i]));
 | |
|                                     svg.draw(expolys[i]);
 | |
|                                     svg.draw_outline(expolys[i].contour, "black", scale_(0.05));
 | |
|                                     svg.draw_outline(expolys[i].holes, "blue", scale_(0.05));
 | |
|                                     svg.Close();
 | |
| 
 | |
|                                     svg_cummulative.draw(expolys[i]);
 | |
|                                     svg_cummulative.draw_outline(expolys[i].contour, "black", scale_(0.05));
 | |
|                                     svg_cummulative.draw_outline(expolys[i].holes, "blue", scale_(0.05));
 | |
|                                 }
 | |
|                             }
 | |
|                         }
 | |
| #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | |
| 			        	polygons_append(holes, cache_top_botom_regions[idx_layer].holes);
 | |
| 			        	if (int n_top_layers = region_config.top_solid_layers.value; n_top_layers > 0) {
 | |
|                             // Gather top regions projected to this layer.
 | |
|                             coordf_t print_z = layer->print_z;
 | |
| 	                        for (int i = int(idx_layer) + 1; 
 | |
| 	                        	i < int(cache_top_botom_regions.size()) && 
 | |
| 	                        		(i < int(idx_layer) + n_top_layers ||
 | |
| 	                        		 m_layers[i]->print_z - print_z < region_config.top_solid_min_thickness - EPSILON);
 | |
| 	                        	++ i) {
 | |
| 	                            const DiscoverVerticalShellsCacheEntry &cache = cache_top_botom_regions[i];
 | |
| 								if (! holes.empty())
 | |
| 									holes = intersection(holes, cache.holes);
 | |
| 								if (! cache.top_surfaces.empty()) {
 | |
| 		                            polygons_append(shell, cache.top_surfaces);
 | |
| 		                            // Running the union_ using the Clipper library piece by piece is cheaper 
 | |
| 		                            // than running the union_ all at once.
 | |
| 	                               shell = union_(shell, false);
 | |
| 	                           }
 | |
| 	                        }
 | |
| 	                    }
 | |
| 	                    if (int n_bottom_layers = region_config.bottom_solid_layers.value; n_bottom_layers > 0) {
 | |
|                             // Gather bottom regions projected to this layer.
 | |
|                             coordf_t bottom_z = layer->bottom_z();
 | |
| 	                        for (int i = int(idx_layer) - 1;
 | |
| 	                        	i >= 0 &&
 | |
| 	                        		(i > int(idx_layer) - n_bottom_layers ||
 | |
| 	                        		 bottom_z - m_layers[i]->bottom_z() < region_config.bottom_solid_min_thickness - EPSILON);
 | |
| 	                        	-- i) {
 | |
| 	                            const DiscoverVerticalShellsCacheEntry &cache = cache_top_botom_regions[i];
 | |
| 								if (! holes.empty())
 | |
| 									holes = intersection(holes, cache.holes);
 | |
| 								if (! cache.bottom_surfaces.empty()) {
 | |
| 		                            polygons_append(shell, cache.bottom_surfaces);
 | |
| 		                            // Running the union_ using the Clipper library piece by piece is cheaper 
 | |
| 		                            // than running the union_ all at once.
 | |
| 		                            shell = union_(shell, false);
 | |
| 		                        }
 | |
| 	                        }
 | |
| 	                    }
 | |
| #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | |
|                         {
 | |
|         					Slic3r::SVG svg(debug_out_path("discover_vertical_shells-perimeters-before-union-%d.svg", debug_idx), get_extents(shell));
 | |
|                             svg.draw(shell);
 | |
|                             svg.draw_outline(shell, "black", scale_(0.05));
 | |
|                             svg.Close(); 
 | |
|                         }
 | |
| #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | |
| #if 0
 | |
|                         {
 | |
|                             PROFILE_BLOCK(discover_vertical_shells_region_layer_shell_);
 | |
|         //                    shell = union_(shell, true);
 | |
|                             shell = union_(shell, false); 
 | |
|                         }
 | |
| #endif
 | |
| #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | |
|                         shell_ex = union_ex(shell, true);
 | |
| #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | |
|                     }
 | |
| 
 | |
|                     //if (shell.empty())
 | |
|                     //    continue;
 | |
| 
 | |
| #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | |
|                     {
 | |
|                         Slic3r::SVG svg(debug_out_path("discover_vertical_shells-perimeters-after-union-%d.svg", debug_idx), get_extents(shell));
 | |
|                         svg.draw(shell_ex);
 | |
|                         svg.draw_outline(shell_ex, "black", "blue", scale_(0.05));
 | |
|                         svg.Close();  
 | |
|                     }
 | |
| #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | |
| 
 | |
| #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | |
|                     {
 | |
|                         Slic3r::SVG svg(debug_out_path("discover_vertical_shells-internal-wshell-%d.svg", debug_idx), get_extents(shell));
 | |
|                         svg.draw(layerm->fill_surfaces.filter_by_type(stInternal), "yellow", 0.5);
 | |
|                         svg.draw_outline(layerm->fill_surfaces.filter_by_type(stInternal), "black", "blue", scale_(0.05));
 | |
|                         svg.draw(shell_ex, "blue", 0.5);
 | |
|                         svg.draw_outline(shell_ex, "black", "blue", scale_(0.05));
 | |
|                         svg.Close();
 | |
|                     } 
 | |
|                     {
 | |
|                         Slic3r::SVG svg(debug_out_path("discover_vertical_shells-internalvoid-wshell-%d.svg", debug_idx), get_extents(shell));
 | |
|                         svg.draw(layerm->fill_surfaces.filter_by_type(stInternalVoid), "yellow", 0.5);
 | |
|                         svg.draw_outline(layerm->fill_surfaces.filter_by_type(stInternalVoid), "black", "blue", scale_(0.05));
 | |
|                         svg.draw(shell_ex, "blue", 0.5);
 | |
|                         svg.draw_outline(shell_ex, "black", "blue", scale_(0.05));
 | |
|                         svg.Close();
 | |
|                     } 
 | |
|                     {
 | |
|                         Slic3r::SVG svg(debug_out_path("discover_vertical_shells-internalvoid-wshell-%d.svg", debug_idx), get_extents(shell));
 | |
|                         svg.draw(layerm->fill_surfaces.filter_by_type(stInternalVoid), "yellow", 0.5);
 | |
|                         svg.draw_outline(layerm->fill_surfaces.filter_by_type(stInternalVoid), "black", "blue", scale_(0.05));
 | |
|                         svg.draw(shell_ex, "blue", 0.5);
 | |
|                         svg.draw_outline(shell_ex, "black", "blue", scale_(0.05)); 
 | |
|                         svg.Close();
 | |
|                     } 
 | |
| #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | |
| 
 | |
|                     // Trim the shells region by the internal & internal void surfaces.
 | |
|                     const SurfaceType surfaceTypesInternal[] = { stInternal, stInternalVoid, stInternalSolid };
 | |
|                     const Polygons    polygonsInternal = to_polygons(layerm->fill_surfaces.filter_by_types(surfaceTypesInternal, 3));
 | |
|                     shell = intersection(shell, polygonsInternal, true);
 | |
|                     polygons_append(shell, diff(polygonsInternal, holes));
 | |
|                     if (shell.empty())
 | |
|                         continue;
 | |
| 
 | |
|                     // Append the internal solids, so they will be merged with the new ones.
 | |
|                     polygons_append(shell, to_polygons(layerm->fill_surfaces.filter_by_type(stInternalSolid)));
 | |
| 
 | |
|                     // These regions will be filled by a rectilinear full infill. Currently this type of infill
 | |
|                     // only fills regions, which fit at least a single line. To avoid gaps in the sparse infill,
 | |
|                     // make sure that this region does not contain parts narrower than the infill spacing width.
 | |
| #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | |
|                     Polygons shell_before = shell;
 | |
| #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | |
| #if 1
 | |
|                     // Intentionally inflate a bit more than how much the region has been shrunk, 
 | |
|                     // so there will be some overlap between this solid infill and the other infill regions (mainly the sparse infill).
 | |
|                     shell = offset(offset_ex(union_ex(shell), - 0.5f * min_perimeter_infill_spacing), 0.8f * min_perimeter_infill_spacing, ClipperLib::jtSquare);
 | |
|                     if (shell.empty())
 | |
|                         continue;
 | |
| #else
 | |
|                     // Ensure each region is at least 3x infill line width wide, so it could be filled in.
 | |
|         //            float margin = float(infill_line_spacing) * 3.f;
 | |
|                     float margin = float(infill_line_spacing) * 1.5f;
 | |
|                     // we use a higher miterLimit here to handle areas with acute angles
 | |
|                     // in those cases, the default miterLimit would cut the corner and we'd
 | |
|                     // get a triangle in $too_narrow; if we grow it below then the shell
 | |
|                     // would have a different shape from the external surface and we'd still
 | |
|                     // have the same angle, so the next shell would be grown even more and so on.
 | |
|                     Polygons too_narrow = diff(shell, offset2(shell, -margin, margin, ClipperLib::jtMiter, 5.), true);
 | |
|                     if (! too_narrow.empty()) {
 | |
|                         // grow the collapsing parts and add the extra area to  the neighbor layer 
 | |
|                         // as well as to our original surfaces so that we support this 
 | |
|                         // additional area in the next shell too
 | |
|                         // make sure our grown surfaces don't exceed the fill area
 | |
|                         polygons_append(shell, intersection(offset(too_narrow, margin), polygonsInternal));
 | |
|                     }
 | |
| #endif
 | |
|                     ExPolygons new_internal_solid = intersection_ex(polygonsInternal, shell, false);
 | |
| #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | |
|                     {
 | |
|                         Slic3r::SVG svg(debug_out_path("discover_vertical_shells-regularized-%d.svg", debug_idx), get_extents(shell_before));
 | |
|                         // Source shell.
 | |
|                         svg.draw(union_ex(shell_before, true));
 | |
|                         // Shell trimmed to the internal surfaces.
 | |
|                         svg.draw_outline(union_ex(shell, true), "black", "blue", scale_(0.05));
 | |
|                         // Regularized infill region.
 | |
|                         svg.draw_outline(new_internal_solid, "red", "magenta", scale_(0.05));
 | |
|                         svg.Close();  
 | |
|                     }
 | |
| #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | |
| 
 | |
|                     // Trim the internal & internalvoid by the shell.
 | |
|                     Slic3r::ExPolygons new_internal = diff_ex(
 | |
|                         to_polygons(layerm->fill_surfaces.filter_by_type(stInternal)),
 | |
|                         shell,
 | |
|                         false
 | |
|                     );
 | |
|                     Slic3r::ExPolygons new_internal_void = diff_ex(
 | |
|                         to_polygons(layerm->fill_surfaces.filter_by_type(stInternalVoid)),
 | |
|                         shell,
 | |
|                         false
 | |
|                     );
 | |
| 
 | |
| #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | |
|                     {
 | |
|                         SVG::export_expolygons(debug_out_path("discover_vertical_shells-new_internal-%d.svg", debug_idx), get_extents(shell), new_internal, "black", "blue", scale_(0.05));
 | |
|         				SVG::export_expolygons(debug_out_path("discover_vertical_shells-new_internal_void-%d.svg", debug_idx), get_extents(shell), new_internal_void, "black", "blue", scale_(0.05));
 | |
|         				SVG::export_expolygons(debug_out_path("discover_vertical_shells-new_internal_solid-%d.svg", debug_idx), get_extents(shell), new_internal_solid, "black", "blue", scale_(0.05));
 | |
|                     }
 | |
| #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | |
| 
 | |
|                     // Assign resulting internal surfaces to layer.
 | |
|                     const SurfaceType surfaceTypesKeep[] = { stTop, stBottom, stBottomBridge };
 | |
|                     layerm->fill_surfaces.keep_types(surfaceTypesKeep, sizeof(surfaceTypesKeep)/sizeof(SurfaceType));
 | |
|                     layerm->fill_surfaces.append(new_internal,       stInternal);
 | |
|                     layerm->fill_surfaces.append(new_internal_void,  stInternalVoid);
 | |
|                     layerm->fill_surfaces.append(new_internal_solid, stInternalSolid);
 | |
|                 } // for each layer
 | |
|             });
 | |
|         m_print->throw_if_canceled();
 | |
|         BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells for region " << idx_region << " in parallel - end";
 | |
| 
 | |
| #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | |
| 		for (size_t idx_layer = 0; idx_layer < m_layers.size(); ++idx_layer) {
 | |
| 			LayerRegion *layerm = m_layers[idx_layer]->get_region(idx_region);
 | |
| 			layerm->export_region_slices_to_svg_debug("4_discover_vertical_shells-final");
 | |
| 			layerm->export_region_fill_surfaces_to_svg_debug("4_discover_vertical_shells-final");
 | |
| 		}
 | |
| #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | |
|     } // for each region
 | |
| 
 | |
|     // Write the profiler measurements to file
 | |
| //    PROFILE_UPDATE();
 | |
| //    PROFILE_OUTPUT(debug_out_path("discover_vertical_shells-profile.txt").c_str());
 | |
| }
 | |
| 
 | |
| /* This method applies bridge flow to the first internal solid layer above
 | |
|    sparse infill */
 | |
| void PrintObject::bridge_over_infill()
 | |
| {
 | |
|     BOOST_LOG_TRIVIAL(info) << "Bridge over infill..." << log_memory_info();
 | |
| 
 | |
|     for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
 | |
|         const PrintRegion ®ion = *m_print->regions()[region_id];
 | |
|         
 | |
|         // skip bridging in case there are no voids
 | |
|         if (region.config().fill_density.value == 100) continue;
 | |
|         
 | |
|         // get bridge flow
 | |
|         Flow bridge_flow = region.flow(
 | |
|             frSolidInfill,
 | |
|             -1,     // layer height, not relevant for bridge flow
 | |
|             true,   // bridge
 | |
|             false,  // first layer
 | |
|             -1,     // custom width, not relevant for bridge flow
 | |
|             *this
 | |
|         );
 | |
|         
 | |
| 		for (LayerPtrs::iterator layer_it = m_layers.begin(); layer_it != m_layers.end(); ++ layer_it) {
 | |
|             // skip first layer
 | |
| 			if (layer_it == m_layers.begin())
 | |
|                 continue;
 | |
|             
 | |
|             Layer* layer        = *layer_it;
 | |
|             LayerRegion* layerm = layer->m_regions[region_id];
 | |
|             
 | |
|             // extract the stInternalSolid surfaces that might be transformed into bridges
 | |
|             Polygons internal_solid;
 | |
|             layerm->fill_surfaces.filter_by_type(stInternalSolid, &internal_solid);
 | |
|             
 | |
|             // check whether the lower area is deep enough for absorbing the extra flow
 | |
|             // (for obvious physical reasons but also for preventing the bridge extrudates
 | |
|             // from overflowing in 3D preview)
 | |
|             ExPolygons to_bridge;
 | |
|             {
 | |
|                 Polygons to_bridge_pp = internal_solid;
 | |
|                 
 | |
|                 // iterate through lower layers spanned by bridge_flow
 | |
|                 double bottom_z = layer->print_z - bridge_flow.height;
 | |
|                 for (int i = int(layer_it - m_layers.begin()) - 1; i >= 0; --i) {
 | |
|                     const Layer* lower_layer = m_layers[i];
 | |
|                     
 | |
|                     // stop iterating if layer is lower than bottom_z
 | |
|                     if (lower_layer->print_z < bottom_z) break;
 | |
|                     
 | |
|                     // iterate through regions and collect internal surfaces
 | |
|                     Polygons lower_internal;
 | |
|                     for (LayerRegion *lower_layerm : lower_layer->m_regions)
 | |
|                         lower_layerm->fill_surfaces.filter_by_type(stInternal, &lower_internal);
 | |
|                     
 | |
|                     // intersect such lower internal surfaces with the candidate solid surfaces
 | |
|                     to_bridge_pp = intersection(to_bridge_pp, lower_internal);
 | |
|                 }
 | |
|                 
 | |
|                 // there's no point in bridging too thin/short regions
 | |
|                 //FIXME Vojtech: The offset2 function is not a geometric offset, 
 | |
|                 // therefore it may create 1) gaps, and 2) sharp corners, which are outside the original contour.
 | |
|                 // The gaps will be filled by a separate region, which makes the infill less stable and it takes longer.
 | |
|                 {
 | |
|                     float min_width = float(bridge_flow.scaled_width()) * 3.f;
 | |
|                     to_bridge_pp = offset2(to_bridge_pp, -min_width, +min_width);
 | |
|                 }
 | |
|                 
 | |
|                 if (to_bridge_pp.empty()) continue;
 | |
|                 
 | |
|                 // convert into ExPolygons
 | |
|                 to_bridge = union_ex(to_bridge_pp);
 | |
|             }
 | |
|             
 | |
|             #ifdef SLIC3R_DEBUG
 | |
|             printf("Bridging " PRINTF_ZU " internal areas at layer " PRINTF_ZU "\n", to_bridge.size(), layer->id());
 | |
|             #endif
 | |
|             
 | |
|             // compute the remaning internal solid surfaces as difference
 | |
|             ExPolygons not_to_bridge = diff_ex(internal_solid, to_polygons(to_bridge), true);
 | |
|             to_bridge = intersection_ex(to_polygons(to_bridge), internal_solid, true);
 | |
|             // build the new collection of fill_surfaces
 | |
|             layerm->fill_surfaces.remove_type(stInternalSolid);
 | |
|             for (ExPolygon &ex : to_bridge)
 | |
|                 layerm->fill_surfaces.surfaces.push_back(Surface(stInternalBridge, ex));
 | |
|             for (ExPolygon &ex : not_to_bridge)
 | |
|                 layerm->fill_surfaces.surfaces.push_back(Surface(stInternalSolid, ex));            
 | |
|             /*
 | |
|             # exclude infill from the layers below if needed
 | |
|             # see discussion at https://github.com/alexrj/Slic3r/issues/240
 | |
|             # Update: do not exclude any infill. Sparse infill is able to absorb the excess material.
 | |
|             if (0) {
 | |
|                 my $excess = $layerm->extruders->{infill}->bridge_flow->width - $layerm->height;
 | |
|                 for (my $i = $layer_id-1; $excess >= $self->get_layer($i)->height; $i--) {
 | |
|                     Slic3r::debugf "  skipping infill below those areas at layer %d\n", $i;
 | |
|                     foreach my $lower_layerm (@{$self->get_layer($i)->regions}) {
 | |
|                         my @new_surfaces = ();
 | |
|                         # subtract the area from all types of surfaces
 | |
|                         foreach my $group (@{$lower_layerm->fill_surfaces->group}) {
 | |
|                             push @new_surfaces, map $group->[0]->clone(expolygon => $_),
 | |
|                                 @{diff_ex(
 | |
|                                     [ map $_->p, @$group ],
 | |
|                                     [ map @$_, @$to_bridge ],
 | |
|                                 )};
 | |
|                             push @new_surfaces, map Slic3r::Surface->new(
 | |
|                                 expolygon       => $_,
 | |
|                                 surface_type    => stInternalVoid,
 | |
|                             ), @{intersection_ex(
 | |
|                                 [ map $_->p, @$group ],
 | |
|                                 [ map @$_, @$to_bridge ],
 | |
|                             )};
 | |
|                         }
 | |
|                         $lower_layerm->fill_surfaces->clear;
 | |
|                         $lower_layerm->fill_surfaces->append($_) for @new_surfaces;
 | |
|                     }
 | |
|                     
 | |
|                     $excess -= $self->get_layer($i)->height;
 | |
|                 }
 | |
|             }
 | |
|             */
 | |
| 
 | |
| #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | |
|             layerm->export_region_slices_to_svg_debug("7_bridge_over_infill");
 | |
|             layerm->export_region_fill_surfaces_to_svg_debug("7_bridge_over_infill");
 | |
| #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | |
|             m_print->throw_if_canceled();
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void clamp_exturder_to_default(ConfigOptionInt &opt, size_t num_extruders)
 | |
| {
 | |
|     if (opt.value > (int)num_extruders)
 | |
|         // assign the default extruder
 | |
|         opt.value = 1;
 | |
| }
 | |
| 
 | |
| PrintObjectConfig PrintObject::object_config_from_model_object(const PrintObjectConfig &default_object_config, const ModelObject &object, size_t num_extruders)
 | |
| {
 | |
|     PrintObjectConfig config = default_object_config;
 | |
|     normalize_and_apply_config(config, object.config);
 | |
|     // Clamp invalid extruders to the default extruder (with index 1).
 | |
|     clamp_exturder_to_default(config.support_material_extruder,           num_extruders);
 | |
|     clamp_exturder_to_default(config.support_material_interface_extruder, num_extruders);
 | |
|     return config;
 | |
| }
 | |
| 
 | |
| PrintRegionConfig PrintObject::region_config_from_model_volume(const PrintRegionConfig &default_region_config, const DynamicPrintConfig *layer_range_config, const ModelVolume &volume, size_t num_extruders)
 | |
| {
 | |
|     PrintRegionConfig config = default_region_config;
 | |
|     normalize_and_apply_config(config, volume.get_object()->config);
 | |
|     if (layer_range_config != nullptr)
 | |
|     	normalize_and_apply_config(config, *layer_range_config);
 | |
|     normalize_and_apply_config(config, volume.config);
 | |
|     if (! volume.material_id().empty())
 | |
|         normalize_and_apply_config(config, volume.material()->config);
 | |
|     // Clamp invalid extruders to the default extruder (with index 1).
 | |
|     clamp_exturder_to_default(config.infill_extruder,       num_extruders);
 | |
|     clamp_exturder_to_default(config.perimeter_extruder,    num_extruders);
 | |
|     clamp_exturder_to_default(config.solid_infill_extruder, num_extruders);
 | |
|     return config;
 | |
| }
 | |
| 
 | |
| void PrintObject::update_slicing_parameters()
 | |
| {
 | |
|     if (! m_slicing_params.valid)
 | |
|         m_slicing_params = SlicingParameters::create_from_config(
 | |
|             this->print()->config(), m_config, unscale<double>(this->height()), this->object_extruders());
 | |
| }
 | |
| 
 | |
| SlicingParameters PrintObject::slicing_parameters(const DynamicPrintConfig& full_config, const ModelObject& model_object, float object_max_z)
 | |
| {
 | |
| 	PrintConfig         print_config;
 | |
| 	PrintObjectConfig   object_config;
 | |
| 	PrintRegionConfig   default_region_config;
 | |
| 	print_config.apply(full_config, true);
 | |
| 	object_config.apply(full_config, true);
 | |
| 	default_region_config.apply(full_config, true);
 | |
| 	size_t              num_extruders = print_config.nozzle_diameter.size();
 | |
| 	object_config = object_config_from_model_object(object_config, model_object, num_extruders);
 | |
| 
 | |
| 	std::vector<unsigned int> object_extruders;
 | |
| 	for (const ModelVolume* model_volume : model_object.volumes)
 | |
| 		if (model_volume->is_model_part()) {
 | |
| 			PrintRegion::collect_object_printing_extruders(
 | |
| 				print_config,
 | |
| 				region_config_from_model_volume(default_region_config, nullptr, *model_volume, num_extruders),
 | |
| 				object_extruders);
 | |
| 			for (const std::pair<const t_layer_height_range, DynamicPrintConfig> &range_and_config : model_object.layer_config_ranges)
 | |
| 				if (range_and_config.second.has("perimeter_extruder") ||
 | |
| 					range_and_config.second.has("infill_extruder") ||
 | |
| 					range_and_config.second.has("solid_infill_extruder"))
 | |
| 					PrintRegion::collect_object_printing_extruders(
 | |
| 						print_config,
 | |
| 						region_config_from_model_volume(default_region_config, &range_and_config.second, *model_volume, num_extruders),
 | |
| 						object_extruders);
 | |
| 		}
 | |
|     sort_remove_duplicates(object_extruders);
 | |
| 
 | |
|     if (object_max_z <= 0.f)
 | |
|         object_max_z = (float)model_object.raw_bounding_box().size().z();
 | |
|     return SlicingParameters::create_from_config(print_config, object_config, object_max_z, object_extruders);
 | |
| }
 | |
| 
 | |
| // returns 0-based indices of extruders used to print the object (without brim, support and other helper extrusions)
 | |
| std::vector<unsigned int> PrintObject::object_extruders() const
 | |
| {
 | |
|     std::vector<unsigned int> extruders;
 | |
|     extruders.reserve(this->region_volumes.size() * 3);    
 | |
|     for (size_t idx_region = 0; idx_region < this->region_volumes.size(); ++ idx_region)
 | |
|         if (! this->region_volumes[idx_region].empty())
 | |
|             m_print->get_region(idx_region)->collect_object_printing_extruders(extruders);
 | |
|     sort_remove_duplicates(extruders);
 | |
|     return extruders;
 | |
| }
 | |
| 
 | |
| bool PrintObject::update_layer_height_profile(const ModelObject &model_object, const SlicingParameters &slicing_parameters, std::vector<coordf_t> &layer_height_profile)
 | |
| {
 | |
|     bool updated = false;
 | |
| 
 | |
|     if (layer_height_profile.empty()) {
 | |
|         layer_height_profile = model_object.layer_height_profile;
 | |
|         updated = true;
 | |
|     }
 | |
| 
 | |
|     // Verify the layer_height_profile.
 | |
|     if (! layer_height_profile.empty() && 
 | |
|             // Must not be of even length.
 | |
|             ((layer_height_profile.size() & 1) != 0 || 
 | |
|             // Last entry must be at the top of the object.
 | |
|              std::abs(layer_height_profile[layer_height_profile.size() - 2] - slicing_parameters.object_print_z_height()) > 1e-3))
 | |
|         layer_height_profile.clear();
 | |
| 
 | |
|     if (layer_height_profile.empty()) {
 | |
|         //layer_height_profile = layer_height_profile_adaptive(slicing_parameters, model_object.layer_config_ranges, model_object.volumes);
 | |
|         layer_height_profile = layer_height_profile_from_ranges(slicing_parameters, model_object.layer_config_ranges);
 | |
|         updated = true;
 | |
|     }
 | |
|     return updated;
 | |
| }
 | |
| 
 | |
| // 1) Decides Z positions of the layers,
 | |
| // 2) Initializes layers and their regions
 | |
| // 3) Slices the object meshes
 | |
| // 4) Slices the modifier meshes and reclassifies the slices of the object meshes by the slices of the modifier meshes
 | |
| // 5) Applies size compensation (offsets the slices in XY plane)
 | |
| // 6) Replaces bad slices by the slices reconstructed from the upper/lower layer
 | |
| // Resulting expolygons of layer regions are marked as Internal.
 | |
| //
 | |
| // this should be idempotent
 | |
| void PrintObject::_slice(const std::vector<coordf_t> &layer_height_profile)
 | |
| {
 | |
|     BOOST_LOG_TRIVIAL(info) << "Slicing objects..." << log_memory_info();
 | |
| 
 | |
|     m_typed_slices = false;
 | |
| 
 | |
| #ifdef SLIC3R_PROFILE
 | |
|     // Disable parallelization so the Shiny profiler works
 | |
|     static tbb::task_scheduler_init *tbb_init = nullptr;
 | |
|     tbb_init = new tbb::task_scheduler_init(1);
 | |
| #endif
 | |
| 
 | |
|     // 1) Initialize layers and their slice heights.
 | |
|     std::vector<float> slice_zs;
 | |
|     {
 | |
|         this->clear_layers();
 | |
|         // Object layers (pairs of bottom/top Z coordinate), without the raft.
 | |
|         std::vector<coordf_t> object_layers = generate_object_layers(m_slicing_params, layer_height_profile);
 | |
|         // Reserve object layers for the raft. Last layer of the raft is the contact layer.
 | |
|         int id = int(m_slicing_params.raft_layers());
 | |
|         slice_zs.reserve(object_layers.size());
 | |
|         Layer *prev = nullptr;
 | |
|         for (size_t i_layer = 0; i_layer < object_layers.size(); i_layer += 2) {
 | |
|             coordf_t lo = object_layers[i_layer];
 | |
|             coordf_t hi = object_layers[i_layer + 1];
 | |
|             coordf_t slice_z = 0.5 * (lo + hi);
 | |
|             Layer *layer = this->add_layer(id ++, hi - lo, hi + m_slicing_params.object_print_z_min, slice_z);
 | |
|             slice_zs.push_back(float(slice_z));
 | |
|             if (prev != nullptr) {
 | |
|                 prev->upper_layer = layer;
 | |
|                 layer->lower_layer = prev;
 | |
|             }
 | |
|             // Make sure all layers contain layer region objects for all regions.
 | |
|             for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id)
 | |
|                 layer->add_region(this->print()->regions()[region_id]);
 | |
|             prev = layer;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Count model parts and modifier meshes, check whether the model parts are of the same region.
 | |
|     int              all_volumes_single_region = -2; // not set yet
 | |
|     bool 			 has_z_ranges  = false;
 | |
| 	size_t           num_volumes   = 0;
 | |
|     size_t           num_modifiers = 0;
 | |
|     for (int region_id = 0; region_id < (int)this->region_volumes.size(); ++ region_id) {
 | |
| 		int last_volume_id = -1;
 | |
|         for (const std::pair<t_layer_height_range, int> &volume_and_range : this->region_volumes[region_id]) {
 | |
| 			const int		   volume_id    = volume_and_range.second;
 | |
| 			const ModelVolume *model_volume = this->model_object()->volumes[volume_id];
 | |
|             if (model_volume->is_model_part()) {
 | |
| 				if (last_volume_id == volume_id) {
 | |
| 					has_z_ranges = true;
 | |
| 				} else {
 | |
| 					last_volume_id = volume_id;
 | |
| 					if (all_volumes_single_region == -2)
 | |
| 						// first model volume met
 | |
| 						all_volumes_single_region = region_id;
 | |
| 					else if (all_volumes_single_region != region_id)
 | |
| 						// multiple volumes met and they are not equal
 | |
| 						all_volumes_single_region = -1;
 | |
| 					++ num_volumes;
 | |
| 				}
 | |
|             } else if (model_volume->is_modifier())
 | |
|                 ++ num_modifiers;
 | |
|         }
 | |
|     }
 | |
|     assert(num_volumes > 0);
 | |
|     
 | |
|     // Slice all non-modifier volumes.
 | |
|     bool clipped  = false;
 | |
|     bool upscaled = false;
 | |
|     auto slicing_mode = this->print()->config().spiral_vase ? SlicingMode::PositiveLargestContour : SlicingMode::Regular;
 | |
|     if (! has_z_ranges && (! m_config.clip_multipart_objects.value || all_volumes_single_region >= 0)) {
 | |
|         // Cheap path: Slice regions without mutual clipping.
 | |
|         // The cheap path is possible if no clipping is allowed or if slicing volumes of just a single region.
 | |
|         for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
 | |
|             BOOST_LOG_TRIVIAL(debug) << "Slicing objects - region " << region_id;
 | |
|             // slicing in parallel
 | |
|             std::vector<ExPolygons> expolygons_by_layer = this->slice_region(region_id, slice_zs, slicing_mode);
 | |
|             m_print->throw_if_canceled();
 | |
|             BOOST_LOG_TRIVIAL(debug) << "Slicing objects - append slices " << region_id << " start";
 | |
|             for (size_t layer_id = 0; layer_id < expolygons_by_layer.size(); ++ layer_id)
 | |
|                 m_layers[layer_id]->regions()[region_id]->slices.append(std::move(expolygons_by_layer[layer_id]), stInternal);
 | |
|             m_print->throw_if_canceled();
 | |
|             BOOST_LOG_TRIVIAL(debug) << "Slicing objects - append slices " << region_id << " end";
 | |
|         }
 | |
|     } else {
 | |
|         // Expensive path: Slice one volume after the other in the order they are presented at the user interface,
 | |
|         // clip the last volumes with the first.
 | |
|         // First slice the volumes.
 | |
|         struct SlicedVolume {
 | |
|             SlicedVolume(int volume_id, int region_id, std::vector<ExPolygons> &&expolygons_by_layer) : 
 | |
|                 volume_id(volume_id), region_id(region_id), expolygons_by_layer(std::move(expolygons_by_layer)) {}
 | |
|             int                     volume_id;
 | |
|             int                     region_id;
 | |
|             std::vector<ExPolygons> expolygons_by_layer;
 | |
|         };
 | |
|         std::vector<SlicedVolume> sliced_volumes;
 | |
|         sliced_volumes.reserve(num_volumes);
 | |
| 		for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
 | |
| 			const std::vector<std::pair<t_layer_height_range, int>> &volumes_and_ranges = this->region_volumes[region_id];
 | |
| 			for (size_t i = 0; i < volumes_and_ranges.size(); ) {
 | |
| 				int 			   volume_id    = volumes_and_ranges[i].second;
 | |
| 				const ModelVolume *model_volume = this->model_object()->volumes[volume_id];
 | |
| 				if (model_volume->is_model_part()) {
 | |
| 					BOOST_LOG_TRIVIAL(debug) << "Slicing objects - volume " << volume_id;
 | |
| 					// Find the ranges of this volume. Ranges in volumes_and_ranges must not overlap for a single volume.
 | |
| 					std::vector<t_layer_height_range> ranges;
 | |
| 					ranges.emplace_back(volumes_and_ranges[i].first);
 | |
| 					size_t j = i + 1;
 | |
| 					for (; j < volumes_and_ranges.size() && volume_id == volumes_and_ranges[j].second; ++ j)
 | |
| 						if (! ranges.empty() && std::abs(ranges.back().second - volumes_and_ranges[j].first.first) < EPSILON)
 | |
| 							ranges.back().second = volumes_and_ranges[j].first.second;
 | |
| 						else
 | |
| 							ranges.emplace_back(volumes_and_ranges[j].first);
 | |
|                     // slicing in parallel
 | |
| 					sliced_volumes.emplace_back(volume_id, (int)region_id, this->slice_volume(slice_zs, ranges, slicing_mode, *model_volume));
 | |
| 					i = j;
 | |
| 				} else
 | |
| 					++ i;
 | |
| 			}
 | |
| 		}
 | |
|         // Second clip the volumes in the order they are presented at the user interface.
 | |
|         BOOST_LOG_TRIVIAL(debug) << "Slicing objects - parallel clipping - start";
 | |
|         tbb::parallel_for(
 | |
|             tbb::blocked_range<size_t>(0, slice_zs.size()),
 | |
|             [this, &sliced_volumes, num_modifiers](const tbb::blocked_range<size_t>& range) {
 | |
|                 float delta   = float(scale_(m_config.xy_size_compensation.value));
 | |
|                 // Only upscale together with clipping if there are no modifiers, as the modifiers shall be applied before upscaling
 | |
|                 // (upscaling may grow the object outside of the modifier mesh).
 | |
|                 bool  upscale = delta > 0 && num_modifiers == 0;
 | |
|                 for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id) {
 | |
|                     m_print->throw_if_canceled();
 | |
|                     // Trim volumes in a single layer, one by the other, possibly apply upscaling.
 | |
|                     {
 | |
|                         Polygons processed;
 | |
|                         for (SlicedVolume &sliced_volume : sliced_volumes) 
 | |
|                         	if (! sliced_volume.expolygons_by_layer.empty()) {
 | |
| 	                            ExPolygons slices = std::move(sliced_volume.expolygons_by_layer[layer_id]);
 | |
| 	                            if (upscale)
 | |
| 	                                slices = offset_ex(std::move(slices), delta);
 | |
| 	                            if (! processed.empty())
 | |
| 	                                // Trim by the slices of already processed regions.
 | |
| 	                                slices = diff_ex(to_polygons(std::move(slices)), processed);
 | |
| 	                            if (size_t(&sliced_volume - &sliced_volumes.front()) + 1 < sliced_volumes.size())
 | |
| 	                                // Collect the already processed regions to trim the to be processed regions.
 | |
| 	                                polygons_append(processed, slices);
 | |
| 	                            sliced_volume.expolygons_by_layer[layer_id] = std::move(slices);
 | |
| 	                        }
 | |
|                     }
 | |
|                     // Collect and union volumes of a single region.
 | |
|                     for (int region_id = 0; region_id < (int)this->region_volumes.size(); ++ region_id) {
 | |
|                         ExPolygons expolygons;
 | |
|                         size_t     num_volumes = 0;
 | |
|                         for (SlicedVolume &sliced_volume : sliced_volumes)
 | |
|                             if (sliced_volume.region_id == region_id && ! sliced_volume.expolygons_by_layer.empty() && ! sliced_volume.expolygons_by_layer[layer_id].empty()) {
 | |
|                                 ++ num_volumes;
 | |
|                                 append(expolygons, std::move(sliced_volume.expolygons_by_layer[layer_id]));
 | |
|                             }
 | |
|                         if (num_volumes > 1)
 | |
|                             // Merge the islands using a positive / negative offset.
 | |
|                             expolygons = offset_ex(offset_ex(expolygons, float(scale_(EPSILON))), -float(scale_(EPSILON)));
 | |
|                         m_layers[layer_id]->regions()[region_id]->slices.append(std::move(expolygons), stInternal);
 | |
|                     }
 | |
|                 }
 | |
|             });
 | |
|         BOOST_LOG_TRIVIAL(debug) << "Slicing objects - parallel clipping - end";
 | |
|         clipped  = true;
 | |
|         upscaled = m_config.xy_size_compensation.value > 0 && num_modifiers == 0;
 | |
|     }
 | |
| 
 | |
|     // Slice all modifier volumes.
 | |
|     if (this->region_volumes.size() > 1) {
 | |
|         for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
 | |
|             BOOST_LOG_TRIVIAL(debug) << "Slicing modifier volumes - region " << region_id;
 | |
|             // slicing in parallel
 | |
|             std::vector<ExPolygons> expolygons_by_layer = this->slice_modifiers(region_id, slice_zs);
 | |
|             m_print->throw_if_canceled();
 | |
|             if (expolygons_by_layer.empty())
 | |
|                 continue;
 | |
|             // loop through the other regions and 'steal' the slices belonging to this one
 | |
|             BOOST_LOG_TRIVIAL(debug) << "Slicing modifier volumes - stealing " << region_id << " start";
 | |
|             tbb::parallel_for(
 | |
|                 tbb::blocked_range<size_t>(0, m_layers.size()),
 | |
| 				[this, &expolygons_by_layer, region_id](const tbb::blocked_range<size_t>& range) {
 | |
|                     for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id) {
 | |
|                         for (size_t other_region_id = 0; other_region_id < this->region_volumes.size(); ++ other_region_id) {
 | |
|                             if (region_id == other_region_id)
 | |
|                                 continue;
 | |
|                             Layer       *layer = m_layers[layer_id];
 | |
|                             LayerRegion *layerm = layer->m_regions[region_id];
 | |
|                             LayerRegion *other_layerm = layer->m_regions[other_region_id];
 | |
|                             if (layerm == nullptr || other_layerm == nullptr || other_layerm->slices.empty() || expolygons_by_layer[layer_id].empty())
 | |
|                                 continue;
 | |
|                             Polygons other_slices = to_polygons(other_layerm->slices);
 | |
|                             ExPolygons my_parts = intersection_ex(other_slices, to_polygons(expolygons_by_layer[layer_id]));
 | |
|                             if (my_parts.empty())
 | |
|                                 continue;
 | |
|                             // Remove such parts from original region.
 | |
|                             other_layerm->slices.set(diff_ex(other_slices, to_polygons(my_parts)), stInternal);
 | |
|                             // Append new parts to our region.
 | |
|                             layerm->slices.append(std::move(my_parts), stInternal);
 | |
|                         }
 | |
|                     }
 | |
|                 });
 | |
|             m_print->throw_if_canceled();
 | |
|             BOOST_LOG_TRIVIAL(debug) << "Slicing modifier volumes - stealing " << region_id << " end";
 | |
|         }
 | |
|     }
 | |
|     
 | |
|     BOOST_LOG_TRIVIAL(debug) << "Slicing objects - removing top empty layers";
 | |
|     while (! m_layers.empty()) {
 | |
|         const Layer *layer = m_layers.back();
 | |
|         if (! layer->empty())
 | |
|             goto end;
 | |
|         delete layer;
 | |
|         m_layers.pop_back();
 | |
| 		if (! m_layers.empty())
 | |
| 			m_layers.back()->upper_layer = nullptr;
 | |
|     }
 | |
|     m_print->throw_if_canceled();
 | |
| end:
 | |
|     ;
 | |
| 
 | |
|     BOOST_LOG_TRIVIAL(debug) << "Slicing objects - make_slices in parallel - begin";
 | |
|     {
 | |
|         // Compensation value, scaled.
 | |
|         const float xy_compensation_scaled 	 			= float(scale_(m_config.xy_size_compensation.value));
 | |
|         const float elephant_foot_compensation_scaled 	= (m_config.raft_layers == 0) ? 
 | |
|         	// Only enable Elephant foot compensation if printing directly on the print bed.
 | |
|             float(scale_(m_config.elefant_foot_compensation.value)) :
 | |
|         	0.f;
 | |
|         // Uncompensated slices for the first layer in case the Elephant foot compensation is applied.
 | |
| 	    ExPolygons  lslices_1st_layer;
 | |
| 	    tbb::parallel_for(
 | |
| 	        tbb::blocked_range<size_t>(0, m_layers.size()),
 | |
| 			[this, upscaled, clipped, xy_compensation_scaled, elephant_foot_compensation_scaled, &lslices_1st_layer]
 | |
| 				(const tbb::blocked_range<size_t>& range) {
 | |
| 	            for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id) {
 | |
| 	                m_print->throw_if_canceled();
 | |
| 	                Layer *layer = m_layers[layer_id];
 | |
| 	                // Apply size compensation and perform clipping of multi-part objects.
 | |
| 	                float elfoot = (layer_id == 0) ? elephant_foot_compensation_scaled : 0.f;
 | |
| 	                if (layer->m_regions.size() == 1) {
 | |
| 	                	assert(! upscaled);
 | |
| 	                	assert(! clipped);
 | |
| 	                    // Optimized version for a single region layer.
 | |
| 	                    // Single region, growing or shrinking.
 | |
| 	                    LayerRegion *layerm = layer->m_regions.front();
 | |
| 	                    if (elfoot > 0) {
 | |
| 		                    // Apply the elephant foot compensation and store the 1st layer slices without the Elephant foot compensation applied.
 | |
| 		                    lslices_1st_layer = to_expolygons(std::move(layerm->slices.surfaces));
 | |
| 		                    float delta = xy_compensation_scaled;
 | |
| 	                        if (delta > elfoot) {
 | |
| 	                            delta -= elfoot;
 | |
| 	                            elfoot = 0.f;
 | |
| 	                        } else if (delta > 0)
 | |
| 	                            elfoot -= delta;
 | |
| 							layerm->slices.set(
 | |
| 								union_ex(
 | |
| 									Slic3r::elephant_foot_compensation(
 | |
| 										(delta == 0.f) ? lslices_1st_layer : offset_ex(lslices_1st_layer, delta), 
 | |
| 	                            		layerm->flow(frExternalPerimeter), unscale<double>(elfoot))),
 | |
| 								stInternal);
 | |
| 							if (xy_compensation_scaled != 0.f)
 | |
| 								lslices_1st_layer = offset_ex(std::move(lslices_1st_layer), xy_compensation_scaled);
 | |
| 	                    } else if (xy_compensation_scaled != 0.f) {
 | |
| 	                        // Apply the XY compensation.
 | |
| 	                        layerm->slices.set(
 | |
|                                 offset_ex(to_expolygons(std::move(layerm->slices.surfaces)), xy_compensation_scaled),
 | |
| 	                            stInternal);
 | |
| 	                    }
 | |
| 	                } else {
 | |
| 	                    bool upscale   = ! upscaled && xy_compensation_scaled > 0.f;
 | |
| 	                    bool clip      = ! clipped && m_config.clip_multipart_objects.value;
 | |
| 	                    if (upscale || clip) {
 | |
| 	                        // Multiple regions, growing or just clipping one region by the other.
 | |
| 	                        // When clipping the regions, priority is given to the first regions.
 | |
| 	                        Polygons processed;
 | |
| 	            			for (size_t region_id = 0; region_id < layer->m_regions.size(); ++ region_id) {
 | |
| 	                            LayerRegion *layerm = layer->m_regions[region_id];
 | |
| 	            				ExPolygons slices = to_expolygons(std::move(layerm->slices.surfaces));
 | |
| 	            				if (upscale)
 | |
| 	            					slices = offset_ex(std::move(slices), xy_compensation_scaled);
 | |
| 	                            if (region_id > 0 && clip)
 | |
| 	                                // Trim by the slices of already processed regions.
 | |
| 	                                slices = diff_ex(to_polygons(std::move(slices)), processed);
 | |
| 	                            if (clip && (region_id + 1 < layer->m_regions.size()))
 | |
| 	                                // Collect the already processed regions to trim the to be processed regions.
 | |
| 	                                polygons_append(processed, slices);
 | |
| 	                            layerm->slices.set(std::move(slices), stInternal);
 | |
| 	                        }
 | |
| 	                    }
 | |
| 	                    if (xy_compensation_scaled < 0.f || elfoot > 0.f) {
 | |
| 	                        // Apply the negative XY compensation.
 | |
| 	                        Polygons trimming;
 | |
| 	                        static const float eps = float(scale_(m_config.slice_closing_radius.value) * 1.5);
 | |
| 	                        if (elfoot > 0.f) {
 | |
| 	                        	lslices_1st_layer = offset_ex(layer->merged(eps), std::min(xy_compensation_scaled, 0.f) - eps);
 | |
| 								trimming = to_polygons(Slic3r::elephant_foot_compensation(lslices_1st_layer,
 | |
| 									layer->m_regions.front()->flow(frExternalPerimeter), unscale<double>(elfoot)));
 | |
| 	                        } else
 | |
| 		                        trimming = offset(layer->merged(float(SCALED_EPSILON)), xy_compensation_scaled - float(SCALED_EPSILON));
 | |
| 	                        for (size_t region_id = 0; region_id < layer->m_regions.size(); ++ region_id)
 | |
| 	                            layer->m_regions[region_id]->trim_surfaces(trimming);
 | |
| 	                    }
 | |
| 	                }
 | |
| 	                // Merge all regions' slices to get islands, chain them by a shortest path.
 | |
| 	                layer->make_slices();
 | |
| 	            }
 | |
| 	        });
 | |
| 	    if (elephant_foot_compensation_scaled > 0.f) {
 | |
| 	    	// The Elephant foot has been compensated, therefore the 1st layer's lslices are shrank with the Elephant foot compensation value.
 | |
| 	    	// Store the uncompensated value there.
 | |
| 	    	assert(! m_layers.empty());
 | |
| 	    	assert(m_layers.front()->id() == 0);
 | |
| 			m_layers.front()->lslices = std::move(lslices_1st_layer);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
|     m_print->throw_if_canceled();
 | |
|     BOOST_LOG_TRIVIAL(debug) << "Slicing objects - make_slices in parallel - end";
 | |
| }
 | |
| 
 | |
| // To be used only if there are no layer span specific configurations applied, which would lead to z ranges being generated for this region.
 | |
| std::vector<ExPolygons> PrintObject::slice_region(size_t region_id, const std::vector<float> &z, SlicingMode mode) const
 | |
| {
 | |
| 	std::vector<const ModelVolume*> volumes;
 | |
|     if (region_id < this->region_volumes.size()) {
 | |
| 		for (const std::pair<t_layer_height_range, int> &volume_and_range : this->region_volumes[region_id]) {
 | |
| 			const ModelVolume *volume = this->model_object()->volumes[volume_and_range.second];
 | |
| 			if (volume->is_model_part())
 | |
| 				volumes.emplace_back(volume);
 | |
| 		}
 | |
|     }
 | |
| 	return this->slice_volumes(z, mode, volumes);
 | |
| }
 | |
| 
 | |
| // Z ranges are not applicable to modifier meshes, therefore a sinle volume will be found in volume_and_range at most once.
 | |
| std::vector<ExPolygons> PrintObject::slice_modifiers(size_t region_id, const std::vector<float> &slice_zs) const
 | |
| {
 | |
| 	std::vector<ExPolygons> out;
 | |
|     if (region_id < this->region_volumes.size())
 | |
|     {
 | |
| 		std::vector<std::vector<t_layer_height_range>> volume_ranges;
 | |
| 		const std::vector<std::pair<t_layer_height_range, int>> &volumes_and_ranges = this->region_volumes[region_id];
 | |
| 		volume_ranges.reserve(volumes_and_ranges.size());
 | |
| 		for (size_t i = 0; i < volumes_and_ranges.size(); ) {
 | |
| 			int 			   volume_id    = volumes_and_ranges[i].second;
 | |
| 			const ModelVolume *model_volume = this->model_object()->volumes[volume_id];
 | |
| 			if (model_volume->is_modifier()) {
 | |
| 				std::vector<t_layer_height_range> ranges;
 | |
| 				ranges.emplace_back(volumes_and_ranges[i].first);
 | |
| 				size_t j = i + 1;
 | |
| 				for (; j < volumes_and_ranges.size() && volume_id == volumes_and_ranges[j].second; ++ j) {
 | |
| 					if (! ranges.empty() && std::abs(ranges.back().second - volumes_and_ranges[j].first.first) < EPSILON)
 | |
| 						ranges.back().second = volumes_and_ranges[j].first.second;
 | |
| 					else
 | |
| 						ranges.emplace_back(volumes_and_ranges[j].first);
 | |
| 				}
 | |
| 				volume_ranges.emplace_back(std::move(ranges));
 | |
| 				i = j;
 | |
| 			} else
 | |
| 				++ i;
 | |
| 		}
 | |
| 
 | |
| 		if (! volume_ranges.empty()) 
 | |
| 		{
 | |
| 			bool equal_ranges = true;
 | |
| 			for (size_t i = 1; i < volume_ranges.size(); ++ i) {
 | |
| 				assert(! volume_ranges[i].empty());
 | |
| 				if (volume_ranges.front() != volume_ranges[i]) {
 | |
| 					equal_ranges = false;
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if (equal_ranges && volume_ranges.front().size() == 1 && volume_ranges.front().front() == t_layer_height_range(0, DBL_MAX)) {
 | |
| 				// No modifier in this region was split to layer spans.
 | |
| 				std::vector<const ModelVolume*> volumes;
 | |
| 				for (const std::pair<t_layer_height_range, int> &volume_and_range : this->region_volumes[region_id]) {
 | |
| 					const ModelVolume *volume = this->model_object()->volumes[volume_and_range.second];
 | |
| 					if (volume->is_modifier())
 | |
| 						volumes.emplace_back(volume);
 | |
| 				}
 | |
| 				out = this->slice_volumes(slice_zs, SlicingMode::Regular, volumes);
 | |
| 			} else {
 | |
| 				// Some modifier in this region was split to layer spans.
 | |
| 				std::vector<char> merge;
 | |
| 				for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
 | |
| 					const std::vector<std::pair<t_layer_height_range, int>> &volumes_and_ranges = this->region_volumes[region_id];
 | |
| 					for (size_t i = 0; i < volumes_and_ranges.size(); ) {
 | |
| 						int 			   volume_id    = volumes_and_ranges[i].second;
 | |
| 						const ModelVolume *model_volume = this->model_object()->volumes[volume_id];
 | |
| 						if (model_volume->is_modifier()) {
 | |
| 							BOOST_LOG_TRIVIAL(debug) << "Slicing modifiers - volume " << volume_id;
 | |
| 							// Find the ranges of this volume. Ranges in volumes_and_ranges must not overlap for a single volume.
 | |
| 							std::vector<t_layer_height_range> ranges;
 | |
| 							ranges.emplace_back(volumes_and_ranges[i].first);
 | |
| 							size_t j = i + 1;
 | |
| 							for (; j < volumes_and_ranges.size() && volume_id == volumes_and_ranges[j].second; ++ j)
 | |
| 								ranges.emplace_back(volumes_and_ranges[j].first);
 | |
| 			                // slicing in parallel
 | |
| 			                std::vector<ExPolygons> this_slices = this->slice_volume(slice_zs, ranges, SlicingMode::Regular, *model_volume);
 | |
| 			                if (out.empty()) {
 | |
| 			                	out = std::move(this_slices);
 | |
| 			                	merge.assign(out.size(), false);
 | |
| 			                } else {
 | |
| 			                	for (size_t i = 0; i < out.size(); ++ i)
 | |
|                                     if (! this_slices[i].empty()) {
 | |
| 			                			if (! out[i].empty()) {
 | |
| 			                				append(out[i], this_slices[i]);
 | |
| 			                				merge[i] = true;
 | |
| 			                			} else
 | |
| 			                				out[i] = std::move(this_slices[i]);
 | |
|                                     }
 | |
| 			                }
 | |
| 							i = j;
 | |
| 						} else
 | |
| 							++ i;
 | |
| 					}
 | |
| 				}
 | |
| 				for (size_t i = 0; i < merge.size(); ++ i)
 | |
| 					if (merge[i])
 | |
| 						out[i] = union_ex(out[i]);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return out;
 | |
| }
 | |
| 
 | |
| std::vector<ExPolygons> PrintObject::slice_support_volumes(const ModelVolumeType &model_volume_type) const
 | |
| {
 | |
|     std::vector<const ModelVolume*> volumes;
 | |
|     for (const ModelVolume *volume : this->model_object()->volumes)
 | |
|         if (volume->type() == model_volume_type)
 | |
|             volumes.emplace_back(volume);
 | |
|     std::vector<float> zs;
 | |
|     zs.reserve(this->layers().size());
 | |
|     for (const Layer *l : this->layers())
 | |
|         zs.emplace_back((float)l->slice_z);
 | |
|     return this->slice_volumes(zs, SlicingMode::Regular, volumes);
 | |
| }
 | |
| 
 | |
| std::vector<ExPolygons> PrintObject::slice_volumes(const std::vector<float> &z, SlicingMode mode, const std::vector<const ModelVolume*> &volumes) const
 | |
| {
 | |
|     std::vector<ExPolygons> layers;
 | |
|     if (! volumes.empty()) {
 | |
|         // Compose mesh.
 | |
|         //FIXME better to perform slicing over each volume separately and then to use a Boolean operation to merge them.
 | |
| 		TriangleMesh mesh(volumes.front()->mesh());
 | |
|         mesh.transform(volumes.front()->get_matrix(), true);
 | |
| 		assert(mesh.repaired);
 | |
| 		if (volumes.size() == 1 && mesh.repaired) {
 | |
| 			//FIXME The admesh repair function may break the face connectivity, rather refresh it here as the slicing code relies on it.
 | |
| 			stl_check_facets_exact(&mesh.stl);
 | |
| 		}
 | |
|         for (size_t idx_volume = 1; idx_volume < volumes.size(); ++ idx_volume) {
 | |
|             const ModelVolume &model_volume = *volumes[idx_volume];
 | |
|             TriangleMesh vol_mesh(model_volume.mesh());
 | |
|             vol_mesh.transform(model_volume.get_matrix(), true);
 | |
|             mesh.merge(vol_mesh);
 | |
|         }
 | |
|         if (mesh.stl.stats.number_of_facets > 0) {
 | |
|             mesh.transform(m_trafo, true);
 | |
|             // apply XY shift
 | |
|             mesh.translate(- unscale<float>(m_center_offset.x()), - unscale<float>(m_center_offset.y()), 0);
 | |
|             // perform actual slicing
 | |
|             const Print *print = this->print();
 | |
|             auto callback = TriangleMeshSlicer::throw_on_cancel_callback_type([print](){print->throw_if_canceled();});
 | |
|             // TriangleMeshSlicer needs shared vertices, also this calls the repair() function.
 | |
|             mesh.require_shared_vertices();
 | |
|             TriangleMeshSlicer mslicer;
 | |
|             mslicer.init(&mesh, callback);
 | |
| 			mslicer.slice(z, mode, float(m_config.slice_closing_radius.value), &layers, callback);
 | |
|             m_print->throw_if_canceled();
 | |
|         }
 | |
|     }
 | |
|     return layers;
 | |
| }
 | |
| 
 | |
| std::vector<ExPolygons> PrintObject::slice_volume(const std::vector<float> &z, SlicingMode mode, const ModelVolume &volume) const
 | |
| {
 | |
|     std::vector<ExPolygons> layers;
 | |
|     if (! z.empty()) {
 | |
| 	    // Compose mesh.
 | |
| 	    //FIXME better to split the mesh into separate shells, perform slicing over each shell separately and then to use a Boolean operation to merge them.
 | |
| 	    TriangleMesh mesh(volume.mesh());
 | |
| 	    mesh.transform(volume.get_matrix(), true);
 | |
| 		if (mesh.repaired) {
 | |
| 			//FIXME The admesh repair function may break the face connectivity, rather refresh it here as the slicing code relies on it.
 | |
| 			stl_check_facets_exact(&mesh.stl);
 | |
| 		}
 | |
| 	    if (mesh.stl.stats.number_of_facets > 0) {
 | |
| 	        mesh.transform(m_trafo, true);
 | |
| 	        // apply XY shift
 | |
| 	        mesh.translate(- unscale<float>(m_center_offset.x()), - unscale<float>(m_center_offset.y()), 0);
 | |
| 	        // perform actual slicing
 | |
| 	        TriangleMeshSlicer mslicer;
 | |
| 	        const Print *print = this->print();
 | |
| 	        auto callback = TriangleMeshSlicer::throw_on_cancel_callback_type([print](){print->throw_if_canceled();});
 | |
| 	        // TriangleMeshSlicer needs the shared vertices.
 | |
| 	        mesh.require_shared_vertices();
 | |
| 	        mslicer.init(&mesh, callback);
 | |
| 	        mslicer.slice(z, mode, float(m_config.slice_closing_radius.value), &layers, callback);
 | |
| 	        m_print->throw_if_canceled();
 | |
| 	    }
 | |
| 	}
 | |
|     return layers;
 | |
| }
 | |
| 
 | |
| // Filter the zs not inside the ranges. The ranges are closed at the botton and open at the top, they are sorted lexicographically and non overlapping.
 | |
| std::vector<ExPolygons> PrintObject::slice_volume(const std::vector<float> &z, const std::vector<t_layer_height_range> &ranges, SlicingMode mode, const ModelVolume &volume) const
 | |
| {
 | |
| 	std::vector<ExPolygons> out;
 | |
| 	if (! z.empty() && ! ranges.empty()) {
 | |
| 		if (ranges.size() == 1 && z.front() >= ranges.front().first && z.back() < ranges.front().second) {
 | |
| 			// All layers fit into a single range.
 | |
| 			out = this->slice_volume(z, mode, volume);
 | |
| 		} else {
 | |
| 			std::vector<float> 					   z_filtered;
 | |
| 			std::vector<std::pair<size_t, size_t>> n_filtered;
 | |
| 			z_filtered.reserve(z.size());
 | |
| 			n_filtered.reserve(2 * ranges.size());
 | |
| 			size_t i = 0;
 | |
| 			for (const t_layer_height_range &range : ranges) {
 | |
| 				for (; i < z.size() && z[i] < range.first; ++ i) ;
 | |
| 				size_t first = i;
 | |
| 				for (; i < z.size() && z[i] < range.second; ++ i)
 | |
| 					z_filtered.emplace_back(z[i]);
 | |
| 				if (i > first)
 | |
| 					n_filtered.emplace_back(std::make_pair(first, i));
 | |
| 			}
 | |
| 			if (! n_filtered.empty()) {
 | |
| 				std::vector<ExPolygons> layers = this->slice_volume(z_filtered, mode, volume);
 | |
| 				out.assign(z.size(), ExPolygons());
 | |
| 				i = 0;
 | |
| 				for (const std::pair<size_t, size_t> &span : n_filtered)
 | |
| 					for (size_t j = span.first; j < span.second; ++ j)
 | |
| 						out[j] = std::move(layers[i ++]);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return out;
 | |
| }
 | |
| 
 | |
| std::string PrintObject::_fix_slicing_errors()
 | |
| {
 | |
|     // Collect layers with slicing errors.
 | |
|     // These layers will be fixed in parallel.
 | |
|     std::vector<size_t> buggy_layers;
 | |
|     buggy_layers.reserve(m_layers.size());
 | |
|     for (size_t idx_layer = 0; idx_layer < m_layers.size(); ++ idx_layer)
 | |
|         if (m_layers[idx_layer]->slicing_errors)
 | |
|             buggy_layers.push_back(idx_layer);
 | |
| 
 | |
|     BOOST_LOG_TRIVIAL(debug) << "Slicing objects - fixing slicing errors in parallel - begin";
 | |
|     tbb::parallel_for(
 | |
|         tbb::blocked_range<size_t>(0, buggy_layers.size()),
 | |
|         [this, &buggy_layers](const tbb::blocked_range<size_t>& range) {
 | |
|             for (size_t buggy_layer_idx = range.begin(); buggy_layer_idx < range.end(); ++ buggy_layer_idx) {
 | |
|                 m_print->throw_if_canceled();
 | |
|                 size_t idx_layer = buggy_layers[buggy_layer_idx];
 | |
|                 Layer *layer     = m_layers[idx_layer];
 | |
|                 assert(layer->slicing_errors);
 | |
|                 // Try to repair the layer surfaces by merging all contours and all holes from neighbor layers.
 | |
|                 // BOOST_LOG_TRIVIAL(trace) << "Attempting to repair layer" << idx_layer;
 | |
|                 for (size_t region_id = 0; region_id < layer->m_regions.size(); ++ region_id) {
 | |
|                     LayerRegion *layerm = layer->m_regions[region_id];
 | |
|                     // Find the first valid layer below / above the current layer.
 | |
|                     const Surfaces *upper_surfaces = nullptr;
 | |
|                     const Surfaces *lower_surfaces = nullptr;
 | |
|                     for (size_t j = idx_layer + 1; j < m_layers.size(); ++ j)
 | |
|                         if (! m_layers[j]->slicing_errors) {
 | |
|                             upper_surfaces = &m_layers[j]->regions()[region_id]->slices.surfaces;
 | |
|                             break;
 | |
|                         }
 | |
|                     for (int j = int(idx_layer) - 1; j >= 0; -- j)
 | |
|                         if (! m_layers[j]->slicing_errors) {
 | |
|                             lower_surfaces = &m_layers[j]->regions()[region_id]->slices.surfaces;
 | |
|                             break;
 | |
|                         }
 | |
|                     // Collect outer contours and holes from the valid layers above & below.
 | |
|                     Polygons outer;
 | |
|                     outer.reserve(
 | |
|                         ((upper_surfaces == nullptr) ? 0 : upper_surfaces->size()) + 
 | |
|                         ((lower_surfaces == nullptr) ? 0 : lower_surfaces->size()));
 | |
|                     size_t num_holes = 0;
 | |
|                     if (upper_surfaces)
 | |
|                         for (const auto &surface : *upper_surfaces) {
 | |
|                             outer.push_back(surface.expolygon.contour);
 | |
|                             num_holes += surface.expolygon.holes.size();
 | |
|                         }
 | |
|                     if (lower_surfaces)
 | |
|                         for (const auto &surface : *lower_surfaces) {
 | |
|                             outer.push_back(surface.expolygon.contour);
 | |
|                             num_holes += surface.expolygon.holes.size();
 | |
|                         }
 | |
|                     Polygons holes;
 | |
|                     holes.reserve(num_holes);
 | |
|                     if (upper_surfaces)
 | |
|                         for (const auto &surface : *upper_surfaces)
 | |
|                             polygons_append(holes, surface.expolygon.holes);
 | |
|                     if (lower_surfaces)
 | |
|                         for (const auto &surface : *lower_surfaces)
 | |
|                             polygons_append(holes, surface.expolygon.holes);
 | |
|                     layerm->slices.set(diff_ex(union_(outer), holes, false), stInternal);
 | |
|                 }
 | |
|                 // Update layer slices after repairing the single regions.
 | |
|                 layer->make_slices();
 | |
|             }
 | |
|         });
 | |
|     m_print->throw_if_canceled();
 | |
|     BOOST_LOG_TRIVIAL(debug) << "Slicing objects - fixing slicing errors in parallel - end";
 | |
| 
 | |
|     // remove empty layers from bottom
 | |
|     while (! m_layers.empty() && (m_layers.front()->lslices.empty() || m_layers.front()->empty())) {
 | |
|         delete m_layers.front();
 | |
|         m_layers.erase(m_layers.begin());
 | |
|         m_layers.front()->lower_layer = nullptr;
 | |
|         for (size_t i = 0; i < m_layers.size(); ++ i)
 | |
|             m_layers[i]->set_id(m_layers[i]->id() - 1);
 | |
|     }
 | |
| 
 | |
|     return buggy_layers.empty() ? "" :
 | |
|         "The model has overlapping or self-intersecting facets. I tried to repair it, "
 | |
|         "however you might want to check the results or repair the input file and retry.\n";
 | |
| }
 | |
| 
 | |
| // Simplify the sliced model, if "resolution" configuration parameter > 0.
 | |
| // The simplification is problematic, because it simplifies the slices independent from each other,
 | |
| // which makes the simplified discretization visible on the object surface.
 | |
| void PrintObject::simplify_slices(double distance)
 | |
| {
 | |
|     BOOST_LOG_TRIVIAL(debug) << "Slicing objects - siplifying slices in parallel - begin";
 | |
|     tbb::parallel_for(
 | |
|         tbb::blocked_range<size_t>(0, m_layers.size()),
 | |
|         [this, distance](const tbb::blocked_range<size_t>& range) {
 | |
|             for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
 | |
|                 m_print->throw_if_canceled();
 | |
|                 Layer *layer = m_layers[layer_idx];
 | |
|                 for (size_t region_idx = 0; region_idx < layer->m_regions.size(); ++ region_idx)
 | |
|                     layer->m_regions[region_idx]->slices.simplify(distance);
 | |
| 				{
 | |
| 					ExPolygons simplified;
 | |
| 					for (const ExPolygon &expoly : layer->lslices)
 | |
| 						expoly.simplify(distance, &simplified);
 | |
| 					layer->lslices = std::move(simplified);
 | |
| 				}
 | |
|             }
 | |
|         });
 | |
|     BOOST_LOG_TRIVIAL(debug) << "Slicing objects - siplifying slices in parallel - end";
 | |
| }
 | |
| 
 | |
| // Only active if config->infill_only_where_needed. This step trims the sparse infill,
 | |
| // so it acts as an internal support. It maintains all other infill types intact.
 | |
| // Here the internal surfaces and perimeters have to be supported by the sparse infill.
 | |
| //FIXME The surfaces are supported by a sparse infill, but the sparse infill is only as large as the area to support.
 | |
| // Likely the sparse infill will not be anchored correctly, so it will not work as intended.
 | |
| // Also one wishes the perimeters to be supported by a full infill.
 | |
| // Idempotence of this method is guaranteed by the fact that we don't remove things from
 | |
| // fill_surfaces but we only turn them into VOID surfaces, thus preserving the boundaries.
 | |
| void PrintObject::clip_fill_surfaces()
 | |
| {
 | |
|     if (! m_config.infill_only_where_needed.value ||
 | |
|         ! std::any_of(this->print()->regions().begin(), this->print()->regions().end(), 
 | |
|             [](const PrintRegion *region) { return region->config().fill_density > 0; }))
 | |
|         return;
 | |
| 
 | |
|     // We only want infill under ceilings; this is almost like an
 | |
|     // internal support material.
 | |
|     // Proceed top-down, skipping the bottom layer.
 | |
|     Polygons upper_internal;
 | |
|     for (int layer_id = int(m_layers.size()) - 1; layer_id > 0; -- layer_id) {
 | |
|         Layer *layer       = m_layers[layer_id];
 | |
|         Layer *lower_layer = m_layers[layer_id - 1];
 | |
|         // Detect things that we need to support.
 | |
|         // Cummulative slices.
 | |
|         Polygons slices;
 | |
|         polygons_append(slices, layer->lslices);
 | |
|         // Cummulative fill surfaces.
 | |
|         Polygons fill_surfaces;
 | |
|         // Solid surfaces to be supported.
 | |
|         Polygons overhangs;
 | |
|         for (const LayerRegion *layerm : layer->m_regions)
 | |
|             for (const Surface &surface : layerm->fill_surfaces.surfaces) {
 | |
|                 Polygons polygons = to_polygons(surface.expolygon);
 | |
|                 if (surface.is_solid())
 | |
|                     polygons_append(overhangs, polygons);
 | |
|                 polygons_append(fill_surfaces, std::move(polygons));
 | |
|             }
 | |
|         Polygons lower_layer_fill_surfaces;
 | |
|         Polygons lower_layer_internal_surfaces;
 | |
|         for (const LayerRegion *layerm : lower_layer->m_regions)
 | |
|             for (const Surface &surface : layerm->fill_surfaces.surfaces) {
 | |
|                 Polygons polygons = to_polygons(surface.expolygon);
 | |
|                 if (surface.surface_type == stInternal || surface.surface_type == stInternalVoid)
 | |
|                     polygons_append(lower_layer_internal_surfaces, polygons);
 | |
|                 polygons_append(lower_layer_fill_surfaces, std::move(polygons));
 | |
|             }
 | |
|         // We also need to support perimeters when there's at least one full unsupported loop
 | |
|         {
 | |
|             // Get perimeters area as the difference between slices and fill_surfaces
 | |
|             // Only consider the area that is not supported by lower perimeters
 | |
|             Polygons perimeters = intersection(diff(slices, fill_surfaces), lower_layer_fill_surfaces);
 | |
|             // Only consider perimeter areas that are at least one extrusion width thick.
 | |
|             //FIXME Offset2 eats out from both sides, while the perimeters are create outside in.
 | |
|             //Should the pw not be half of the current value?
 | |
|             float pw = FLT_MAX;
 | |
|             for (const LayerRegion *layerm : layer->m_regions)
 | |
|                 pw = std::min(pw, (float)layerm->flow(frPerimeter).scaled_width());
 | |
|             // Append such thick perimeters to the areas that need support
 | |
|             polygons_append(overhangs, offset2(perimeters, -pw, +pw));
 | |
|         }
 | |
|         // Find new internal infill.
 | |
|         polygons_append(overhangs, std::move(upper_internal));
 | |
|         upper_internal = intersection(overhangs, lower_layer_internal_surfaces);
 | |
|         // Apply new internal infill to regions.
 | |
|         for (LayerRegion *layerm : lower_layer->m_regions) {
 | |
|             if (layerm->region()->config().fill_density.value == 0)
 | |
|                 continue;
 | |
|             SurfaceType internal_surface_types[] = { stInternal, stInternalVoid };
 | |
|             Polygons internal;
 | |
|             for (Surface &surface : layerm->fill_surfaces.surfaces)
 | |
|                 if (surface.surface_type == stInternal || surface.surface_type == stInternalVoid)
 | |
|                     polygons_append(internal, std::move(surface.expolygon));
 | |
|             layerm->fill_surfaces.remove_types(internal_surface_types, 2);
 | |
|             layerm->fill_surfaces.append(intersection_ex(internal, upper_internal, true), stInternal);
 | |
|             layerm->fill_surfaces.append(diff_ex        (internal, upper_internal, true), stInternalVoid);
 | |
|             // If there are voids it means that our internal infill is not adjacent to
 | |
|             // perimeters. In this case it would be nice to add a loop around infill to
 | |
|             // make it more robust and nicer. TODO.
 | |
| #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | |
|             layerm->export_region_fill_surfaces_to_svg_debug("6_clip_fill_surfaces");
 | |
| #endif
 | |
|         }
 | |
|         m_print->throw_if_canceled();
 | |
|     }
 | |
| }
 | |
| 
 | |
| void PrintObject::discover_horizontal_shells()
 | |
| {
 | |
|     BOOST_LOG_TRIVIAL(trace) << "discover_horizontal_shells()";
 | |
|     
 | |
|     for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
 | |
|         for (size_t i = 0; i < m_layers.size(); ++ i) {
 | |
|             m_print->throw_if_canceled();
 | |
|             Layer 					*layer  = m_layers[i];
 | |
|             LayerRegion             *layerm = layer->regions()[region_id];
 | |
|             const PrintRegionConfig ®ion_config = layerm->region()->config();
 | |
|             if (region_config.solid_infill_every_layers.value > 0 && region_config.fill_density.value > 0 &&
 | |
|                 (i % region_config.solid_infill_every_layers) == 0) {
 | |
|                 // Insert a solid internal layer. Mark stInternal surfaces as stInternalSolid or stInternalBridge.
 | |
|                 SurfaceType type = (region_config.fill_density == 100) ? stInternalSolid : stInternalBridge;
 | |
|                 for (Surface &surface : layerm->fill_surfaces.surfaces)
 | |
|                     if (surface.surface_type == stInternal)
 | |
|                         surface.surface_type = type;
 | |
|             }
 | |
| 
 | |
|             // If ensure_vertical_shell_thickness, then the rest has already been performed by discover_vertical_shells().
 | |
|             if (region_config.ensure_vertical_shell_thickness.value)
 | |
|                 continue;
 | |
|             
 | |
|             coordf_t print_z  = layer->print_z;
 | |
|             coordf_t bottom_z = layer->bottom_z();
 | |
|             for (size_t idx_surface_type = 0; idx_surface_type < 3; ++ idx_surface_type) {
 | |
|                 m_print->throw_if_canceled();
 | |
|                 SurfaceType type = (idx_surface_type == 0) ? stTop : (idx_surface_type == 1) ? stBottom : stBottomBridge;
 | |
|                 int num_solid_layers = (type == stTop) ? region_config.top_solid_layers.value : region_config.bottom_solid_layers.value;
 | |
|                 if (num_solid_layers == 0)
 | |
|                 	continue;
 | |
|                 // Find slices of current type for current layer.
 | |
|                 // Use slices instead of fill_surfaces, because they also include the perimeter area,
 | |
|                 // which needs to be propagated in shells; we need to grow slices like we did for
 | |
|                 // fill_surfaces though. Using both ungrown slices and grown fill_surfaces will
 | |
|                 // not work in some situations, as there won't be any grown region in the perimeter 
 | |
|                 // area (this was seen in a model where the top layer had one extra perimeter, thus
 | |
|                 // its fill_surfaces were thinner than the lower layer's infill), however it's the best
 | |
|                 // solution so far. Growing the external slices by EXTERNAL_INFILL_MARGIN will put
 | |
|                 // too much solid infill inside nearly-vertical slopes.
 | |
| 
 | |
|                 // Surfaces including the area of perimeters. Everything, that is visible from the top / bottom
 | |
|                 // (not covered by a layer above / below).
 | |
|                 // This does not contain the areas covered by perimeters!
 | |
|                 Polygons solid;
 | |
|                 for (const Surface &surface : layerm->slices.surfaces)
 | |
|                     if (surface.surface_type == type)
 | |
|                         polygons_append(solid, to_polygons(surface.expolygon));
 | |
|                 // Infill areas (slices without the perimeters).
 | |
|                 for (const Surface &surface : layerm->fill_surfaces.surfaces)
 | |
|                     if (surface.surface_type == type)
 | |
|                         polygons_append(solid, to_polygons(surface.expolygon));
 | |
|                 if (solid.empty())
 | |
|                     continue;
 | |
| //                Slic3r::debugf "Layer %d has %s surfaces\n", $i, ($type == stTop) ? 'top' : 'bottom';
 | |
|                 
 | |
|                 // Scatter top / bottom regions to other layers. Scattering process is inherently serial, it is difficult to parallelize without locking.
 | |
|                 for (int n = (type == stTop) ? int(i) - 1 : int(i) + 1;
 | |
|                 	(type == stTop) ?
 | |
|                 		(n >= 0                   && (int(i) - n < num_solid_layers || 
 | |
|                 								 	  print_z - m_layers[n]->print_z < region_config.top_solid_min_thickness.value - EPSILON)) :
 | |
|                 		(n < int(m_layers.size()) && (n - int(i) < num_solid_layers ||
 | |
|                 									  m_layers[n]->bottom_z() - bottom_z < region_config.bottom_solid_min_thickness.value - EPSILON));
 | |
|                 	(type == stTop) ? -- n : ++ n)
 | |
|                 {
 | |
| //                    Slic3r::debugf "  looking for neighbors on layer %d...\n", $n;                  
 | |
|                     // Reference to the lower layer of a TOP surface, or an upper layer of a BOTTOM surface.
 | |
|                     LayerRegion *neighbor_layerm = m_layers[n]->regions()[region_id];
 | |
|                     
 | |
|                     // find intersection between neighbor and current layer's surfaces
 | |
|                     // intersections have contours and holes
 | |
|                     // we update $solid so that we limit the next neighbor layer to the areas that were
 | |
|                     // found on this one - in other words, solid shells on one layer (for a given external surface)
 | |
|                     // are always a subset of the shells found on the previous shell layer
 | |
|                     // this approach allows for DWIM in hollow sloping vases, where we want bottom
 | |
|                     // shells to be generated in the base but not in the walls (where there are many
 | |
|                     // narrow bottom surfaces): reassigning $solid will consider the 'shadow' of the 
 | |
|                     // upper perimeter as an obstacle and shell will not be propagated to more upper layers
 | |
|                     //FIXME How does it work for stInternalBRIDGE? This is set for sparse infill. Likely this does not work.
 | |
|                     Polygons new_internal_solid;
 | |
|                     {
 | |
|                         Polygons internal;
 | |
|                         for (const Surface &surface : neighbor_layerm->fill_surfaces.surfaces)
 | |
|                             if (surface.surface_type == stInternal || surface.surface_type == stInternalSolid)
 | |
|                                 polygons_append(internal, to_polygons(surface.expolygon));
 | |
|                         new_internal_solid = intersection(solid, internal, true);
 | |
|                     }
 | |
|                     if (new_internal_solid.empty()) {
 | |
|                         // No internal solid needed on this layer. In order to decide whether to continue
 | |
|                         // searching on the next neighbor (thus enforcing the configured number of solid
 | |
|                         // layers, use different strategies according to configured infill density:
 | |
|                         if (region_config.fill_density.value == 0) {
 | |
|                             // If user expects the object to be void (for example a hollow sloping vase),
 | |
|                             // don't continue the search. In this case, we only generate the external solid
 | |
|                             // shell if the object would otherwise show a hole (gap between perimeters of 
 | |
|                             // the two layers), and internal solid shells are a subset of the shells found 
 | |
|                             // on each previous layer.
 | |
|                             goto EXTERNAL;
 | |
|                         } else {
 | |
|                             // If we have internal infill, we can generate internal solid shells freely.
 | |
|                             continue;
 | |
|                         }
 | |
|                     }
 | |
|                     
 | |
|                     if (region_config.fill_density.value == 0) {
 | |
|                         // if we're printing a hollow object we discard any solid shell thinner
 | |
|                         // than a perimeter width, since it's probably just crossing a sloping wall
 | |
|                         // and it's not wanted in a hollow print even if it would make sense when
 | |
|                         // obeying the solid shell count option strictly (DWIM!)
 | |
|                         float margin = float(neighbor_layerm->flow(frExternalPerimeter).scaled_width());
 | |
|                         Polygons too_narrow = diff(
 | |
|                             new_internal_solid, 
 | |
|                             offset2(new_internal_solid, -margin, +margin, jtMiter, 5), 
 | |
|                             true);
 | |
|                         // Trim the regularized region by the original region.
 | |
|                         if (! too_narrow.empty())
 | |
|                             new_internal_solid = solid = diff(new_internal_solid, too_narrow);
 | |
|                     }
 | |
| 
 | |
|                     // make sure the new internal solid is wide enough, as it might get collapsed
 | |
|                     // when spacing is added in Fill.pm
 | |
|                     {
 | |
|                         //FIXME Vojtech: Disable this and you will be sorry.
 | |
|                         // https://github.com/prusa3d/PrusaSlicer/issues/26 bottom
 | |
|                         float margin = 3.f * layerm->flow(frSolidInfill).scaled_width(); // require at least this size
 | |
|                         // we use a higher miterLimit here to handle areas with acute angles
 | |
|                         // in those cases, the default miterLimit would cut the corner and we'd
 | |
|                         // get a triangle in $too_narrow; if we grow it below then the shell
 | |
|                         // would have a different shape from the external surface and we'd still
 | |
|                         // have the same angle, so the next shell would be grown even more and so on.
 | |
|                         Polygons too_narrow = diff(
 | |
|                             new_internal_solid,
 | |
|                             offset2(new_internal_solid, -margin, +margin, ClipperLib::jtMiter, 5),
 | |
|                             true);
 | |
|                         if (! too_narrow.empty()) {
 | |
|                             // grow the collapsing parts and add the extra area to  the neighbor layer 
 | |
|                             // as well as to our original surfaces so that we support this 
 | |
|                             // additional area in the next shell too
 | |
|                             // make sure our grown surfaces don't exceed the fill area
 | |
|                             Polygons internal;
 | |
|                             for (const Surface &surface : neighbor_layerm->fill_surfaces.surfaces)
 | |
|                                 if (surface.is_internal() && !surface.is_bridge())
 | |
|                                     polygons_append(internal, to_polygons(surface.expolygon));
 | |
|                             polygons_append(new_internal_solid, 
 | |
|                                 intersection(
 | |
|                                     offset(too_narrow, +margin),
 | |
|                                     // Discard bridges as they are grown for anchoring and we can't
 | |
|                                     // remove such anchors. (This may happen when a bridge is being 
 | |
|                                     // anchored onto a wall where little space remains after the bridge
 | |
|                                     // is grown, and that little space is an internal solid shell so 
 | |
|                                     // it triggers this too_narrow logic.)
 | |
|                                     internal));
 | |
|                             // see https://github.com/prusa3d/PrusaSlicer/pull/3426
 | |
|                             // solid = new_internal_solid;
 | |
|                         }
 | |
|                     }
 | |
|                     
 | |
|                     // internal-solid are the union of the existing internal-solid surfaces
 | |
|                     // and new ones
 | |
|                     SurfaceCollection backup = std::move(neighbor_layerm->fill_surfaces);
 | |
|                     polygons_append(new_internal_solid, to_polygons(backup.filter_by_type(stInternalSolid)));
 | |
|                     ExPolygons internal_solid = union_ex(new_internal_solid, false);
 | |
|                     // assign new internal-solid surfaces to layer
 | |
|                     neighbor_layerm->fill_surfaces.set(internal_solid, stInternalSolid);
 | |
|                     // subtract intersections from layer surfaces to get resulting internal surfaces
 | |
|                     Polygons polygons_internal = to_polygons(std::move(internal_solid));
 | |
|                     ExPolygons internal = diff_ex(
 | |
|                         to_polygons(backup.filter_by_type(stInternal)),
 | |
|                         polygons_internal,
 | |
|                         true);
 | |
|                     // assign resulting internal surfaces to layer
 | |
|                     neighbor_layerm->fill_surfaces.append(internal, stInternal);
 | |
|                     polygons_append(polygons_internal, to_polygons(std::move(internal)));
 | |
|                     // assign top and bottom surfaces to layer
 | |
|                     SurfaceType surface_types_solid[] = { stTop, stBottom, stBottomBridge };
 | |
|                     backup.keep_types(surface_types_solid, 3);
 | |
|                     std::vector<SurfacesPtr> top_bottom_groups;
 | |
|                     backup.group(&top_bottom_groups);
 | |
|                     for (SurfacesPtr &group : top_bottom_groups)
 | |
|                         neighbor_layerm->fill_surfaces.append(
 | |
|                             diff_ex(to_polygons(group), polygons_internal),
 | |
|                             // Use an existing surface as a template, it carries the bridge angle etc.
 | |
|                             *group.front());
 | |
|                 }
 | |
| 		EXTERNAL:;
 | |
|             } // foreach type (stTop, stBottom, stBottomBridge)
 | |
|         } // for each layer
 | |
|     } // for each region
 | |
| 
 | |
| #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
 | |
|     for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
 | |
|         for (const Layer *layer : m_layers) {
 | |
|             const LayerRegion *layerm = layer->m_regions[region_id];
 | |
|             layerm->export_region_slices_to_svg_debug("5_discover_horizontal_shells");
 | |
|             layerm->export_region_fill_surfaces_to_svg_debug("5_discover_horizontal_shells");
 | |
|         } // for each layer
 | |
|     } // for each region
 | |
| #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
 | |
| }
 | |
| 
 | |
| // combine fill surfaces across layers to honor the "infill every N layers" option
 | |
| // Idempotence of this method is guaranteed by the fact that we don't remove things from
 | |
| // fill_surfaces but we only turn them into VOID surfaces, thus preserving the boundaries.
 | |
| void PrintObject::combine_infill()
 | |
| {
 | |
|     // Work on each region separately.
 | |
|     for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
 | |
|         const PrintRegion *region = this->print()->regions()[region_id];
 | |
|         const size_t every = region->config().infill_every_layers.value;
 | |
|         if (every < 2 || region->config().fill_density == 0.)
 | |
|             continue;
 | |
|         // Limit the number of combined layers to the maximum height allowed by this regions' nozzle.
 | |
|         //FIXME limit the layer height to max_layer_height
 | |
|         double nozzle_diameter = std::min(
 | |
|             this->print()->config().nozzle_diameter.get_at(region->config().infill_extruder.value - 1),
 | |
|             this->print()->config().nozzle_diameter.get_at(region->config().solid_infill_extruder.value - 1));
 | |
|         // define the combinations
 | |
|         std::vector<size_t> combine(m_layers.size(), 0);
 | |
|         {
 | |
|             double current_height = 0.;
 | |
|             size_t num_layers = 0;
 | |
|             for (size_t layer_idx = 0; layer_idx < m_layers.size(); ++ layer_idx) {
 | |
|                 m_print->throw_if_canceled();
 | |
|                 const Layer *layer = m_layers[layer_idx];
 | |
|                 if (layer->id() == 0)
 | |
|                     // Skip first print layer (which may not be first layer in array because of raft).
 | |
|                     continue;
 | |
|                 // Check whether the combination of this layer with the lower layers' buffer
 | |
|                 // would exceed max layer height or max combined layer count.
 | |
|                 if (current_height + layer->height >= nozzle_diameter + EPSILON || num_layers >= every) {
 | |
|                     // Append combination to lower layer.
 | |
|                     combine[layer_idx - 1] = num_layers;
 | |
|                     current_height = 0.;
 | |
|                     num_layers = 0;
 | |
|                 }
 | |
|                 current_height += layer->height;
 | |
|                 ++ num_layers;
 | |
|             }
 | |
|             
 | |
|             // Append lower layers (if any) to uppermost layer.
 | |
|             combine[m_layers.size() - 1] = num_layers;
 | |
|         }
 | |
|         
 | |
|         // loop through layers to which we have assigned layers to combine
 | |
|         for (size_t layer_idx = 0; layer_idx < m_layers.size(); ++ layer_idx) {
 | |
|             m_print->throw_if_canceled();
 | |
|             size_t num_layers = combine[layer_idx];
 | |
| 			if (num_layers <= 1)
 | |
|                 continue;
 | |
|             // Get all the LayerRegion objects to be combined.
 | |
|             std::vector<LayerRegion*> layerms;
 | |
|             layerms.reserve(num_layers);
 | |
| 			for (size_t i = layer_idx + 1 - num_layers; i <= layer_idx; ++ i)
 | |
|                 layerms.emplace_back(m_layers[i]->regions()[region_id]);
 | |
|             // We need to perform a multi-layer intersection, so let's split it in pairs.
 | |
|             // Initialize the intersection with the candidates of the lowest layer.
 | |
|             ExPolygons intersection = to_expolygons(layerms.front()->fill_surfaces.filter_by_type(stInternal));
 | |
|             // Start looping from the second layer and intersect the current intersection with it.
 | |
|             for (size_t i = 1; i < layerms.size(); ++ i)
 | |
|                 intersection = intersection_ex(
 | |
|                     to_polygons(intersection),
 | |
|                     to_polygons(layerms[i]->fill_surfaces.filter_by_type(stInternal)),
 | |
|                     false);
 | |
|             double area_threshold = layerms.front()->infill_area_threshold();
 | |
|             if (! intersection.empty() && area_threshold > 0.)
 | |
|                 intersection.erase(std::remove_if(intersection.begin(), intersection.end(), 
 | |
|                     [area_threshold](const ExPolygon &expoly) { return expoly.area() <= area_threshold; }), 
 | |
|                     intersection.end());
 | |
|             if (intersection.empty())
 | |
|                 continue;
 | |
| //            Slic3r::debugf "  combining %d %s regions from layers %d-%d\n",
 | |
| //                scalar(@$intersection),
 | |
| //                ($type == stInternal ? 'internal' : 'internal-solid'),
 | |
| //                $layer_idx-($every-1), $layer_idx;
 | |
|             // intersection now contains the regions that can be combined across the full amount of layers,
 | |
|             // so let's remove those areas from all layers.
 | |
|             Polygons intersection_with_clearance;
 | |
|             intersection_with_clearance.reserve(intersection.size());
 | |
|             float clearance_offset = 
 | |
|                 0.5f * layerms.back()->flow(frPerimeter).scaled_width() +
 | |
|              // Because fill areas for rectilinear and honeycomb are grown 
 | |
|              // later to overlap perimeters, we need to counteract that too.
 | |
|                 ((region->config().fill_pattern == ipRectilinear   ||
 | |
|                   region->config().fill_pattern == ipMonotonous    ||
 | |
|                   region->config().fill_pattern == ipGrid          ||
 | |
|                   region->config().fill_pattern == ipLine          ||
 | |
|                   region->config().fill_pattern == ipHoneycomb) ? 1.5f : 0.5f) * 
 | |
|                     layerms.back()->flow(frSolidInfill).scaled_width();
 | |
|             for (ExPolygon &expoly : intersection)
 | |
|                 polygons_append(intersection_with_clearance, offset(expoly, clearance_offset));
 | |
|             for (LayerRegion *layerm : layerms) {
 | |
|                 Polygons internal = to_polygons(layerm->fill_surfaces.filter_by_type(stInternal));
 | |
|                 layerm->fill_surfaces.remove_type(stInternal);
 | |
|                 layerm->fill_surfaces.append(diff_ex(internal, intersection_with_clearance, false), stInternal);
 | |
|                 if (layerm == layerms.back()) {
 | |
|                     // Apply surfaces back with adjusted depth to the uppermost layer.
 | |
|                     Surface templ(stInternal, ExPolygon());
 | |
|                     templ.thickness = 0.;
 | |
|                     for (LayerRegion *layerm2 : layerms)
 | |
|                         templ.thickness += layerm2->layer()->height;
 | |
|                     templ.thickness_layers = (unsigned short)layerms.size();
 | |
|                     layerm->fill_surfaces.append(intersection, templ);
 | |
|                 } else {
 | |
|                     // Save void surfaces.
 | |
|                     layerm->fill_surfaces.append(
 | |
|                         intersection_ex(internal, intersection_with_clearance, false),
 | |
|                         stInternalVoid);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void PrintObject::_generate_support_material()
 | |
| {
 | |
|     PrintObjectSupportMaterial support_material(this, m_slicing_params);
 | |
|     support_material.generate(*this);
 | |
| }
 | |
| 
 | |
| 
 | |
| void PrintObject::project_and_append_custom_supports(
 | |
|         FacetSupportType type, std::vector<ExPolygons>& expolys) const
 | |
| {
 | |
|     for (const ModelVolume* mv : this->model_object()->volumes) {
 | |
|         const std::vector<int> custom_facets = mv->m_supported_facets.get_facets(type);
 | |
|         if (custom_facets.empty())
 | |
|             continue;
 | |
| 
 | |
|         const TriangleMesh& mesh = mv->mesh();
 | |
|         const Transform3f& tr1 = mv->get_matrix().cast<float>();
 | |
|         const Transform3f& tr2 = this->trafo().cast<float>();
 | |
|         const Transform3f  tr  = tr2 * tr1;
 | |
| 
 | |
| 
 | |
|         // The projection will be at most a pentagon. Let's minimize heap
 | |
|         // reallocations by saving in in the following struct.
 | |
|         // Points are used so that scaling can be done in parallel
 | |
|         // and they can be moved from to create an ExPolygon later.
 | |
|         struct LightPolygon {
 | |
|             LightPolygon() { pts.reserve(5); }
 | |
|             Points pts;
 | |
| 
 | |
|             void add(const Vec2f& pt) {
 | |
|                 pts.emplace_back(scale_(pt.x()), scale_(pt.y()));
 | |
|                 assert(pts.size() <= 5);
 | |
|             }
 | |
|         };
 | |
| 
 | |
|         // Structure to collect projected polygons. One element for each triangle.
 | |
|         // Saves vector of polygons and layer_id of the first one.
 | |
|         struct TriangleProjections {
 | |
|             size_t first_layer_id;
 | |
|             std::vector<LightPolygon> polygons;
 | |
|         };
 | |
| 
 | |
|         // Vector to collect resulting projections from each triangle.
 | |
|         std::vector<TriangleProjections> projections_of_triangles(custom_facets.size());
 | |
| 
 | |
|         // Iterate over all triangles.
 | |
|         tbb::parallel_for(
 | |
|             tbb::blocked_range<size_t>(0, custom_facets.size()),
 | |
|             [&](const tbb::blocked_range<size_t>& range) {
 | |
|             for (size_t idx = range.begin(); idx < range.end(); ++ idx) {
 | |
| 
 | |
|             std::array<Vec3f, 3> facet;
 | |
| 
 | |
|             // Transform the triangle into worlds coords.
 | |
|             for (int i=0; i<3; ++i)
 | |
|                 facet[i] = tr * mesh.its.vertices[mesh.its.indices[custom_facets[idx]](i)];
 | |
| 
 | |
|             // Ignore triangles with upward-pointing normal.
 | |
|             if ((facet[1]-facet[0]).cross(facet[2]-facet[0]).z() > 0.)
 | |
|                 continue;
 | |
| 
 | |
|             // Sort the three vertices according to z-coordinate.
 | |
|             std::sort(facet.begin(), facet.end(),
 | |
|                       [](const Vec3f& pt1, const Vec3f&pt2) {
 | |
|                           return pt1.z() < pt2.z();
 | |
|                       });
 | |
| 
 | |
|             std::array<Vec2f, 3> trianglef;
 | |
|             for (int i=0; i<3; ++i) {
 | |
|                 trianglef[i] = Vec2f(facet[i].x(), facet[i].y());
 | |
|                 trianglef[i] += Vec2f(unscale<float>(this->center_offset().x()),
 | |
|                                       unscale<float>(this->center_offset().y()));
 | |
|             }
 | |
| 
 | |
|             // Find lowest slice not below the triangle.
 | |
|             auto it = std::lower_bound(layers().begin(), layers().end(), facet[0].z()+EPSILON,
 | |
|                           [](const Layer* l1, float z) {
 | |
|                                return l1->slice_z < z;
 | |
|                           });
 | |
| 
 | |
|             // Count how many projections will be generated for this triangle
 | |
|             // and allocate respective amount in projections_of_triangles.
 | |
|             projections_of_triangles[idx].first_layer_id = it-layers().begin();
 | |
|             size_t last_layer_id = projections_of_triangles[idx].first_layer_id;
 | |
|             // The cast in the condition below is important. The comparison must
 | |
|             // be an exact opposite of the one lower in the code where
 | |
|             // the polygons are appended. And that one is on floats.
 | |
|             while (last_layer_id + 1 < layers().size()
 | |
|                 && float(layers()[last_layer_id]->slice_z) <= facet[2].z())
 | |
|                 ++last_layer_id;
 | |
|             projections_of_triangles[idx].polygons.resize(
 | |
|                 last_layer_id - projections_of_triangles[idx].first_layer_id + 1);
 | |
| 
 | |
|             // Calculate how to move points on triangle sides per unit z increment.
 | |
|             Vec2f ta(trianglef[1] - trianglef[0]);
 | |
|             Vec2f tb(trianglef[2] - trianglef[0]);
 | |
|             ta *= 1./(facet[1].z() - facet[0].z());
 | |
|             tb *= 1./(facet[2].z() - facet[0].z());
 | |
| 
 | |
|             // Projection on current slice will be build directly in place.
 | |
|             LightPolygon* proj = &projections_of_triangles[idx].polygons[0];
 | |
|             proj->add(trianglef[0]);
 | |
| 
 | |
|             bool passed_first = false;
 | |
|             bool stop = false;
 | |
| 
 | |
|             // Project a sub-polygon on all slices intersecting the triangle.
 | |
|             while (it != layers().end()) {
 | |
|                 const float z = (*it)->slice_z;
 | |
| 
 | |
|                 // Projections of triangle sides intersections with slices.
 | |
|                 // a moves along one side, b tracks the other.
 | |
|                 Vec2f a;
 | |
|                 Vec2f b;
 | |
| 
 | |
|                 // If the middle vertex was already passed, append the vertex
 | |
|                 // and use ta for tracking the remaining side.
 | |
|                 if (z > facet[1].z() && ! passed_first) {
 | |
|                     proj->add(trianglef[1]);
 | |
|                     ta = trianglef[2]-trianglef[1];
 | |
|                     ta *= 1./(facet[2].z() - facet[1].z());
 | |
|                     passed_first = true;
 | |
|                 }
 | |
| 
 | |
|                 // This slice is above the triangle already.
 | |
|                 if (z > facet[2].z() || it+1 == layers().end()) {
 | |
|                     proj->add(trianglef[2]);
 | |
|                     stop = true;
 | |
|                 }
 | |
|                 else {
 | |
|                     // Move a, b along the side it currently tracks to get
 | |
|                     // projected intersection with current slice.
 | |
|                     a = passed_first ? (trianglef[1]+ta*(z-facet[1].z()))
 | |
|                                      : (trianglef[0]+ta*(z-facet[0].z()));
 | |
|                     b = trianglef[0]+tb*(z-facet[0].z());
 | |
|                     proj->add(a);
 | |
|                     proj->add(b);
 | |
|                 }
 | |
| 
 | |
|                if (stop)
 | |
|                     break;
 | |
| 
 | |
|                 // Advance to the next layer.
 | |
|                 ++it;
 | |
|                 ++proj;
 | |
|                 assert(proj <= &projections_of_triangles[idx].polygons.back() );
 | |
| 
 | |
|                 // a, b are first two points of the polygon for the next layer.
 | |
|                 proj->add(b);
 | |
|                 proj->add(a);
 | |
|             }
 | |
|         }
 | |
|         }); // end of parallel_for
 | |
| 
 | |
|         // Make sure that the output vector can be used.
 | |
|         expolys.resize(layers().size());
 | |
| 
 | |
|         // Now append the collected polygons to respective layers.
 | |
|         for (auto& trg : projections_of_triangles) {
 | |
|             int layer_id = trg.first_layer_id;
 | |
| 
 | |
|             for (const LightPolygon& poly : trg.polygons) {
 | |
|                 expolys[layer_id].emplace_back(std::move(poly.pts));
 | |
|                 ++layer_id;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|     } // loop over ModelVolumes
 | |
| }
 | |
| 
 | |
| } // namespace Slic3r
 | 
