mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-11-02 20:51:23 -07:00 
			
		
		
		
	
		
			
				
	
	
		
			536 lines
		
	
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			536 lines
		
	
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#include "igl/random_points_on_mesh.h"
 | 
						|
#include "igl/AABB.h"
 | 
						|
 | 
						|
#include <tbb/parallel_for.h>
 | 
						|
 | 
						|
#include "SLAAutoSupports.hpp"
 | 
						|
#include "Model.hpp"
 | 
						|
#include "ExPolygon.hpp"
 | 
						|
#include "SVG.hpp"
 | 
						|
#include "Point.hpp"
 | 
						|
#include "ClipperUtils.hpp"
 | 
						|
#include "Tesselate.hpp"
 | 
						|
#include "libslic3r.h"
 | 
						|
 | 
						|
#include <iostream>
 | 
						|
#include <random>
 | 
						|
 | 
						|
namespace Slic3r {
 | 
						|
 | 
						|
/*float SLAAutoSupports::approximate_geodesic_distance(const Vec3d& p1, const Vec3d& p2, Vec3d& n1, Vec3d& n2)
 | 
						|
{
 | 
						|
    n1.normalize();
 | 
						|
    n2.normalize();
 | 
						|
 | 
						|
    Vec3d v = (p2-p1);
 | 
						|
    v.normalize();
 | 
						|
 | 
						|
    float c1 = n1.dot(v);
 | 
						|
    float c2 = n2.dot(v);
 | 
						|
    float result = pow(p1(0)-p2(0), 2) + pow(p1(1)-p2(1), 2) + pow(p1(2)-p2(2), 2);
 | 
						|
    // Check for division by zero:
 | 
						|
    if(fabs(c1 - c2) > 0.0001)
 | 
						|
        result *= (asin(c1) - asin(c2)) / (c1 - c2);
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
float SLAAutoSupports::get_required_density(float angle) const
 | 
						|
{
 | 
						|
    // calculation would be density_0 * cos(angle). To provide one more degree of freedom, we will scale the angle
 | 
						|
    // to get the user-set density for 45 deg. So it ends up as density_0 * cos(K * angle).
 | 
						|
    float K = 4.f * float(acos(m_config.density_at_45/m_config.density_at_horizontal) / M_PI);
 | 
						|
    return std::max(0.f, float(m_config.density_at_horizontal * cos(K*angle)));
 | 
						|
}
 | 
						|
 | 
						|
float SLAAutoSupports::distance_limit(float angle) const
 | 
						|
{
 | 
						|
    return 1./(2.4*get_required_density(angle));
 | 
						|
}*/
 | 
						|
 | 
						|
SLAAutoSupports::SLAAutoSupports(const TriangleMesh& mesh, const sla::EigenMesh3D& emesh, const std::vector<ExPolygons>& slices, const std::vector<float>& heights,
 | 
						|
                                   const Config& config, std::function<void(void)> throw_on_cancel, std::function<void(int)> statusfn)
 | 
						|
: m_config(config), m_emesh(emesh), m_throw_on_cancel(throw_on_cancel), m_statusfn(statusfn)
 | 
						|
{
 | 
						|
    process(slices, heights);
 | 
						|
    project_onto_mesh(m_output);
 | 
						|
}
 | 
						|
 | 
						|
void SLAAutoSupports::project_onto_mesh(std::vector<sla::SupportPoint>& points) const
 | 
						|
{
 | 
						|
    // The function  makes sure that all the points are really exactly placed on the mesh.
 | 
						|
 | 
						|
    // Use a reasonable granularity to account for the worker thread synchronization cost.
 | 
						|
    tbb::parallel_for(tbb::blocked_range<size_t>(0, points.size(), 64),
 | 
						|
        [this, &points](const tbb::blocked_range<size_t>& range) {
 | 
						|
            for (size_t point_id = range.begin(); point_id < range.end(); ++ point_id) {
 | 
						|
                if ((point_id % 16) == 0)
 | 
						|
                    // Don't call the following function too often as it flushes CPU write caches due to synchronization primitves.
 | 
						|
                    m_throw_on_cancel();
 | 
						|
                Vec3f& p = points[point_id].pos;
 | 
						|
                // Project the point upward and downward and choose the closer intersection with the mesh.
 | 
						|
                //bool up   = igl::ray_mesh_intersect(p.cast<float>(), Vec3f(0., 0., 1.), m_V, m_F, hit_up);
 | 
						|
                //bool down = igl::ray_mesh_intersect(p.cast<float>(), Vec3f(0., 0., -1.), m_V, m_F, hit_down);
 | 
						|
 | 
						|
                sla::EigenMesh3D::hit_result hit_up   = m_emesh.query_ray_hit(p.cast<double>(), Vec3d(0., 0., 1.));
 | 
						|
                sla::EigenMesh3D::hit_result hit_down = m_emesh.query_ray_hit(p.cast<double>(), Vec3d(0., 0., -1.));
 | 
						|
 | 
						|
                bool up   = hit_up.face() != -1;
 | 
						|
                bool down = hit_down.face() != -1;
 | 
						|
 | 
						|
                if (!up && !down)
 | 
						|
                    continue;
 | 
						|
 | 
						|
                sla::EigenMesh3D::hit_result& hit = (!down || (hit_up.distance() < hit_down.distance())) ? hit_up : hit_down;
 | 
						|
                //int fid = hit.face();
 | 
						|
                //Vec3f bc(1-hit.u-hit.v, hit.u, hit.v);
 | 
						|
                //p = (bc(0) * m_V.row(m_F(fid, 0)) + bc(1) * m_V.row(m_F(fid, 1)) + bc(2)*m_V.row(m_F(fid, 2))).cast<float>();
 | 
						|
 | 
						|
                p = p + (hit.distance() * hit.direction()).cast<float>();
 | 
						|
            }
 | 
						|
        });
 | 
						|
}
 | 
						|
 | 
						|
static std::vector<SLAAutoSupports::MyLayer> make_layers(
 | 
						|
    const std::vector<ExPolygons>& slices, const std::vector<float>& heights,
 | 
						|
    std::function<void(void)> throw_on_cancel)
 | 
						|
{
 | 
						|
    assert(slices.size() == heights.size());
 | 
						|
 | 
						|
    // Allocate empty layers.
 | 
						|
    std::vector<SLAAutoSupports::MyLayer> layers;
 | 
						|
    layers.reserve(slices.size());
 | 
						|
    for (size_t i = 0; i < slices.size(); ++ i)
 | 
						|
		layers.emplace_back(i, heights[i]);
 | 
						|
 | 
						|
    // FIXME: calculate actual pixel area from printer config:
 | 
						|
    //const float pixel_area = pow(wxGetApp().preset_bundle->project_config.option<ConfigOptionFloat>("display_width") / wxGetApp().preset_bundle->project_config.option<ConfigOptionInt>("display_pixels_x"), 2.f); //
 | 
						|
    const float pixel_area = pow(0.047f, 2.f);
 | 
						|
 | 
						|
    // Use a reasonable granularity to account for the worker thread synchronization cost.
 | 
						|
    tbb::parallel_for(tbb::blocked_range<size_t>(0, layers.size(), 32),
 | 
						|
        [&layers, &slices, &heights, pixel_area, throw_on_cancel](const tbb::blocked_range<size_t>& range) {
 | 
						|
            for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id) {
 | 
						|
                if ((layer_id % 8) == 0)
 | 
						|
                    // Don't call the following function too often as it flushes CPU write caches due to synchronization primitves.
 | 
						|
                    throw_on_cancel();
 | 
						|
				SLAAutoSupports::MyLayer &layer   = layers[layer_id];
 | 
						|
                const ExPolygons		 &islands = slices[layer_id];
 | 
						|
                //FIXME WTF?
 | 
						|
                const float height = (layer_id>2 ? heights[layer_id-3] : heights[0]-(heights[1]-heights[0]));
 | 
						|
				layer.islands.reserve(islands.size());
 | 
						|
                for (const ExPolygon &island : islands) {
 | 
						|
                    float area = float(island.area() * SCALING_FACTOR * SCALING_FACTOR);
 | 
						|
                    if (area >= pixel_area)
 | 
						|
                        //FIXME this is not a correct centroid of a polygon with holes.
 | 
						|
						layer.islands.emplace_back(layer, island, get_extents(island.contour), Slic3r::unscale(island.contour.centroid()).cast<float>(), area, height);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        });
 | 
						|
 | 
						|
	// Calculate overlap of successive layers. Link overlapping islands.
 | 
						|
	tbb::parallel_for(tbb::blocked_range<size_t>(1, layers.size(), 8),
 | 
						|
		[&layers, &heights, throw_on_cancel](const tbb::blocked_range<size_t>& range) {
 | 
						|
		for (size_t layer_id = range.begin(); layer_id < range.end(); ++layer_id) {
 | 
						|
			if ((layer_id % 2) == 0)
 | 
						|
				// Don't call the following function too often as it flushes CPU write caches due to synchronization primitves.
 | 
						|
				throw_on_cancel();
 | 
						|
			SLAAutoSupports::MyLayer &layer_above = layers[layer_id];
 | 
						|
			SLAAutoSupports::MyLayer &layer_below = layers[layer_id - 1];
 | 
						|
            //FIXME WTF?
 | 
						|
            const float layer_height = (layer_id!=0 ? heights[layer_id]-heights[layer_id-1] : heights[0]);
 | 
						|
            const float safe_angle = 5.f * (float(M_PI)/180.f); // smaller number - less supports
 | 
						|
            const float between_layers_offset =  float(scale_(layer_height / std::tan(safe_angle)));
 | 
						|
            const float slope_angle = 75.f * (float(M_PI)/180.f); // smaller number - less supports
 | 
						|
            const float slope_offset = float(scale_(layer_height / std::tan(slope_angle)));
 | 
						|
			//FIXME This has a quadratic time complexity, it will be excessively slow for many tiny islands.
 | 
						|
			for (SLAAutoSupports::Structure &top : layer_above.islands) {
 | 
						|
				for (SLAAutoSupports::Structure &bottom : layer_below.islands) {
 | 
						|
                    float overlap_area = top.overlap_area(bottom);
 | 
						|
                    if (overlap_area > 0) {
 | 
						|
						top.islands_below.emplace_back(&bottom, overlap_area);
 | 
						|
                        bottom.islands_above.emplace_back(&top, overlap_area);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                if (! top.islands_below.empty()) {
 | 
						|
                    Polygons top_polygons    = to_polygons(*top.polygon);
 | 
						|
					Polygons bottom_polygons = top.polygons_below();
 | 
						|
                    top.overhangs = diff_ex(top_polygons, bottom_polygons);
 | 
						|
                    if (! top.overhangs.empty()) {
 | 
						|
                        top.overhangs_area = 0.f;
 | 
						|
                        std::vector<std::pair<ExPolygon*, float>> expolys_with_areas;
 | 
						|
                        for (ExPolygon &ex : top.overhangs) {
 | 
						|
                            float area = float(ex.area());
 | 
						|
                            expolys_with_areas.emplace_back(&ex, area);
 | 
						|
                            top.overhangs_area += area;
 | 
						|
                        }
 | 
						|
                        std::sort(expolys_with_areas.begin(), expolys_with_areas.end(), 
 | 
						|
                            [](const std::pair<ExPolygon*, float> &p1, const std::pair<ExPolygon*, float> &p2)
 | 
						|
                                { return p1.second > p2.second; });
 | 
						|
                        ExPolygons overhangs_sorted;
 | 
						|
                        for (auto &p : expolys_with_areas)
 | 
						|
                            overhangs_sorted.emplace_back(std::move(*p.first));
 | 
						|
						top.overhangs = std::move(overhangs_sorted);
 | 
						|
                        top.overhangs_area *= float(SCALING_FACTOR * SCALING_FACTOR);
 | 
						|
                        top.overhangs_slopes = diff_ex(top_polygons, offset(bottom_polygons, slope_offset));
 | 
						|
                        top.dangling_areas = diff_ex(top_polygons, offset(bottom_polygons, between_layers_offset));
 | 
						|
                    }
 | 
						|
                }
 | 
						|
			}
 | 
						|
		}
 | 
						|
	});
 | 
						|
 | 
						|
    return layers;
 | 
						|
}
 | 
						|
 | 
						|
void SLAAutoSupports::process(const std::vector<ExPolygons>& slices, const std::vector<float>& heights)
 | 
						|
{
 | 
						|
#ifdef SLA_AUTOSUPPORTS_DEBUG
 | 
						|
    std::vector<std::pair<ExPolygon, coord_t>> islands;
 | 
						|
#endif /* SLA_AUTOSUPPORTS_DEBUG */
 | 
						|
 | 
						|
    std::vector<SLAAutoSupports::MyLayer> layers = make_layers(slices, heights, m_throw_on_cancel);
 | 
						|
 | 
						|
    PointGrid3D point_grid;
 | 
						|
    point_grid.cell_size = Vec3f(10.f, 10.f, 10.f);
 | 
						|
 | 
						|
    double increment = 100.0 / layers.size();
 | 
						|
    double status    = 0;
 | 
						|
 | 
						|
    for (unsigned int layer_id = 0; layer_id < layers.size(); ++ layer_id) {
 | 
						|
        SLAAutoSupports::MyLayer *layer_top     = &layers[layer_id];
 | 
						|
        SLAAutoSupports::MyLayer *layer_bottom  = (layer_id > 0) ? &layers[layer_id - 1] : nullptr;
 | 
						|
        std::vector<float>        support_force_bottom;
 | 
						|
        if (layer_bottom != nullptr) {
 | 
						|
            support_force_bottom.assign(layer_bottom->islands.size(), 0.f);
 | 
						|
            for (size_t i = 0; i < layer_bottom->islands.size(); ++ i)
 | 
						|
                support_force_bottom[i] = layer_bottom->islands[i].supports_force_total();
 | 
						|
        }
 | 
						|
        for (Structure &top : layer_top->islands)
 | 
						|
			for (Structure::Link &bottom_link : top.islands_below) {
 | 
						|
                Structure &bottom = *bottom_link.island;
 | 
						|
                //float centroids_dist = (bottom.centroid - top.centroid).norm();
 | 
						|
                // Penalization resulting from centroid offset:
 | 
						|
//                  bottom.supports_force *= std::min(1.f, 1.f - std::min(1.f, (1600.f * layer_height) * centroids_dist * centroids_dist / bottom.area));
 | 
						|
                float &support_force = support_force_bottom[&bottom - layer_bottom->islands.data()];
 | 
						|
//FIXME this condition does not reflect a bifurcation into a one large island and one tiny island well, it incorrectly resets the support force to zero.
 | 
						|
// One should rather work with the overlap area vs overhang area.                
 | 
						|
//                support_force *= std::min(1.f, 1.f - std::min(1.f, 0.1f * centroids_dist * centroids_dist / bottom.area));
 | 
						|
                // Penalization resulting from increasing polygon area:
 | 
						|
                support_force *= std::min(1.f, 20.f * bottom.area / top.area);
 | 
						|
            }
 | 
						|
        // Let's assign proper support force to each of them:
 | 
						|
        if (layer_id > 0) {
 | 
						|
            for (Structure &below : layer_bottom->islands) {
 | 
						|
                float below_support_force = support_force_bottom[&below - layer_bottom->islands.data()];
 | 
						|
                float above_overlap_area = 0.f;
 | 
						|
				for (Structure::Link &above_link : below.islands_above)
 | 
						|
					above_overlap_area += above_link.overlap_area;
 | 
						|
				for (Structure::Link &above_link : below.islands_above)
 | 
						|
					above_link.island->supports_force_inherited += below_support_force * above_link.overlap_area / above_overlap_area;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        // Now iterate over all polygons and append new points if needed.
 | 
						|
        for (Structure &s : layer_top->islands) {
 | 
						|
            // Penalization resulting from large diff from the last layer:
 | 
						|
//            s.supports_force_inherited /= std::max(1.f, (layer_height / 0.3f) * e_area / s.area);
 | 
						|
            s.supports_force_inherited /= std::max(1.f, 0.17f * (s.overhangs_area) / s.area);
 | 
						|
 | 
						|
            //float force_deficit = s.support_force_deficit(m_config.tear_pressure());
 | 
						|
            if (s.islands_below.empty()) { // completely new island - needs support no doubt
 | 
						|
                uniformly_cover({ *s.polygon }, s, point_grid, true);
 | 
						|
            } else if (! s.dangling_areas.empty()) {
 | 
						|
                // Let's see if there's anything that overlaps enough to need supports:
 | 
						|
                // What we now have in polygons needs support, regardless of what the forces are, so we can add them.
 | 
						|
                //FIXME is it an island point or not? Vojtech thinks it is.
 | 
						|
                uniformly_cover(s.dangling_areas, s, point_grid);
 | 
						|
            } else if (! s.overhangs_slopes.empty()) {
 | 
						|
                //FIXME add the support force deficit as a parameter, only cover until the defficiency is covered.
 | 
						|
                uniformly_cover(s.overhangs_slopes, s, point_grid);
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        m_throw_on_cancel();
 | 
						|
 | 
						|
        status += increment;
 | 
						|
        m_statusfn(int(std::round(status)));
 | 
						|
 | 
						|
#ifdef SLA_AUTOSUPPORTS_DEBUG
 | 
						|
        /*std::string layer_num_str = std::string((i<10 ? "0" : "")) + std::string((i<100 ? "0" : "")) + std::to_string(i);
 | 
						|
        output_expolygons(expolys_top, "top" + layer_num_str + ".svg");
 | 
						|
        output_expolygons(diff, "diff" + layer_num_str + ".svg");
 | 
						|
        if (!islands.empty())
 | 
						|
            output_expolygons(islands, "islands" + layer_num_str + ".svg");*/
 | 
						|
#endif /* SLA_AUTOSUPPORTS_DEBUG */
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
std::vector<Vec2f> sample_expolygon(const ExPolygon &expoly, float samples_per_mm2, std::mt19937 &rng)
 | 
						|
{    
 | 
						|
    // Triangulate the polygon with holes into triplets of 3D points.
 | 
						|
    std::vector<Vec2f> triangles = Slic3r::triangulate_expolygon_2f(expoly);
 | 
						|
 | 
						|
    std::vector<Vec2f> out;
 | 
						|
    if (! triangles.empty())
 | 
						|
    {
 | 
						|
        // Calculate area of each triangle.
 | 
						|
        std::vector<float> areas;
 | 
						|
        areas.reserve(triangles.size() / 3);
 | 
						|
        for (size_t i = 0; i < triangles.size(); ) {
 | 
						|
            const Vec2f &a  = triangles[i ++];
 | 
						|
            const Vec2f  v1 = triangles[i ++] - a;
 | 
						|
            const Vec2f  v2 = triangles[i ++] - a;
 | 
						|
            areas.emplace_back(0.5f * std::abs(cross2(v1, v2)));
 | 
						|
            if (i != 3)
 | 
						|
                // Prefix sum of the areas.
 | 
						|
                areas.back() += areas[areas.size() - 2];
 | 
						|
        }
 | 
						|
 | 
						|
        size_t num_samples = size_t(ceil(areas.back() * samples_per_mm2));
 | 
						|
        std::uniform_real_distribution<> random_triangle(0., double(areas.back()));
 | 
						|
        std::uniform_real_distribution<> random_float(0., 1.);
 | 
						|
        for (size_t i = 0; i < num_samples; ++ i) {
 | 
						|
            double r = random_triangle(rng);
 | 
						|
            size_t idx_triangle = std::min<size_t>(std::upper_bound(areas.begin(), areas.end(), (float)r) - areas.begin(), areas.size() - 1) * 3;
 | 
						|
            // Select a random point on the triangle.
 | 
						|
            double u = float(sqrt(random_float(rng)));
 | 
						|
            double v = float(random_float(rng));
 | 
						|
            const Vec2f &a = triangles[idx_triangle ++];
 | 
						|
            const Vec2f &b = triangles[idx_triangle++];
 | 
						|
            const Vec2f &c = triangles[idx_triangle];
 | 
						|
            const Vec2f  x = a * (1.f - u) + b * (u * (1.f - v)) + c * (v * u);
 | 
						|
            out.emplace_back(x);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return out;
 | 
						|
}
 | 
						|
 | 
						|
std::vector<Vec2f> sample_expolygon_with_boundary(const ExPolygon &expoly, float samples_per_mm2, float samples_per_mm_boundary, std::mt19937 &rng)
 | 
						|
{
 | 
						|
    std::vector<Vec2f> out = sample_expolygon(expoly, samples_per_mm2, rng);
 | 
						|
    double             point_stepping_scaled = scale_(1.f) / samples_per_mm_boundary;
 | 
						|
    for (size_t i_contour = 0; i_contour <= expoly.holes.size(); ++ i_contour) {
 | 
						|
        const Polygon &contour = (i_contour == 0) ? expoly.contour : expoly.holes[i_contour - 1];
 | 
						|
        const Points   pts = contour.equally_spaced_points(point_stepping_scaled);
 | 
						|
        for (size_t i = 0; i < pts.size(); ++ i)
 | 
						|
            out.emplace_back(unscale<float>(pts[i].x()), unscale<float>(pts[i].y()));
 | 
						|
    }
 | 
						|
    return out;
 | 
						|
}
 | 
						|
 | 
						|
std::vector<Vec2f> sample_expolygon_with_boundary(const ExPolygons &expolys, float samples_per_mm2, float samples_per_mm_boundary, std::mt19937 &rng)
 | 
						|
{
 | 
						|
    std::vector<Vec2f> out;
 | 
						|
    for (const ExPolygon &expoly : expolys)
 | 
						|
        append(out, sample_expolygon_with_boundary(expoly, samples_per_mm2, samples_per_mm_boundary, rng));
 | 
						|
    return out;
 | 
						|
}
 | 
						|
 | 
						|
template<typename REFUSE_FUNCTION>
 | 
						|
static inline std::vector<Vec2f> poisson_disk_from_samples(const std::vector<Vec2f> &raw_samples, float radius, REFUSE_FUNCTION refuse_function)
 | 
						|
{
 | 
						|
    Vec2f corner_min(std::numeric_limits<float>::max(), std::numeric_limits<float>::max());
 | 
						|
    for (const Vec2f &pt : raw_samples) {
 | 
						|
        corner_min.x() = std::min(corner_min.x(), pt.x());
 | 
						|
        corner_min.y() = std::min(corner_min.y(), pt.y());
 | 
						|
    }
 | 
						|
 | 
						|
    // Assign the raw samples to grid cells, sort the grid cells lexicographically.
 | 
						|
    struct RawSample {
 | 
						|
        Vec2f coord;
 | 
						|
        Vec2i cell_id;
 | 
						|
    };
 | 
						|
    std::vector<RawSample> raw_samples_sorted;
 | 
						|
    RawSample sample;
 | 
						|
    for (const Vec2f &pt : raw_samples) {
 | 
						|
        sample.coord   = pt;
 | 
						|
        sample.cell_id = ((pt - corner_min) / radius).cast<int>();
 | 
						|
        raw_samples_sorted.emplace_back(sample);
 | 
						|
    }
 | 
						|
    std::sort(raw_samples_sorted.begin(), raw_samples_sorted.end(), [](const RawSample &lhs, const RawSample &rhs) 
 | 
						|
        { return lhs.cell_id.x() < rhs.cell_id.x() || (lhs.cell_id.x() == rhs.cell_id.x() && lhs.cell_id.y() < rhs.cell_id.y()); });
 | 
						|
 | 
						|
    struct PoissonDiskGridEntry {
 | 
						|
        // Resulting output sample points for this cell:
 | 
						|
        enum {
 | 
						|
            max_positions = 4
 | 
						|
        };
 | 
						|
        Vec2f   poisson_samples[max_positions];
 | 
						|
        int     num_poisson_samples = 0;
 | 
						|
 | 
						|
        // Index into raw_samples:
 | 
						|
        int     first_sample_idx;
 | 
						|
        int     sample_cnt;
 | 
						|
    };
 | 
						|
 | 
						|
    struct CellIDHash {
 | 
						|
        std::size_t operator()(const Vec2i &cell_id) const {
 | 
						|
            return std::hash<int>()(cell_id.x()) ^ std::hash<int>()(cell_id.y() * 593);
 | 
						|
        }
 | 
						|
    };
 | 
						|
 | 
						|
    // Map from cell IDs to hash_data.  Each hash_data points to the range in raw_samples corresponding to that cell.
 | 
						|
    // (We could just store the samples in hash_data.  This implementation is an artifact of the reference paper, which
 | 
						|
    // is optimizing for GPU acceleration that we haven't implemented currently.)
 | 
						|
    typedef std::unordered_map<Vec2i, PoissonDiskGridEntry, CellIDHash> Cells;
 | 
						|
    Cells cells;
 | 
						|
    {
 | 
						|
        typename Cells::iterator last_cell_id_it;
 | 
						|
        Vec2i           last_cell_id(-1, -1);
 | 
						|
        for (size_t i = 0; i < raw_samples_sorted.size(); ++ i) {
 | 
						|
            const RawSample &sample = raw_samples_sorted[i];
 | 
						|
            if (sample.cell_id == last_cell_id) {
 | 
						|
                // This sample is in the same cell as the previous, so just increase the count.  Cells are
 | 
						|
                // always contiguous, since we've sorted raw_samples_sorted by cell ID.
 | 
						|
                ++ last_cell_id_it->second.sample_cnt;
 | 
						|
            } else {
 | 
						|
                // This is a new cell.
 | 
						|
                PoissonDiskGridEntry data;
 | 
						|
                data.first_sample_idx = i;
 | 
						|
                data.sample_cnt       = 1;
 | 
						|
                auto result     = cells.insert({sample.cell_id, data});
 | 
						|
                last_cell_id    = sample.cell_id;
 | 
						|
                last_cell_id_it = result.first;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    const int   max_trials = 5;
 | 
						|
    const float radius_squared = radius * radius;
 | 
						|
    for (int trial = 0; trial < max_trials; ++ trial) {
 | 
						|
        // Create sample points for each entry in cells.
 | 
						|
        for (auto &it : cells) {
 | 
						|
            const Vec2i          &cell_id   = it.first;
 | 
						|
            PoissonDiskGridEntry &cell_data = it.second;
 | 
						|
            // This cell's raw sample points start at first_sample_idx.  On trial 0, try the first one. On trial 1, try first_sample_idx + 1.
 | 
						|
            int next_sample_idx = cell_data.first_sample_idx + trial;
 | 
						|
            if (trial >= cell_data.sample_cnt)
 | 
						|
                // There are no more points to try for this cell.
 | 
						|
                continue;
 | 
						|
            const RawSample &candidate = raw_samples_sorted[next_sample_idx];
 | 
						|
            // See if this point conflicts with any other points in this cell, or with any points in
 | 
						|
            // neighboring cells.  Note that it's possible to have more than one point in the same cell.
 | 
						|
            bool conflict = refuse_function(candidate.coord);
 | 
						|
            for (int i = -1; i < 2 && ! conflict; ++ i) {
 | 
						|
                for (int j = -1; j < 2; ++ j) {
 | 
						|
                    const auto &it_neighbor = cells.find(cell_id + Vec2i(i, j));
 | 
						|
                    if (it_neighbor != cells.end()) {
 | 
						|
                        const PoissonDiskGridEntry &neighbor = it_neighbor->second;
 | 
						|
                        for (int i_sample = 0; i_sample < neighbor.num_poisson_samples; ++ i_sample)
 | 
						|
                            if ((neighbor.poisson_samples[i_sample] - candidate.coord).squaredNorm() < radius_squared) {
 | 
						|
                                conflict = true;
 | 
						|
                                break;
 | 
						|
                            }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
            if (! conflict) {
 | 
						|
                // Store the new sample.
 | 
						|
                assert(cell_data.num_poisson_samples < cell_data.max_positions);
 | 
						|
                if (cell_data.num_poisson_samples < cell_data.max_positions)
 | 
						|
                    cell_data.poisson_samples[cell_data.num_poisson_samples ++] = candidate.coord;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // Copy the results to the output.
 | 
						|
    std::vector<Vec2f> out;
 | 
						|
    for (const auto& it : cells)
 | 
						|
        for (int i = 0; i < it.second.num_poisson_samples; ++ i)
 | 
						|
            out.emplace_back(it.second.poisson_samples[i]);
 | 
						|
    return out;
 | 
						|
}
 | 
						|
 | 
						|
void SLAAutoSupports::uniformly_cover(const ExPolygons& islands, Structure& structure, PointGrid3D &grid3d, bool is_new_island, bool just_one)
 | 
						|
{
 | 
						|
    //int num_of_points = std::max(1, (int)((island.area()*pow(SCALING_FACTOR, 2) * m_config.tear_pressure)/m_config.support_force));
 | 
						|
 | 
						|
    const float support_force_deficit = structure.support_force_deficit(m_config.tear_pressure());
 | 
						|
    if (support_force_deficit < 0)
 | 
						|
        return;
 | 
						|
 | 
						|
    // Number of newly added points.
 | 
						|
    const size_t poisson_samples_target = size_t(ceil(support_force_deficit / m_config.support_force()));
 | 
						|
 | 
						|
    const float density_horizontal = m_config.tear_pressure() / m_config.support_force();
 | 
						|
    //FIXME why?
 | 
						|
    float poisson_radius		= std::max(m_config.minimal_distance, 1.f / (5.f * density_horizontal));
 | 
						|
//    const float poisson_radius     = 1.f / (15.f * density_horizontal);
 | 
						|
    const float samples_per_mm2 = 30.f / (float(M_PI) * poisson_radius * poisson_radius);
 | 
						|
    // Minimum distance between samples, in 3D space.
 | 
						|
//    float min_spacing			= poisson_radius / 3.f;
 | 
						|
    float min_spacing			= poisson_radius;
 | 
						|
 | 
						|
    //FIXME share the random generator. The random generator may be not so cheap to initialize, also we don't want the random generator to be restarted for each polygon.
 | 
						|
    std::random_device  rd;
 | 
						|
    std::mt19937        rng(rd());
 | 
						|
	std::vector<Vec2f>  raw_samples = sample_expolygon_with_boundary(islands, samples_per_mm2, 5.f / poisson_radius, rng);
 | 
						|
    std::vector<Vec2f>  poisson_samples;
 | 
						|
    for (size_t iter = 0; iter < 4; ++ iter) {
 | 
						|
        poisson_samples = poisson_disk_from_samples(raw_samples, poisson_radius, 
 | 
						|
            [&structure, &grid3d, min_spacing](const Vec2f &pos) {
 | 
						|
                return grid3d.collides_with(pos, &structure, min_spacing);
 | 
						|
            });
 | 
						|
        if (poisson_samples.size() >= poisson_samples_target || m_config.minimal_distance > poisson_radius-EPSILON)
 | 
						|
            break;
 | 
						|
        float coeff = 0.5f;
 | 
						|
        if (poisson_samples.size() * 2 > poisson_samples_target)
 | 
						|
            coeff = float(poisson_samples.size()) / float(poisson_samples_target);
 | 
						|
        poisson_radius = std::max(m_config.minimal_distance, poisson_radius * coeff);
 | 
						|
        min_spacing    = std::max(m_config.minimal_distance, min_spacing * coeff);
 | 
						|
    }
 | 
						|
 | 
						|
#ifdef SLA_AUTOSUPPORTS_DEBUG
 | 
						|
	{
 | 
						|
		static int irun = 0;
 | 
						|
		Slic3r::SVG svg(debug_out_path("SLA_supports-uniformly_cover-%d.svg", irun ++), get_extents(islands));
 | 
						|
        for (const ExPolygon &island : islands)
 | 
						|
            svg.draw(island);
 | 
						|
		for (const Vec2f &pt : raw_samples)
 | 
						|
			svg.draw(Point(scale_(pt.x()), scale_(pt.y())), "red");
 | 
						|
		for (const Vec2f &pt : poisson_samples)
 | 
						|
			svg.draw(Point(scale_(pt.x()), scale_(pt.y())), "blue");
 | 
						|
	}
 | 
						|
#endif /* NDEBUG */
 | 
						|
 | 
						|
//    assert(! poisson_samples.empty());
 | 
						|
    if (poisson_samples_target < poisson_samples.size()) {
 | 
						|
		std::shuffle(poisson_samples.begin(), poisson_samples.end(), rng);
 | 
						|
        poisson_samples.erase(poisson_samples.begin() + poisson_samples_target, poisson_samples.end());
 | 
						|
    }
 | 
						|
    for (const Vec2f &pt : poisson_samples) {
 | 
						|
        m_output.emplace_back(float(pt(0)), float(pt(1)), structure.height, m_config.head_diameter/2.f, is_new_island);
 | 
						|
        structure.supports_force_this_layer += m_config.support_force();
 | 
						|
        grid3d.insert(pt, &structure);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#ifdef SLA_AUTOSUPPORTS_DEBUG
 | 
						|
void SLAAutoSupports::output_structures(const std::vector<Structure>& structures)
 | 
						|
{
 | 
						|
    for (unsigned int i=0 ; i<structures.size(); ++i) {
 | 
						|
        std::stringstream ss;
 | 
						|
        ss << structures[i].unique_id.count() << "_" << std::setw(10) << std::setfill('0') << 1000 + (int)structures[i].height/1000 << ".png";
 | 
						|
        output_expolygons(std::vector<ExPolygon>{*structures[i].polygon}, ss.str());
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void SLAAutoSupports::output_expolygons(const ExPolygons& expolys, const std::string &filename)
 | 
						|
{
 | 
						|
    BoundingBox bb(Point(-30000000, -30000000), Point(30000000, 30000000));
 | 
						|
    Slic3r::SVG svg_cummulative(filename, bb);
 | 
						|
    for (size_t i = 0; i < expolys.size(); ++ i) {
 | 
						|
        /*Slic3r::SVG svg("single"+std::to_string(i)+".svg", bb);
 | 
						|
        svg.draw(expolys[i]);
 | 
						|
        svg.draw_outline(expolys[i].contour, "black", scale_(0.05));
 | 
						|
        svg.draw_outline(expolys[i].holes, "blue", scale_(0.05));
 | 
						|
        svg.Close();*/
 | 
						|
 | 
						|
        svg_cummulative.draw(expolys[i]);
 | 
						|
        svg_cummulative.draw_outline(expolys[i].contour, "black", scale_(0.05));
 | 
						|
        svg_cummulative.draw_outline(expolys[i].holes, "blue", scale_(0.05));
 | 
						|
    }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
} // namespace Slic3r
 |