mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-10-30 20:21:12 -06:00 
			
		
		
		
	
		
			
				
	
	
		
			222 lines
		
	
	
	
		
			7.8 KiB
		
	
	
	
		
			Perl
		
	
	
	
	
	
			
		
		
	
	
			222 lines
		
	
	
	
		
			7.8 KiB
		
	
	
	
		
			Perl
		
	
	
	
	
	
| package Slic3r::STL;
 | |
| use Moo;
 | |
| 
 | |
| use CAD::Format::STL;
 | |
| use Math::Clipper qw(integerize_coordinate_sets is_counter_clockwise);
 | |
| use XXX;
 | |
| 
 | |
| use constant X => 0;
 | |
| use constant Y => 1;
 | |
| use constant Z => 2;
 | |
| use constant MIN => 0;
 | |
| use constant MAX => 1;
 | |
| 
 | |
| sub parse_file {
 | |
|     my $self = shift;
 | |
|     my ($file) = @_;
 | |
|     
 | |
|     # open STL file
 | |
|     my $stl = CAD::Format::STL->new->load($file);
 | |
|     
 | |
|     if ($Slic3r::rotate > 0) {
 | |
|         my $deg = Slic3r::Geometry::deg2rad($Slic3r::rotate);
 | |
|         foreach my $facet ($stl->part->facets) {
 | |
|             my ($normal, @vertices) = @$facet;
 | |
|             foreach my $vertex (@vertices) {
 | |
|                 @$vertex = (@{ +(Slic3r::Geometry::rotate_points($deg, undef, [ $vertex->[X], $vertex->[Y] ]))[0] }, $vertex->[Z]);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     
 | |
|     # we only want to work with positive coordinates, so let's 
 | |
|     # find our object extents to calculate coordinate displacements
 | |
|     my @extents = (map [99999999999, -99999999999], X,Y,Z);
 | |
|     foreach my $facet ($stl->part->facets) {
 | |
|         my ($normal, @vertices) = @$facet;
 | |
|         foreach my $vertex (@vertices) {
 | |
|             for (X,Y,Z) {
 | |
|                 $extents[$_][MIN] = $vertex->[$_] if $vertex->[$_] < $extents[$_][MIN];
 | |
|                 $extents[$_][MAX] = $vertex->[$_] if $vertex->[$_] > $extents[$_][MAX];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     
 | |
|     # scale extents
 | |
|     for (X,Y,Z) {
 | |
|         $extents[$_][MIN] *= $Slic3r::scale;
 | |
|         $extents[$_][MAX] *= $Slic3r::scale;
 | |
|     }
 | |
|     
 | |
|     # multiply object
 | |
|     my @multiply_offset = (
 | |
|         (($extents[X][MAX] - $extents[X][MIN]) + $Slic3r::multiply_distance),
 | |
|         (($extents[Y][MAX] - $extents[Y][MIN]) + $Slic3r::multiply_distance),
 | |
|     );
 | |
|     $extents[X][MAX] += $multiply_offset[X] * ($Slic3r::multiply_x-1);
 | |
|     $extents[Y][MAX] += $multiply_offset[Y] * ($Slic3r::multiply_y-1);
 | |
|     my @copies = ();
 | |
|     for (my $i = 0; $i < $Slic3r::multiply_x; $i++) {
 | |
|         for (my $j = 0; $j < $Slic3r::multiply_y; $j++) {
 | |
|             push @copies, [ $multiply_offset[X] * $i, $multiply_offset[Y] * $j ];
 | |
|         }
 | |
|     }
 | |
|     
 | |
|     # initialize print job
 | |
|     my $print = Slic3r::Print->new(
 | |
|         x_length => ($extents[X][MAX] - $extents[X][MIN]) / $Slic3r::resolution,
 | |
|         y_length => ($extents[Y][MAX] - $extents[Y][MIN]) / $Slic3r::resolution,
 | |
|     );
 | |
|     
 | |
|     # calculate the displacements needed to 
 | |
|     # have lowest value for each axis at coordinate 0
 | |
|     my @shift = map sprintf('%.0f', -$extents[$_][MIN] / $Slic3r::resolution), X,Y,Z;
 | |
|     
 | |
|     # process facets
 | |
|     foreach my $facet ($stl->part->facets) {
 | |
|         
 | |
|         # transform vertex coordinates
 | |
|         my ($normal, @vertices) = @$facet;
 | |
|         foreach my $vertex (@vertices) {
 | |
|             $vertex->[$_] = ($Slic3r::scale * $vertex->[$_] / $Slic3r::resolution) + $shift[$_]
 | |
|                 for X,Y,Z;
 | |
|             
 | |
|             # round Z coordinates; XY will be rounded automatically with coercion
 | |
|             $vertex->[Z] = sprintf('%.0f', $vertex->[Z]);
 | |
|         }
 | |
|         
 | |
|         foreach my $copy (@copies) {
 | |
|             my @copy_vertices = map [ @$_ ], @vertices;  # clone vertices
 | |
|             foreach my $vertex (@copy_vertices) {
 | |
|                 $vertex->[$_] += $copy->[$_] / $Slic3r::resolution for X,Y;
 | |
|             }
 | |
|             $self->_facet($print, $normal, @copy_vertices);
 | |
|         }
 | |
|     }
 | |
|         
 | |
|     return $print;
 | |
| }
 | |
| 
 | |
| sub _facet {
 | |
|     my $self = shift;
 | |
|     my ($print, $normal, @vertices) = @_;
 | |
|     Slic3r::debugf "\n==> FACET (%f,%f,%f - %f,%f,%f - %f,%f,%f):\n", map @$_, @vertices
 | |
|         if $Slic3r::debug;
 | |
|     
 | |
|     # find the vertical extents of the facet
 | |
|     my ($min_z, $max_z) = (99999999999, -99999999999);
 | |
|     foreach my $vertex (@vertices) {
 | |
|         $min_z = $vertex->[Z] if $vertex->[Z] < $min_z;
 | |
|         $max_z = $vertex->[Z] if $vertex->[Z] > $max_z;
 | |
|     }
 | |
|     Slic3r::debugf "z: min = %.0f, max = %.0f\n", $min_z, $max_z;
 | |
|     
 | |
|     # calculate the layer extents
 | |
|     my $min_layer = int($min_z * $Slic3r::resolution / $Slic3r::layer_height);
 | |
|     my $max_layer = int(0.99999 + ($max_z * $Slic3r::resolution / $Slic3r::layer_height));
 | |
|     
 | |
|     Slic3r::debugf "layers: min = %s, max = %s\n", $min_layer, $max_layer;
 | |
|     
 | |
|     # is the facet horizontal?
 | |
|     if ($min_layer == $max_layer) {
 | |
|         Slic3r::debugf "Facet is horizontal\n";
 | |
|         my $layer = $print->layer($min_layer);
 | |
|         my $surface = $layer->add_surface(@vertices);
 | |
|         
 | |
|         # to determine whether the surface is a top or bottom let's recompute
 | |
|         # the normal using the right-hand rule
 | |
|         # (this relies on the STL to be well-formed)
 | |
|         # recompute the normal using the right-hand rule
 | |
|         my $vertices_p = [@vertices];
 | |
|         integerize_coordinate_sets($vertices_p);
 | |
|         my $clockwise = !is_counter_clockwise($vertices_p);
 | |
|         
 | |
|         # defensive programming and/or input check
 | |
|         if (abs($normal->[Z]) == 1) {
 | |
|             # while the vertices may belong to the same layer, it doesn't mean the facet
 | |
|             # was horizontal in the original model; so this check makes sense only 
 | |
|             # if the original normal is exactly 1 or -1
 | |
|             if (($normal->[Z] > 0 && $clockwise) || ($normal->[Z] < 0 && !$clockwise)) {
 | |
|                 YYY $normal;
 | |
|                 die sprintf "STL normal (%.0f) and right-hand rule computation (%s) differ!\n",
 | |
|                     $normal->[Z], $clockwise ? 'clockwise' : 'counter-clockwise';
 | |
|             }
 | |
|         }
 | |
|         
 | |
|         if ($layer->id == 0 && !$clockwise) {
 | |
|             die "Right-hand rule gives bad result for facets on base layer!\n";
 | |
|         }
 | |
|         
 | |
|         $surface->surface_type($clockwise ? 'bottom' : 'top');
 | |
|         
 | |
|         return;
 | |
|     }
 | |
|     
 | |
|     for (my $layer_id = $min_layer; $layer_id <= $max_layer; $layer_id++) {
 | |
|         my $layer = $print->layer($layer_id);
 | |
|         $layer->add_line($_) for $self->intersect_facet(\@vertices, $layer->z);
 | |
|     }
 | |
| }
 | |
| 
 | |
| sub intersect_facet {
 | |
|     my $self = shift;
 | |
|     my ($vertices, $z) = @_;
 | |
|     
 | |
|     # build the three segments of the triangle facet
 | |
|     my @edges = (
 | |
|         [ $vertices->[0], $vertices->[1] ],
 | |
|         [ $vertices->[1], $vertices->[2] ],
 | |
|         [ $vertices->[2], $vertices->[0] ],
 | |
|     );
 | |
|     
 | |
|     my (@lines, @intersection_points) = ();
 | |
|         
 | |
|     foreach my $edge (@edges) {
 | |
|         my ($a, $b) = @$edge;
 | |
|         #printf "Az = %d, Bz = %d, z = %d\n", $a->[Z], $b->[Z], $z;
 | |
|         
 | |
|         if ($a->[Z] == $b->[Z] && $a->[Z] == $z) {
 | |
|             # edge is horizontal and belongs to the current layer
 | |
|             push @lines, [ [$a->[X], $a->[Y]], [$b->[X], $b->[Y]] ];
 | |
|             #print "Horizontal!\n";
 | |
|             
 | |
|         } elsif (($a->[Z] < $z && $b->[Z] > $z) || ($b->[Z] < $z && $a->[Z] > $z)) {
 | |
|             # edge intersects the current layer; calculate intersection
 | |
|             push @intersection_points, [
 | |
|                 $b->[X] + ($a->[X] - $b->[X]) * ($z - $b->[Z]) / ($a->[Z] - $b->[Z]),
 | |
|                 $b->[Y] + ($a->[Y] - $b->[Y]) * ($z - $b->[Z]) / ($a->[Z] - $b->[Z]),
 | |
|             ];
 | |
|             #print "Intersects!\n";
 | |
|             
 | |
|         } elsif ($a->[Z] == $z) {
 | |
|             #print "A point on plane!\n";
 | |
|             push @intersection_points, [ $a->[X], $a->[Y] ];
 | |
|             
 | |
|         } elsif ($b->[Z] == $z) {
 | |
|             #print "B point on plane!\n";
 | |
|             push @intersection_points, [ $b->[X], $b->[Y] ];
 | |
|         }
 | |
|     }
 | |
|     
 | |
|     Slic3r::Geometry::remove_coinciding_points(\@intersection_points);
 | |
|     
 | |
|     if (@intersection_points > 1 && !@lines) {
 | |
|         
 | |
|         # remove coinciding points
 | |
|         
 | |
|         # defensive programming:
 | |
|         die "Facets must intersect each plane 0 or 2 times" if @intersection_points != 2;
 | |
|         
 | |
|         # check whether the two points coincide due to resolution rounding
 | |
|         #if ($intersection_points[0]->coincides_with($intersection_points[1])) {
 | |
|         #    Slic3r::debugf "Points coincide; removing\n";
 | |
|         #    return;
 | |
|         #}
 | |
|         
 | |
|         # connect points:
 | |
|         push @lines, [ @intersection_points ];
 | |
|     }
 | |
|     
 | |
|     return @lines;
 | |
| }
 | |
| 
 | |
| 1;
 | 
