mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-10-30 20:21:12 -06:00 
			
		
		
		
	
		
			
				
	
	
		
			558 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			558 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "libslic3r/libslic3r.h"
 | |
| #include "libslic3r/AppConfig.hpp"
 | |
| 
 | |
| #include "Camera.hpp"
 | |
| #include "GUI_App.hpp"
 | |
| #if ENABLE_CAMERA_STATISTICS
 | |
| #include "Mouse3DController.hpp"
 | |
| #include "Plater.hpp"
 | |
| #endif // ENABLE_CAMERA_STATISTICS
 | |
| 
 | |
| #include <GL/glew.h>
 | |
| 
 | |
| namespace Slic3r {
 | |
| namespace GUI {
 | |
| 
 | |
| const double Camera::DefaultDistance = 1000.0;
 | |
| const double Camera::DefaultZoomToBoxMarginFactor = 1.025;
 | |
| const double Camera::DefaultZoomToVolumesMarginFactor = 1.025;
 | |
| double Camera::FrustrumMinZRange = 50.0;
 | |
| double Camera::FrustrumMinNearZ = 100.0;
 | |
| double Camera::FrustrumZMargin = 10.0;
 | |
| double Camera::MaxFovDeg = 60.0;
 | |
| 
 | |
| Camera::Camera()
 | |
|     : requires_zoom_to_bed(false)
 | |
| {
 | |
|     set_default_orientation();
 | |
| }
 | |
| 
 | |
| std::string Camera::get_type_as_string() const
 | |
| {
 | |
|     switch (m_type)
 | |
|     {
 | |
|     case Unknown:     return "unknown";
 | |
|     case Perspective: return "perspective";
 | |
|     default:
 | |
|     case Ortho:       return "orthographic";
 | |
|     };
 | |
| }
 | |
| 
 | |
| void Camera::set_type(EType type)
 | |
| {
 | |
|     if (m_type != type) {
 | |
|         m_type = type;
 | |
|         if (m_update_config_on_type_change_enabled) {
 | |
|             wxGetApp().app_config->set("use_perspective_camera", (m_type == Perspective) ? "1" : "0");
 | |
|             wxGetApp().app_config->save();
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Camera::set_type(const std::string& type)
 | |
| {
 | |
|     set_type((type == "1") ? Perspective : Ortho);
 | |
| }
 | |
| 
 | |
| void Camera::select_next_type()
 | |
| {
 | |
|     unsigned char next = (unsigned char)m_type + 1;
 | |
|     if (next == (unsigned char)Num_types)
 | |
|         next = 1;
 | |
| 
 | |
|     set_type((EType)next);
 | |
| }
 | |
| 
 | |
| void Camera::set_target(const Vec3d& target)
 | |
| {
 | |
|     Vec3d new_target = validate_target(target);
 | |
|     Vec3d new_displacement = new_target - m_target;
 | |
|     if (!new_displacement.isApprox(Vec3d::Zero()))
 | |
|     {
 | |
|         m_target = new_target;
 | |
|         m_view_matrix.translate(-new_displacement);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Camera::update_zoom(double delta_zoom)
 | |
| {
 | |
|     set_zoom(m_zoom / (1.0 - std::max(std::min(delta_zoom, 4.0), -4.0) * 0.1));
 | |
| }
 | |
| 
 | |
| void Camera::set_zoom(double zoom)
 | |
| {
 | |
|     // Don't allow to zoom too far outside the scene.
 | |
|     double zoom_min = min_zoom();
 | |
|     if (zoom_min > 0.0)
 | |
|         zoom = std::max(zoom, zoom_min);
 | |
| 
 | |
|     // Don't allow to zoom too close to the scene.
 | |
|     m_zoom = std::min(zoom, max_zoom());
 | |
| }
 | |
| 
 | |
| void Camera::select_view(const std::string& direction)
 | |
| {
 | |
|     if (direction == "iso")
 | |
|         set_default_orientation();
 | |
|     else if (direction == "left")
 | |
|         look_at(m_target - m_distance * Vec3d::UnitX(), m_target, Vec3d::UnitZ());
 | |
|     else if (direction == "right")
 | |
|         look_at(m_target + m_distance * Vec3d::UnitX(), m_target, Vec3d::UnitZ());
 | |
|     else if (direction == "top")
 | |
|         look_at(m_target + m_distance * Vec3d::UnitZ(), m_target, Vec3d::UnitY());
 | |
|     else if (direction == "bottom")
 | |
|         look_at(m_target - m_distance * Vec3d::UnitZ(), m_target, -Vec3d::UnitY());
 | |
|     else if (direction == "front")
 | |
|         look_at(m_target - m_distance * Vec3d::UnitY(), m_target, Vec3d::UnitZ());
 | |
|     else if (direction == "rear")
 | |
|         look_at(m_target + m_distance * Vec3d::UnitY(), m_target, Vec3d::UnitZ());
 | |
| }
 | |
| 
 | |
| double Camera::get_fov() const
 | |
| {
 | |
|     switch (m_type)
 | |
|     {
 | |
|     case Perspective:
 | |
|         return 2.0 * Geometry::rad2deg(std::atan(1.0 / m_projection_matrix.matrix()(1, 1)));
 | |
|     default:
 | |
|     case Ortho:
 | |
|         return 0.0;
 | |
|     };
 | |
| }
 | |
| 
 | |
| void Camera::apply_viewport(int x, int y, unsigned int w, unsigned int h) const
 | |
| {
 | |
|     glsafe(::glViewport(0, 0, w, h));
 | |
|     glsafe(::glGetIntegerv(GL_VIEWPORT, m_viewport.data()));
 | |
| }
 | |
| 
 | |
| void Camera::apply_view_matrix() const
 | |
| {
 | |
|     glsafe(::glMatrixMode(GL_MODELVIEW));
 | |
|     glsafe(::glLoadIdentity());
 | |
|     glsafe(::glMultMatrixd(m_view_matrix.data()));
 | |
| }
 | |
| 
 | |
| void Camera::apply_projection(const BoundingBoxf3& box, double near_z, double far_z) const
 | |
| {
 | |
|     double w = 0.0;
 | |
|     double h = 0.0;
 | |
| 
 | |
|     double old_distance = m_distance;
 | |
|     m_frustrum_zs = calc_tight_frustrum_zs_around(box);
 | |
|     if (m_distance != old_distance)
 | |
|         // the camera has been moved re-apply view matrix
 | |
|         apply_view_matrix();
 | |
| 
 | |
|     if (near_z > 0.0)
 | |
|         m_frustrum_zs.first = std::max(std::min(m_frustrum_zs.first, near_z), FrustrumMinNearZ);
 | |
| 
 | |
|     if (far_z > 0.0)
 | |
|         m_frustrum_zs.second = std::max(m_frustrum_zs.second, far_z);
 | |
| 
 | |
|     w = 0.5 * (double)m_viewport[2];
 | |
|     h = 0.5 * (double)m_viewport[3];
 | |
| 
 | |
|     double inv_zoom = get_inv_zoom();
 | |
|     w *= inv_zoom;
 | |
|     h *= inv_zoom;
 | |
| 
 | |
|     switch (m_type)
 | |
|     {
 | |
|     default:
 | |
|     case Ortho:
 | |
|     {
 | |
|         m_gui_scale = 1.0;
 | |
|         break;
 | |
|     }
 | |
|     case Perspective:
 | |
|     {
 | |
|         // scale near plane to keep w and h constant on the plane at z = m_distance
 | |
|         double scale = m_frustrum_zs.first / m_distance;
 | |
|         w *= scale;
 | |
|         h *= scale;
 | |
|         m_gui_scale = scale;
 | |
|         break;
 | |
|     }
 | |
|     }
 | |
| 
 | |
|     glsafe(::glMatrixMode(GL_PROJECTION));
 | |
|     glsafe(::glLoadIdentity());
 | |
| 
 | |
|     switch (m_type)
 | |
|     {
 | |
|     default:
 | |
|     case Ortho:
 | |
|     {
 | |
|         glsafe(::glOrtho(-w, w, -h, h, m_frustrum_zs.first, m_frustrum_zs.second));
 | |
|         break;
 | |
|     }
 | |
|     case Perspective:
 | |
|     {
 | |
|         glsafe(::glFrustum(-w, w, -h, h, m_frustrum_zs.first, m_frustrum_zs.second));
 | |
|         break;
 | |
|     }
 | |
|     }
 | |
| 
 | |
|     glsafe(::glGetDoublev(GL_PROJECTION_MATRIX, m_projection_matrix.data()));
 | |
|     glsafe(::glMatrixMode(GL_MODELVIEW));
 | |
| }
 | |
| 
 | |
| void Camera::zoom_to_box(const BoundingBoxf3& box, double margin_factor)
 | |
| {
 | |
|     // Calculate the zoom factor needed to adjust the view around the given box.
 | |
|     double zoom = calc_zoom_to_bounding_box_factor(box, margin_factor);
 | |
|     if (zoom > 0.0)
 | |
|     {
 | |
|         m_zoom = zoom;
 | |
|         // center view around box center
 | |
|         set_target(box.center());
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Camera::zoom_to_volumes(const GLVolumePtrs& volumes, double margin_factor)
 | |
| {
 | |
|     Vec3d center;
 | |
|     double zoom = calc_zoom_to_volumes_factor(volumes, center, margin_factor);
 | |
|     if (zoom > 0.0)
 | |
|     {
 | |
|         m_zoom = zoom;
 | |
|         // center view around the calculated center
 | |
|         set_target(center);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if ENABLE_CAMERA_STATISTICS
 | |
| void Camera::debug_render() const
 | |
| {
 | |
|     ImGuiWrapper& imgui = *wxGetApp().imgui();
 | |
|     imgui.begin(std::string("Camera statistics"), ImGuiWindowFlags_AlwaysAutoResize | ImGuiWindowFlags_NoResize | ImGuiWindowFlags_NoCollapse);
 | |
| 
 | |
|     std::string type = get_type_as_string();
 | |
|     if (wxGetApp().plater()->get_mouse3d_controller().connected() || (wxGetApp().app_config->get("use_free_camera") == "1"))
 | |
|         type += "/free";
 | |
|     else
 | |
|         type += "/constrained";
 | |
| 
 | |
|     Vec3f position = get_position().cast<float>();
 | |
|     Vec3f target = m_target.cast<float>();
 | |
|     float distance = (float)get_distance();
 | |
|     float zenit = (float)m_zenit;
 | |
|     Vec3f forward = get_dir_forward().cast<float>();
 | |
|     Vec3f right = get_dir_right().cast<float>();
 | |
|     Vec3f up = get_dir_up().cast<float>();
 | |
|     float nearZ = (float)m_frustrum_zs.first;
 | |
|     float farZ = (float)m_frustrum_zs.second;
 | |
|     float deltaZ = farZ - nearZ;
 | |
|     float zoom = (float)m_zoom;
 | |
|     float fov = (float)get_fov();
 | |
|     std::array<int, 4>viewport = get_viewport();
 | |
|     float gui_scale = (float)get_gui_scale();
 | |
| 
 | |
|     ImGui::InputText("Type", type.data(), type.length(), ImGuiInputTextFlags_ReadOnly);
 | |
|     ImGui::Separator();
 | |
|     ImGui::InputFloat3("Position", position.data(), "%.6f", ImGuiInputTextFlags_ReadOnly);
 | |
|     ImGui::InputFloat3("Target", target.data(), "%.6f", ImGuiInputTextFlags_ReadOnly);
 | |
|     ImGui::InputFloat("Distance", &distance, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly);
 | |
|     ImGui::Separator();
 | |
|     ImGui::InputFloat("Zenit", &zenit, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly);
 | |
|     ImGui::Separator();
 | |
|     ImGui::InputFloat3("Forward", forward.data(), "%.6f", ImGuiInputTextFlags_ReadOnly);
 | |
|     ImGui::InputFloat3("Right", right.data(), "%.6f", ImGuiInputTextFlags_ReadOnly);
 | |
|     ImGui::InputFloat3("Up", up.data(), "%.6f", ImGuiInputTextFlags_ReadOnly);
 | |
|     ImGui::Separator();
 | |
|     ImGui::InputFloat("Near Z", &nearZ, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly);
 | |
|     ImGui::InputFloat("Far Z", &farZ, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly);
 | |
|     ImGui::InputFloat("Delta Z", &deltaZ, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly);
 | |
|     ImGui::Separator();
 | |
|     ImGui::InputFloat("Zoom", &zoom, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly);
 | |
|     ImGui::InputFloat("Fov", &fov, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly);
 | |
|     ImGui::Separator();
 | |
|     ImGui::InputInt4("Viewport", viewport.data(), ImGuiInputTextFlags_ReadOnly);
 | |
|     ImGui::Separator();
 | |
|     ImGui::InputFloat("GUI scale", &gui_scale, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly);
 | |
|     imgui.end();
 | |
| }
 | |
| #endif // ENABLE_CAMERA_STATISTICS
 | |
| 
 | |
| void Camera::rotate_on_sphere(double delta_azimut_rad, double delta_zenit_rad, bool apply_limits)
 | |
| {
 | |
|     m_zenit += Geometry::rad2deg(delta_zenit_rad);
 | |
|     if (apply_limits) {
 | |
|         if (m_zenit > 90.0f) {
 | |
|             delta_zenit_rad -= Geometry::deg2rad(m_zenit - 90.0f);
 | |
|             m_zenit = 90.0f;
 | |
|         }
 | |
|         else if (m_zenit < -90.0f) {
 | |
|             delta_zenit_rad -= Geometry::deg2rad(m_zenit + 90.0f);
 | |
|             m_zenit = -90.0f;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     Vec3d translation = m_view_matrix.translation() + m_view_rotation * m_target;
 | |
|     auto rot_z = Eigen::AngleAxisd(delta_azimut_rad, Vec3d::UnitZ());
 | |
|     m_view_rotation *= rot_z * Eigen::AngleAxisd(delta_zenit_rad, rot_z.inverse() * get_dir_right());
 | |
|     m_view_rotation.normalize();
 | |
|     m_view_matrix.fromPositionOrientationScale(m_view_rotation * (- m_target) + translation, m_view_rotation, Vec3d(1., 1., 1.));
 | |
| }
 | |
| 
 | |
| // Virtual trackball, rotate around an axis, where the eucledian norm of the axis gives the rotation angle in radians.
 | |
| void Camera::rotate_local_around_target(const Vec3d& rotation_rad)
 | |
| {
 | |
|     double angle = rotation_rad.norm();
 | |
|     if (std::abs(angle) > EPSILON) {
 | |
| 	    Vec3d translation = m_view_matrix.translation() + m_view_rotation * m_target;
 | |
| 	    Vec3d axis        = m_view_rotation.conjugate() * rotation_rad.normalized();
 | |
|         m_view_rotation *= Eigen::Quaterniond(Eigen::AngleAxisd(angle, axis));
 | |
|         m_view_rotation.normalize();
 | |
| 	    m_view_matrix.fromPositionOrientationScale(m_view_rotation * (-m_target) + translation, m_view_rotation, Vec3d(1., 1., 1.));
 | |
| 	    update_zenit();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| double Camera::min_zoom() const
 | |
| {
 | |
|     return 0.7 * calc_zoom_to_bounding_box_factor(m_scene_box);
 | |
| }
 | |
| 
 | |
| std::pair<double, double> Camera::calc_tight_frustrum_zs_around(const BoundingBoxf3& box) const
 | |
| {
 | |
|     std::pair<double, double> ret;
 | |
|     auto& [near_z, far_z] = ret;
 | |
| 
 | |
|     // box in eye space
 | |
|     BoundingBoxf3 eye_box = box.transformed(m_view_matrix);
 | |
|     near_z = -eye_box.max(2);
 | |
|     far_z = -eye_box.min(2);
 | |
| 
 | |
|     // apply margin
 | |
|     near_z -= FrustrumZMargin;
 | |
|     far_z += FrustrumZMargin;
 | |
| 
 | |
|     // ensure min size
 | |
|     if (far_z - near_z < FrustrumMinZRange)
 | |
|     {
 | |
|         double mid_z = 0.5 * (near_z + far_z);
 | |
|         double half_size = 0.5 * FrustrumMinZRange;
 | |
|         near_z = mid_z - half_size;
 | |
|         far_z = mid_z + half_size;
 | |
|     }
 | |
| 
 | |
|     if (near_z < FrustrumMinNearZ)
 | |
|     {
 | |
|         float delta = FrustrumMinNearZ - near_z;
 | |
|         set_distance(m_distance + delta);
 | |
|         near_z += delta;
 | |
|         far_z += delta;
 | |
|     }
 | |
|     else if ((near_z > 2.0 * FrustrumMinNearZ) && (m_distance > DefaultDistance))
 | |
|     {
 | |
|         float delta = m_distance - DefaultDistance;
 | |
|         set_distance(DefaultDistance);
 | |
|         near_z -= delta;
 | |
|         far_z -= delta;
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| double Camera::calc_zoom_to_bounding_box_factor(const BoundingBoxf3& box, double margin_factor) const
 | |
| {
 | |
|     double max_bb_size = box.max_size();
 | |
|     if (max_bb_size == 0.0)
 | |
|         return -1.0;
 | |
| 
 | |
|     // project the box vertices on a plane perpendicular to the camera forward axis
 | |
|     // then calculates the vertices coordinate on this plane along the camera xy axes
 | |
| 
 | |
|     Vec3d right = get_dir_right();
 | |
|     Vec3d up = get_dir_up();
 | |
|     Vec3d forward = get_dir_forward();
 | |
| 
 | |
|     Vec3d bb_center = box.center();
 | |
| 
 | |
|     // box vertices in world space
 | |
|     std::vector<Vec3d> vertices;
 | |
|     vertices.reserve(8);
 | |
|     vertices.push_back(box.min);
 | |
|     vertices.emplace_back(box.max(0), box.min(1), box.min(2));
 | |
|     vertices.emplace_back(box.max(0), box.max(1), box.min(2));
 | |
|     vertices.emplace_back(box.min(0), box.max(1), box.min(2));
 | |
|     vertices.emplace_back(box.min(0), box.min(1), box.max(2));
 | |
|     vertices.emplace_back(box.max(0), box.min(1), box.max(2));
 | |
|     vertices.push_back(box.max);
 | |
|     vertices.emplace_back(box.min(0), box.max(1), box.max(2));
 | |
| 
 | |
|     double min_x = DBL_MAX;
 | |
|     double min_y = DBL_MAX;
 | |
|     double max_x = -DBL_MAX;
 | |
|     double max_y = -DBL_MAX;
 | |
| 
 | |
|     for (const Vec3d& v : vertices)
 | |
|     {
 | |
|         // project vertex on the plane perpendicular to camera forward axis
 | |
|         Vec3d pos = v - bb_center;
 | |
|         Vec3d proj_on_plane = pos - pos.dot(forward) * forward;
 | |
| 
 | |
|         // calculates vertex coordinate along camera xy axes
 | |
|         double x_on_plane = proj_on_plane.dot(right);
 | |
|         double y_on_plane = proj_on_plane.dot(up);
 | |
| 
 | |
|         min_x = std::min(min_x, x_on_plane);
 | |
|         min_y = std::min(min_y, y_on_plane);
 | |
|         max_x = std::max(max_x, x_on_plane);
 | |
|         max_y = std::max(max_y, y_on_plane);
 | |
|     }
 | |
| 
 | |
|     double dx = max_x - min_x;
 | |
|     double dy = max_y - min_y;
 | |
|     if ((dx <= 0.0) || (dy <= 0.0))
 | |
|         return -1.0f;
 | |
| 
 | |
|     dx *= margin_factor;
 | |
|     dy *= margin_factor;
 | |
| 
 | |
|     return std::min((double)m_viewport[2] / dx, (double)m_viewport[3] / dy);
 | |
| }
 | |
| 
 | |
| double Camera::calc_zoom_to_volumes_factor(const GLVolumePtrs& volumes, Vec3d& center, double margin_factor) const
 | |
| {
 | |
|     if (volumes.empty())
 | |
|         return -1.0;
 | |
| 
 | |
|     // project the volumes vertices on a plane perpendicular to the camera forward axis
 | |
|     // then calculates the vertices coordinate on this plane along the camera xy axes
 | |
| 
 | |
|     Vec3d right = get_dir_right();
 | |
|     Vec3d up = get_dir_up();
 | |
|     Vec3d forward = get_dir_forward();
 | |
| 
 | |
|     BoundingBoxf3 box;
 | |
|     for (const GLVolume* volume : volumes)
 | |
|     {
 | |
|         box.merge(volume->transformed_bounding_box());
 | |
|     }
 | |
|     center = box.center();
 | |
| 
 | |
|     double min_x = DBL_MAX;
 | |
|     double min_y = DBL_MAX;
 | |
|     double max_x = -DBL_MAX;
 | |
|     double max_y = -DBL_MAX;
 | |
| 
 | |
|     for (const GLVolume* volume : volumes)
 | |
|     {
 | |
|         const Transform3d& transform = volume->world_matrix();
 | |
|         const TriangleMesh* hull = volume->convex_hull();
 | |
|         if (hull == nullptr)
 | |
|             continue;
 | |
| 
 | |
|         for (const Vec3f& vertex : hull->its.vertices)
 | |
|         {
 | |
|             Vec3d v = transform * vertex.cast<double>();
 | |
| 
 | |
|             // project vertex on the plane perpendicular to camera forward axis
 | |
|             Vec3d pos = v - center;
 | |
|             Vec3d proj_on_plane = pos - pos.dot(forward) * forward;
 | |
| 
 | |
|             // calculates vertex coordinate along camera xy axes
 | |
|             double x_on_plane = proj_on_plane.dot(right);
 | |
|             double y_on_plane = proj_on_plane.dot(up);
 | |
| 
 | |
|             min_x = std::min(min_x, x_on_plane);
 | |
|             min_y = std::min(min_y, y_on_plane);
 | |
|             max_x = std::max(max_x, x_on_plane);
 | |
|             max_y = std::max(max_y, y_on_plane);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     center += 0.5 * (max_x + min_x) * right + 0.5 * (max_y + min_y) * up;
 | |
| 
 | |
|     double dx = margin_factor * (max_x - min_x);
 | |
|     double dy = margin_factor * (max_y - min_y);
 | |
| 
 | |
|     if ((dx <= 0.0) || (dy <= 0.0))
 | |
|         return -1.0f;
 | |
| 
 | |
|     return std::min((double)m_viewport[2] / dx, (double)m_viewport[3] / dy);
 | |
| }
 | |
| 
 | |
| void Camera::set_distance(double distance) const
 | |
| {
 | |
|     if (m_distance != distance)
 | |
|     {
 | |
|         m_view_matrix.translate((distance - m_distance) * get_dir_forward());
 | |
|         m_distance = distance;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Camera::look_at(const Vec3d& position, const Vec3d& target, const Vec3d& up)
 | |
| {
 | |
|     Vec3d unit_z = (position - target).normalized();
 | |
|     Vec3d unit_x = up.cross(unit_z).normalized();
 | |
|     Vec3d unit_y = unit_z.cross(unit_x).normalized();
 | |
| 
 | |
|     m_target = target;
 | |
|     m_distance = (position - target).norm();
 | |
|     Vec3d new_position = m_target + m_distance * unit_z;
 | |
| 
 | |
|     m_view_matrix(0, 0) = unit_x(0);
 | |
|     m_view_matrix(0, 1) = unit_x(1);
 | |
|     m_view_matrix(0, 2) = unit_x(2);
 | |
|     m_view_matrix(0, 3) = -unit_x.dot(new_position);
 | |
| 
 | |
|     m_view_matrix(1, 0) = unit_y(0);
 | |
|     m_view_matrix(1, 1) = unit_y(1);
 | |
|     m_view_matrix(1, 2) = unit_y(2);
 | |
|     m_view_matrix(1, 3) = -unit_y.dot(new_position);
 | |
| 
 | |
|     m_view_matrix(2, 0) = unit_z(0);
 | |
|     m_view_matrix(2, 1) = unit_z(1);
 | |
|     m_view_matrix(2, 2) = unit_z(2);
 | |
|     m_view_matrix(2, 3) = -unit_z.dot(new_position);
 | |
| 
 | |
|     m_view_matrix(3, 0) = 0.0;
 | |
|     m_view_matrix(3, 1) = 0.0;
 | |
|     m_view_matrix(3, 2) = 0.0;
 | |
|     m_view_matrix(3, 3) = 1.0;
 | |
| 
 | |
|     // Initialize the rotation quaternion from the rotation submatrix of of m_view_matrix.
 | |
|     m_view_rotation = Eigen::Quaterniond(m_view_matrix.matrix().template block<3, 3>(0, 0));
 | |
|     m_view_rotation.normalize();
 | |
| 
 | |
|     update_zenit();
 | |
| }
 | |
| 
 | |
| void Camera::set_default_orientation()
 | |
| {
 | |
|     m_zenit = 45.0f;
 | |
|     double theta_rad = Geometry::deg2rad(-(double)m_zenit);
 | |
|     double phi_rad = Geometry::deg2rad(45.0);
 | |
|     double sin_theta = ::sin(theta_rad);
 | |
|     Vec3d camera_pos = m_target + m_distance * Vec3d(sin_theta * ::sin(phi_rad), sin_theta * ::cos(phi_rad), ::cos(theta_rad));
 | |
|     m_view_rotation = Eigen::AngleAxisd(theta_rad, Vec3d::UnitX()) * Eigen::AngleAxisd(phi_rad, Vec3d::UnitZ());
 | |
|     m_view_rotation.normalize();
 | |
|     m_view_matrix.fromPositionOrientationScale(m_view_rotation * (- camera_pos), m_view_rotation, Vec3d(1., 1., 1.));
 | |
| }
 | |
| 
 | |
| Vec3d Camera::validate_target(const Vec3d& target) const
 | |
| {
 | |
|     BoundingBoxf3 test_box = m_scene_box;
 | |
|     test_box.translate(-m_scene_box.center());
 | |
|     // We may let this factor be customizable
 | |
|     static const double ScaleFactor = 1.5;
 | |
|     test_box.scale(ScaleFactor);
 | |
|     test_box.translate(m_scene_box.center());
 | |
| 
 | |
|     return Vec3d(std::clamp(target(0), test_box.min(0), test_box.max(0)),
 | |
|         std::clamp(target(1), test_box.min(1), test_box.max(1)),
 | |
|         std::clamp(target(2), test_box.min(2), test_box.max(2)));
 | |
| }
 | |
| 
 | |
| void Camera::update_zenit()
 | |
| {
 | |
|     m_zenit = Geometry::rad2deg(0.5 * M_PI - std::acos(std::clamp(-get_dir_forward().dot(Vec3d::UnitZ()), -1.0, 1.0)));
 | |
| }
 | |
| 
 | |
| } // GUI
 | |
| } // Slic3r
 | |
| 
 | 
