mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-11-02 12:41:18 -07:00 
			
		
		
		
	
		
			
				
	
	
		
			613 lines
		
	
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			613 lines
		
	
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#include <iostream>
 | 
						|
#include <vector>
 | 
						|
#include <unordered_map>
 | 
						|
#include <map>
 | 
						|
 | 
						|
#include "ItsNeighborIndex.hpp"
 | 
						|
#include "libslic3r/Execution/ExecutionTBB.hpp"
 | 
						|
#include "libslic3r/Execution/ExecutionSeq.hpp"
 | 
						|
 | 
						|
#include "tbb/parallel_sort.h"
 | 
						|
 | 
						|
namespace Slic3r {
 | 
						|
 | 
						|
FaceNeighborIndex its_create_neighbors_index_1(const indexed_triangle_set &its)
 | 
						|
{
 | 
						|
    // Just to be clear what type of object are we referencing
 | 
						|
    using FaceID = size_t;
 | 
						|
    using VertexID = uint64_t;
 | 
						|
    using EdgeID = uint64_t;
 | 
						|
 | 
						|
    constexpr auto UNASSIGNED = std::numeric_limits<FaceID>::max();
 | 
						|
 | 
						|
    struct Edge // Will contain IDs of the two facets touching this edge
 | 
						|
    {
 | 
						|
        FaceID first, second;
 | 
						|
        Edge() : first{UNASSIGNED}, second{UNASSIGNED} {}
 | 
						|
        void   assign(FaceID fid)
 | 
						|
        {
 | 
						|
            first == UNASSIGNED ? first = fid : second = fid;
 | 
						|
        }
 | 
						|
    };
 | 
						|
 | 
						|
    // All vertex IDs will fit into this number of bits. (Used for hashing)
 | 
						|
    const int max_vertex_id_bits = std::ceil(std::log2(its.vertices.size()));
 | 
						|
    assert(max_vertex_id_bits <= 32);
 | 
						|
 | 
						|
    std::unordered_map< EdgeID, Edge> edge_index;
 | 
						|
 | 
						|
    // Edge id is constructed by concatenating two vertex ids, starting with
 | 
						|
    // the lowest in MSB
 | 
						|
    auto hash = [max_vertex_id_bits] (VertexID a, VertexID b) {
 | 
						|
        if (a > b) std::swap(a, b);
 | 
						|
        return (a << max_vertex_id_bits) + b;
 | 
						|
    };
 | 
						|
 | 
						|
    // Go through all edges of all facets and mark the facets touching each edge
 | 
						|
    for (size_t face_id = 0; face_id < its.indices.size(); ++face_id) {
 | 
						|
        const Vec3i &face = its.indices[face_id];
 | 
						|
 | 
						|
        EdgeID e1 = hash(face(0), face(1)), e2 = hash(face(1), face(2)),
 | 
						|
               e3 = hash(face(2), face(0));
 | 
						|
 | 
						|
        edge_index[e1].assign(face_id);
 | 
						|
        edge_index[e2].assign(face_id);
 | 
						|
        edge_index[e3].assign(face_id);
 | 
						|
    }
 | 
						|
 | 
						|
    FaceNeighborIndex index(its.indices.size());
 | 
						|
 | 
						|
    // Now collect the neighbors for each facet into the final index
 | 
						|
    for (size_t face_id = 0; face_id < its.indices.size(); ++face_id) {
 | 
						|
        const Vec3i &face = its.indices[face_id];
 | 
						|
 | 
						|
        EdgeID e1 = hash(face(0), face(1)), e2 = hash(face(1), face(2)),
 | 
						|
               e3 = hash(face(2), face(0));
 | 
						|
 | 
						|
        const Edge &neighs1 = edge_index[e1];
 | 
						|
        const Edge &neighs2 = edge_index[e2];
 | 
						|
        const Edge &neighs3 = edge_index[e3];
 | 
						|
 | 
						|
        std::array<size_t, 3> &neighs = index[face_id];
 | 
						|
        neighs[0] = neighs1.first == face_id ? neighs1.second : neighs1.first;
 | 
						|
        neighs[1] = neighs2.first == face_id ? neighs2.second : neighs2.first;
 | 
						|
        neighs[2] = neighs3.first == face_id ? neighs3.second : neighs3.first;
 | 
						|
    }
 | 
						|
 | 
						|
    return index;
 | 
						|
}
 | 
						|
 | 
						|
std::vector<Vec3i> its_create_neighbors_index_2(const indexed_triangle_set &its)
 | 
						|
{
 | 
						|
    std::vector<Vec3i> out(its.indices.size(), Vec3i(-1, -1, -1));
 | 
						|
 | 
						|
    // Create a mapping from triangle edge into face.
 | 
						|
    struct EdgeToFace {
 | 
						|
        // Index of the 1st vertex of the triangle edge. vertex_low <= vertex_high.
 | 
						|
        int  vertex_low;
 | 
						|
        // Index of the 2nd vertex of the triangle edge.
 | 
						|
        int  vertex_high;
 | 
						|
        // Index of a triangular face.
 | 
						|
        int  face;
 | 
						|
        // Index of edge in the face, starting with 1. Negative indices if the edge was stored reverse in (vertex_low, vertex_high).
 | 
						|
        int  face_edge;
 | 
						|
        bool operator==(const EdgeToFace &other) const { return vertex_low == other.vertex_low && vertex_high == other.vertex_high; }
 | 
						|
        bool operator<(const EdgeToFace &other) const { return vertex_low < other.vertex_low || (vertex_low == other.vertex_low && vertex_high < other.vertex_high); }
 | 
						|
    };
 | 
						|
    std::vector<EdgeToFace> edges_map;
 | 
						|
    edges_map.assign(its.indices.size() * 3, EdgeToFace());
 | 
						|
    for (uint32_t facet_idx = 0; facet_idx < its.indices.size(); ++ facet_idx)
 | 
						|
        for (int i = 0; i < 3; ++ i) {
 | 
						|
            EdgeToFace &e2f = edges_map[facet_idx * 3 + i];
 | 
						|
            e2f.vertex_low  = its.indices[facet_idx][i];
 | 
						|
            e2f.vertex_high = its.indices[facet_idx][(i + 1) % 3];
 | 
						|
            e2f.face        = facet_idx;
 | 
						|
            // 1 based indexing, to be always strictly positive.
 | 
						|
            e2f.face_edge   = i + 1;
 | 
						|
            if (e2f.vertex_low > e2f.vertex_high) {
 | 
						|
                // Sort the vertices
 | 
						|
                std::swap(e2f.vertex_low, e2f.vertex_high);
 | 
						|
                // and make the face_edge negative to indicate a flipped edge.
 | 
						|
                e2f.face_edge = - e2f.face_edge;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
    std::sort(edges_map.begin(), edges_map.end());
 | 
						|
 | 
						|
    // Assign a unique common edge id to touching triangle edges.
 | 
						|
    int num_edges = 0;
 | 
						|
    for (size_t i = 0; i < edges_map.size(); ++ i) {
 | 
						|
        EdgeToFace &edge_i = edges_map[i];
 | 
						|
        if (edge_i.face == -1)
 | 
						|
            // This edge has been connected to some neighbor already.
 | 
						|
            continue;
 | 
						|
        // Unconnected edge. Find its neighbor with the correct orientation.
 | 
						|
        size_t j;
 | 
						|
        bool found = false;
 | 
						|
        for (j = i + 1; j < edges_map.size() && edge_i == edges_map[j]; ++ j)
 | 
						|
            if (edge_i.face_edge * edges_map[j].face_edge < 0 && edges_map[j].face != -1) {
 | 
						|
                // Faces touching with opposite oriented edges and none of the edges is connected yet.
 | 
						|
                found = true;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        if (! found) {
 | 
						|
            //FIXME Vojtech: Trying to find an edge with equal orientation. This smells.
 | 
						|
            // admesh can assign the same edge ID to more than two facets (which is
 | 
						|
            // still topologically correct), so we have to search for a duplicate of
 | 
						|
            // this edge too in case it was already seen in this orientation
 | 
						|
            for (j = i + 1; j < edges_map.size() && edge_i == edges_map[j]; ++ j)
 | 
						|
                if (edges_map[j].face != -1) {
 | 
						|
                    // Faces touching with equally oriented edges and none of the edges is connected yet.
 | 
						|
                    found = true;
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
        }
 | 
						|
        // Assign an edge index to the 1st face.
 | 
						|
        //        out[edge_i.face](std::abs(edge_i.face_edge) - 1) = num_edges;
 | 
						|
        if (found) {
 | 
						|
            EdgeToFace &edge_j = edges_map[j];
 | 
						|
            out[edge_i.face](std::abs(edge_i.face_edge) - 1) = edge_j.face;
 | 
						|
            out[edge_j.face](std::abs(edge_j.face_edge) - 1) = edge_i.face;
 | 
						|
            // Mark the edge as connected.
 | 
						|
            edge_j.face = -1;
 | 
						|
        }
 | 
						|
        ++ num_edges;
 | 
						|
    }
 | 
						|
 | 
						|
    return out;
 | 
						|
}
 | 
						|
 | 
						|
std::vector<Vec3i> its_create_neighbors_index_3(const indexed_triangle_set &its)
 | 
						|
{
 | 
						|
    std::vector<Vec3i> out(its.indices.size(), Vec3i(-1, -1, -1));
 | 
						|
 | 
						|
    // Create a mapping from triangle edge into face.
 | 
						|
    struct EdgeToFace {
 | 
						|
        // Index of the 1st vertex of the triangle edge. vertex_low <= vertex_high.
 | 
						|
        int  vertex_low;
 | 
						|
        // Index of the 2nd vertex of the triangle edge.
 | 
						|
        int  vertex_high;
 | 
						|
        // Index of a triangular face.
 | 
						|
        int  face;
 | 
						|
        // Index of edge in the face, starting with 1. Negative indices if the edge was stored reverse in (vertex_low, vertex_high).
 | 
						|
        int  face_edge;
 | 
						|
        bool operator==(const EdgeToFace &other) const { return vertex_low == other.vertex_low && vertex_high == other.vertex_high; }
 | 
						|
        bool operator<(const EdgeToFace &other) const { return vertex_low < other.vertex_low || (vertex_low == other.vertex_low && vertex_high < other.vertex_high); }
 | 
						|
    };
 | 
						|
    std::vector<EdgeToFace> edges_map;
 | 
						|
    edges_map.assign(its.indices.size() * 3, EdgeToFace());
 | 
						|
    for (uint32_t facet_idx = 0; facet_idx < its.indices.size(); ++ facet_idx)
 | 
						|
        for (int i = 0; i < 3; ++ i) {
 | 
						|
            EdgeToFace &e2f = edges_map[facet_idx * 3 + i];
 | 
						|
            e2f.vertex_low  = its.indices[facet_idx][i];
 | 
						|
            e2f.vertex_high = its.indices[facet_idx][(i + 1) % 3];
 | 
						|
            e2f.face        = facet_idx;
 | 
						|
            // 1 based indexing, to be always strictly positive.
 | 
						|
            e2f.face_edge   = i + 1;
 | 
						|
            if (e2f.vertex_low > e2f.vertex_high) {
 | 
						|
                // Sort the vertices
 | 
						|
                std::swap(e2f.vertex_low, e2f.vertex_high);
 | 
						|
                // and make the face_edge negative to indicate a flipped edge.
 | 
						|
                e2f.face_edge = - e2f.face_edge;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
    tbb::parallel_sort(edges_map.begin(), edges_map.end());
 | 
						|
 | 
						|
    // Assign a unique common edge id to touching triangle edges.
 | 
						|
    int num_edges = 0;
 | 
						|
    for (size_t i = 0; i < edges_map.size(); ++ i) {
 | 
						|
        EdgeToFace &edge_i = edges_map[i];
 | 
						|
        if (edge_i.face == -1)
 | 
						|
            // This edge has been connected to some neighbor already.
 | 
						|
            continue;
 | 
						|
        // Unconnected edge. Find its neighbor with the correct orientation.
 | 
						|
        size_t j;
 | 
						|
        bool found = false;
 | 
						|
        for (j = i + 1; j < edges_map.size() && edge_i == edges_map[j]; ++ j)
 | 
						|
            if (edge_i.face_edge * edges_map[j].face_edge < 0 && edges_map[j].face != -1) {
 | 
						|
                // Faces touching with opposite oriented edges and none of the edges is connected yet.
 | 
						|
                found = true;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        if (! found) {
 | 
						|
            //FIXME Vojtech: Trying to find an edge with equal orientation. This smells.
 | 
						|
            // admesh can assign the same edge ID to more than two facets (which is
 | 
						|
            // still topologically correct), so we have to search for a duplicate of
 | 
						|
            // this edge too in case it was already seen in this orientation
 | 
						|
            for (j = i + 1; j < edges_map.size() && edge_i == edges_map[j]; ++ j)
 | 
						|
                if (edges_map[j].face != -1) {
 | 
						|
                    // Faces touching with equally oriented edges and none of the edges is connected yet.
 | 
						|
                    found = true;
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
        }
 | 
						|
        // Assign an edge index to the 1st face.
 | 
						|
        //        out[edge_i.face](std::abs(edge_i.face_edge) - 1) = num_edges;
 | 
						|
        if (found) {
 | 
						|
            EdgeToFace &edge_j = edges_map[j];
 | 
						|
            out[edge_i.face](std::abs(edge_i.face_edge) - 1) = edge_j.face;
 | 
						|
            out[edge_j.face](std::abs(edge_j.face_edge) - 1) = edge_i.face;
 | 
						|
            // Mark the edge as connected.
 | 
						|
            edge_j.face = -1;
 | 
						|
        }
 | 
						|
        ++ num_edges;
 | 
						|
    }
 | 
						|
 | 
						|
    return out;
 | 
						|
}
 | 
						|
 | 
						|
FaceNeighborIndex its_create_neighbors_index_4(const indexed_triangle_set &its)
 | 
						|
{
 | 
						|
    // Just to be clear what type of object are we referencing
 | 
						|
    using FaceID = size_t;
 | 
						|
    using VertexID = uint64_t;
 | 
						|
    using EdgeID = uint64_t;
 | 
						|
 | 
						|
    constexpr auto UNASSIGNED = std::numeric_limits<FaceID>::max();
 | 
						|
 | 
						|
    struct Edge // Will contain IDs of the two facets touching this edge
 | 
						|
    {
 | 
						|
        FaceID first, second;
 | 
						|
        Edge() : first{UNASSIGNED}, second{UNASSIGNED} {}
 | 
						|
        void   assign(FaceID fid)
 | 
						|
        {
 | 
						|
            first == UNASSIGNED ? first = fid : second = fid;
 | 
						|
        }
 | 
						|
    };
 | 
						|
 | 
						|
    Benchmark bm;
 | 
						|
    bm.start();
 | 
						|
 | 
						|
    // All vertex IDs will fit into this number of bits. (Used for hashing)
 | 
						|
    //    const int max_vertex_id_bits = std::ceil(std::log2(its.vertices.size()));
 | 
						|
    //    assert(max_vertex_id_bits <= 32);
 | 
						|
 | 
						|
    const uint64_t Vn  = its.vertices.size();
 | 
						|
    //    const uint64_t Fn  = 3 * its.indices.size();
 | 
						|
    //    double MaxQ = double(Vn) * (Vn + 1) / Fn;
 | 
						|
    //    const uint64_t Nq = MaxQ < 0 ? 0 : std::ceil(std::log2(MaxQ));
 | 
						|
    //    const uint64_t Nr = std::ceil(std::log2(std::min(Vn * (Vn + 1), Fn)));
 | 
						|
    //    const uint64_t Nfn = std::ceil(std::log2(Fn));
 | 
						|
 | 
						|
    ////    const uint64_t max_edge_ids = (uint64_t(1) << (Nq + Nr));
 | 
						|
    //    const uint64_t max_edge_ids = MaxQ * Fn + (std::min(Vn * (Vn + 1), Fn)); //(uint64_t(1) << Nfn);
 | 
						|
    const uint64_t Fn  = 3 * its.indices.size();
 | 
						|
    std::vector< Edge > edge_index(3 * Fn);
 | 
						|
 | 
						|
    // Edge id is constructed by concatenating two vertex ids, starting with
 | 
						|
    // the lowest in MSB
 | 
						|
    auto hash = [Vn, Fn /*, Nr*/] (VertexID a, VertexID b) {
 | 
						|
        if (a > b) std::swap(a, b);
 | 
						|
 | 
						|
        uint64_t C = Vn * a + b;
 | 
						|
        uint64_t Q = C / Fn, R = C % Fn;
 | 
						|
 | 
						|
        return Q * Fn + R;
 | 
						|
    };
 | 
						|
 | 
						|
    // Go through all edges of all facets and mark the facets touching each edge
 | 
						|
    for (size_t face_id = 0; face_id < its.indices.size(); ++face_id) {
 | 
						|
        const Vec3i &face = its.indices[face_id];
 | 
						|
 | 
						|
        EdgeID e1 = hash(face(0), face(1)), e2 = hash(face(1), face(2)),
 | 
						|
               e3 = hash(face(2), face(0));
 | 
						|
 | 
						|
        edge_index[e1].assign(face_id);
 | 
						|
        edge_index[e2].assign(face_id);
 | 
						|
        edge_index[e3].assign(face_id);
 | 
						|
    }
 | 
						|
 | 
						|
    FaceNeighborIndex index(its.indices.size());
 | 
						|
 | 
						|
    // Now collect the neighbors for each facet into the final index
 | 
						|
    for (size_t face_id = 0; face_id < its.indices.size(); ++face_id) {
 | 
						|
        const Vec3i &face = its.indices[face_id];
 | 
						|
 | 
						|
        EdgeID e1 = hash(face(0), face(1)), e2 = hash(face(1), face(2)),
 | 
						|
               e3 = hash(face(2), face(0));
 | 
						|
 | 
						|
        const Edge &neighs1 = edge_index[e1];
 | 
						|
        const Edge &neighs2 = edge_index[e2];
 | 
						|
        const Edge &neighs3 = edge_index[e3];
 | 
						|
 | 
						|
        std::array<size_t, 3> &neighs = index[face_id];
 | 
						|
        neighs[0] = neighs1.first == face_id ? neighs1.second : neighs1.first;
 | 
						|
        neighs[1] = neighs2.first == face_id ? neighs2.second : neighs2.first;
 | 
						|
        neighs[2] = neighs3.first == face_id ? neighs3.second : neighs3.first;
 | 
						|
    }
 | 
						|
 | 
						|
    bm.stop();
 | 
						|
 | 
						|
    std::cout << "Creating neighbor index took: " << bm.getElapsedSec() << " seconds." << std::endl;
 | 
						|
 | 
						|
    return index;
 | 
						|
}
 | 
						|
 | 
						|
// Create an index of faces belonging to each vertex. The returned vector can
 | 
						|
// be indexed with vertex indices and contains a list of face indices for each
 | 
						|
// vertex.
 | 
						|
std::vector<std::vector<size_t>> create_vertex_faces_index(const indexed_triangle_set &its)
 | 
						|
{
 | 
						|
    std::vector<std::vector<size_t>> index;
 | 
						|
 | 
						|
    if (! its.vertices.empty()) {
 | 
						|
        size_t res = its.indices.size() / its.vertices.size();
 | 
						|
        index.assign(its.vertices.size(), reserve_vector<size_t>(res));
 | 
						|
        for (size_t fi = 0; fi < its.indices.size(); ++fi) {
 | 
						|
            auto &face = its.indices[fi];
 | 
						|
            index[face(0)].emplace_back(fi);
 | 
						|
            index[face(1)].emplace_back(fi);
 | 
						|
            index[face(2)].emplace_back(fi);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return index;
 | 
						|
}
 | 
						|
 | 
						|
//static int get_vertex_index(size_t vertex_index, const stl_triangle_vertex_indices &triangle_indices) {
 | 
						|
//    if (vertex_index == triangle_indices[0]) return 0;
 | 
						|
//    if (vertex_index == triangle_indices[1]) return 1;
 | 
						|
//    if (vertex_index == triangle_indices[2]) return 2;
 | 
						|
//    return -1;
 | 
						|
//}
 | 
						|
 | 
						|
//static Vec2crd get_edge_indices(int edge_index, const stl_triangle_vertex_indices &triangle_indices)
 | 
						|
//{
 | 
						|
//    int next_edge_index = (edge_index == 2) ? 0 : edge_index + 1;
 | 
						|
//    coord_t vi0             = triangle_indices[edge_index];
 | 
						|
//    coord_t vi1             = triangle_indices[next_edge_index];
 | 
						|
//    return Vec2crd(vi0, vi1);
 | 
						|
//}
 | 
						|
 | 
						|
static std::vector<std::vector<size_t>> create_vertex_faces_index(
 | 
						|
    const std::vector<stl_triangle_vertex_indices>& indices, size_t count_vertices)
 | 
						|
{
 | 
						|
    if (count_vertices == 0) return {};
 | 
						|
    std::vector<std::vector<size_t>> index;
 | 
						|
    size_t res = indices.size() / count_vertices;
 | 
						|
    index.assign(count_vertices, reserve_vector<size_t>(res));
 | 
						|
    for (size_t fi = 0; fi < indices.size(); ++fi) {
 | 
						|
        auto &face = indices[fi];
 | 
						|
        index[face(0)].emplace_back(fi);
 | 
						|
        index[face(1)].emplace_back(fi);
 | 
						|
        index[face(2)].emplace_back(fi);
 | 
						|
    }
 | 
						|
    return index;
 | 
						|
}
 | 
						|
 | 
						|
std::vector<Vec3crd> its_create_neighbors_index_5(const indexed_triangle_set &its)
 | 
						|
{
 | 
						|
    const std::vector<stl_triangle_vertex_indices> &indices = its.indices;
 | 
						|
    size_t vertices_size = its.vertices.size();
 | 
						|
 | 
						|
    if (indices.empty() || vertices_size == 0) return {};
 | 
						|
    std::vector<std::vector<size_t>> vertex_triangles = create_vertex_faces_index(indices, vertices_size);
 | 
						|
    coord_t              no_value = -1;
 | 
						|
    std::vector<Vec3crd> neighbors(indices.size(), Vec3crd(no_value, no_value, no_value));
 | 
						|
    for (const stl_triangle_vertex_indices& triangle_indices : indices) {
 | 
						|
        coord_t index = &triangle_indices - &indices.front();
 | 
						|
        Vec3crd& neighbor = neighbors[index];
 | 
						|
        for (int edge_index = 0; edge_index < 3; ++edge_index) {
 | 
						|
            // check if done
 | 
						|
            coord_t& neighbor_edge = neighbor[edge_index];
 | 
						|
            if (neighbor_edge != no_value) continue;
 | 
						|
            Vec2crd edge_indices = get_edge_indices(edge_index, triangle_indices);
 | 
						|
            // IMPROVE: use same vector for 2 sides of triangle
 | 
						|
            const std::vector<size_t> &faces = vertex_triangles[edge_indices[0]];
 | 
						|
            for (const size_t &face : faces) {
 | 
						|
                if (face <= index) continue;
 | 
						|
                const stl_triangle_vertex_indices &face_indices = indices[face];
 | 
						|
                int vertex_index = get_vertex_index(edge_indices[1], face_indices);
 | 
						|
                // NOT Contain second vertex?
 | 
						|
                if (vertex_index < 0) continue;
 | 
						|
                // Has NOT oposit direction?
 | 
						|
                if (edge_indices[0] != face_indices[(vertex_index + 1) % 3]) continue;
 | 
						|
                neighbor_edge = face;
 | 
						|
                neighbors[face][vertex_index] = index;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            // must be paired
 | 
						|
            assert(neighbor_edge != no_value);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return neighbors;
 | 
						|
}
 | 
						|
 | 
						|
std::vector<std::array<size_t, 3>> its_create_neighbors_index_6(const indexed_triangle_set &its)
 | 
						|
{
 | 
						|
    constexpr auto UNASSIGNED_EDGE = std::numeric_limits<uint64_t>::max();
 | 
						|
    constexpr auto UNASSIGNED_FACE = std::numeric_limits<size_t>::max();
 | 
						|
    struct Edge
 | 
						|
    {
 | 
						|
        uint64_t id      = UNASSIGNED_EDGE;
 | 
						|
        size_t   face_id = UNASSIGNED_FACE;
 | 
						|
        bool operator < (const Edge &e) const { return id < e.id; }
 | 
						|
    };
 | 
						|
 | 
						|
    const size_t facenum = its.indices.size();
 | 
						|
 | 
						|
    // All vertex IDs will fit into this number of bits. (Used for hashing)
 | 
						|
    const int max_vertex_id_bits = std::ceil(std::log2(its.vertices.size()));
 | 
						|
    assert(max_vertex_id_bits <= 32);
 | 
						|
 | 
						|
    // Edge id is constructed by concatenating two vertex ids, starting with
 | 
						|
    // the lowest in MSB
 | 
						|
    auto hash = [max_vertex_id_bits] (uint64_t a, uint64_t b) {
 | 
						|
        if (a > b) std::swap(a, b);
 | 
						|
        return (a << max_vertex_id_bits) + b;
 | 
						|
    };
 | 
						|
 | 
						|
    std::vector<Edge> edge_map(3 * facenum);
 | 
						|
 | 
						|
    // Go through all edges of all facets and mark the facets touching each edge
 | 
						|
    for (size_t face_id = 0; face_id < facenum; ++face_id) {
 | 
						|
        const Vec3i &face = its.indices[face_id];
 | 
						|
 | 
						|
        edge_map[face_id * 3] = {hash(face(0), face(1)), face_id};
 | 
						|
        edge_map[face_id * 3 + 1] = {hash(face(1), face(2)), face_id};
 | 
						|
        edge_map[face_id * 3 + 2] = {hash(face(2), face(0)), face_id};
 | 
						|
    }
 | 
						|
 | 
						|
    std::sort(edge_map.begin(), edge_map.end());
 | 
						|
 | 
						|
    std::vector<std::array<size_t, 3>> out(facenum, {UNASSIGNED_FACE, UNASSIGNED_FACE, UNASSIGNED_FACE});
 | 
						|
 | 
						|
    auto add_neighbor = [](std::array<size_t, 3> &slot, size_t face_id) {
 | 
						|
        if (slot[0] == UNASSIGNED_FACE) { slot[0] = face_id; return; }
 | 
						|
        if (slot[1] == UNASSIGNED_FACE) { slot[1] = face_id; return; }
 | 
						|
        if (slot[2] == UNASSIGNED_FACE) { slot[2] = face_id; return; }
 | 
						|
    };
 | 
						|
 | 
						|
    for (auto it = edge_map.begin(); it != edge_map.end();) {
 | 
						|
        size_t face_id = it->face_id;
 | 
						|
        uint64_t edge_id = it->id;
 | 
						|
 | 
						|
        while (++it != edge_map.end() &&  (it->id == edge_id)) {
 | 
						|
            size_t other_face_id = it->face_id;
 | 
						|
            add_neighbor(out[other_face_id], face_id);
 | 
						|
            add_neighbor(out[face_id], other_face_id);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return out;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
std::vector<std::array<size_t, 3>> its_create_neighbors_index_7(const indexed_triangle_set &its)
 | 
						|
{
 | 
						|
    constexpr auto UNASSIGNED_EDGE = std::numeric_limits<uint64_t>::max();
 | 
						|
    constexpr auto UNASSIGNED_FACE = std::numeric_limits<size_t>::max();
 | 
						|
    struct Edge
 | 
						|
    {
 | 
						|
        uint64_t id      = UNASSIGNED_EDGE;
 | 
						|
        size_t   face_id = UNASSIGNED_FACE;
 | 
						|
        bool operator < (const Edge &e) const { return id < e.id; }
 | 
						|
    };
 | 
						|
 | 
						|
    const size_t facenum = its.indices.size();
 | 
						|
 | 
						|
    // All vertex IDs will fit into this number of bits. (Used for hashing)
 | 
						|
    const int max_vertex_id_bits = std::ceil(std::log2(its.vertices.size()));
 | 
						|
    assert(max_vertex_id_bits <= 32);
 | 
						|
 | 
						|
    // Edge id is constructed by concatenating two vertex ids, starting with
 | 
						|
    // the lowest in MSB
 | 
						|
    auto hash = [max_vertex_id_bits] (uint64_t a, uint64_t b) {
 | 
						|
        if (a > b) std::swap(a, b);
 | 
						|
        return (a << max_vertex_id_bits) + b;
 | 
						|
    };
 | 
						|
 | 
						|
    std::vector<Edge> edge_map(3 * facenum);
 | 
						|
 | 
						|
    // Go through all edges of all facets and mark the facets touching each edge
 | 
						|
    for (size_t face_id = 0; face_id < facenum; ++face_id) {
 | 
						|
        const Vec3i &face = its.indices[face_id];
 | 
						|
 | 
						|
        edge_map[face_id * 3] = {hash(face(0), face(1)), face_id};
 | 
						|
        edge_map[face_id * 3 + 1] = {hash(face(1), face(2)), face_id};
 | 
						|
        edge_map[face_id * 3 + 2] = {hash(face(2), face(0)), face_id};
 | 
						|
    }
 | 
						|
 | 
						|
    tbb::parallel_sort(edge_map.begin(), edge_map.end());
 | 
						|
 | 
						|
    std::vector<std::array<size_t, 3>> out(facenum, {UNASSIGNED_FACE, UNASSIGNED_FACE, UNASSIGNED_FACE});
 | 
						|
 | 
						|
    auto add_neighbor = [](std::array<size_t, 3> &slot, size_t face_id) {
 | 
						|
        if (slot[0] == UNASSIGNED_FACE) { slot[0] = face_id; return; }
 | 
						|
        if (slot[1] == UNASSIGNED_FACE) { slot[1] = face_id; return; }
 | 
						|
        if (slot[2] == UNASSIGNED_FACE) { slot[2] = face_id; return; }
 | 
						|
    };
 | 
						|
 | 
						|
    for (auto it = edge_map.begin(); it != edge_map.end();) {
 | 
						|
        size_t face_id = it->face_id;
 | 
						|
        uint64_t edge_id = it->id;
 | 
						|
 | 
						|
        while (++it != edge_map.end() &&  (it->id == edge_id)) {
 | 
						|
            size_t other_face_id = it->face_id;
 | 
						|
            add_neighbor(out[other_face_id], face_id);
 | 
						|
            add_neighbor(out[face_id], other_face_id);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return out;
 | 
						|
}
 | 
						|
 | 
						|
FaceNeighborIndex its_create_neighbors_index_8(const indexed_triangle_set &its)
 | 
						|
{
 | 
						|
    // Just to be clear what type of object are we referencing
 | 
						|
    using FaceID = size_t;
 | 
						|
    using VertexID = uint64_t;
 | 
						|
    using EdgeID = uint64_t;
 | 
						|
 | 
						|
    constexpr auto UNASSIGNED = std::numeric_limits<FaceID>::max();
 | 
						|
 | 
						|
    struct Edge // Will contain IDs of the two facets touching this edge
 | 
						|
    {
 | 
						|
        FaceID first, second;
 | 
						|
        Edge() : first{UNASSIGNED}, second{UNASSIGNED} {}
 | 
						|
        void   assign(FaceID fid)
 | 
						|
        {
 | 
						|
            first == UNASSIGNED ? first = fid : second = fid;
 | 
						|
        }
 | 
						|
    };
 | 
						|
 | 
						|
    // All vertex IDs will fit into this number of bits. (Used for hashing)
 | 
						|
    const int max_vertex_id_bits = std::ceil(std::log2(its.vertices.size()));
 | 
						|
    assert(max_vertex_id_bits <= 32);
 | 
						|
 | 
						|
    std::map< EdgeID, Edge > edge_index;
 | 
						|
 | 
						|
    // Edge id is constructed by concatenating two vertex ids, starting with
 | 
						|
    // the lowest in MSB
 | 
						|
    auto hash = [max_vertex_id_bits] (VertexID a, VertexID b) {
 | 
						|
        if (a > b) std::swap(a, b);
 | 
						|
        return (a << max_vertex_id_bits) + b;
 | 
						|
    };
 | 
						|
 | 
						|
    // Go through all edges of all facets and mark the facets touching each edge
 | 
						|
    for (size_t face_id = 0; face_id < its.indices.size(); ++face_id) {
 | 
						|
        const Vec3i &face = its.indices[face_id];
 | 
						|
 | 
						|
        EdgeID e1 = hash(face(0), face(1)), e2 = hash(face(1), face(2)),
 | 
						|
               e3 = hash(face(2), face(0));
 | 
						|
 | 
						|
        edge_index[e1].assign(face_id);
 | 
						|
        edge_index[e2].assign(face_id);
 | 
						|
        edge_index[e3].assign(face_id);
 | 
						|
    }
 | 
						|
 | 
						|
    FaceNeighborIndex index(its.indices.size());
 | 
						|
 | 
						|
    // Now collect the neighbors for each facet into the final index
 | 
						|
    for (size_t face_id = 0; face_id < its.indices.size(); ++face_id) {
 | 
						|
        const Vec3i &face = its.indices[face_id];
 | 
						|
 | 
						|
        EdgeID e1 = hash(face(0), face(1)), e2 = hash(face(1), face(2)),
 | 
						|
               e3 = hash(face(2), face(0));
 | 
						|
 | 
						|
        const Edge &neighs1 = edge_index[e1];
 | 
						|
        const Edge &neighs2 = edge_index[e2];
 | 
						|
        const Edge &neighs3 = edge_index[e3];
 | 
						|
 | 
						|
        std::array<size_t, 3> &neighs = index[face_id];
 | 
						|
        neighs[0] = neighs1.first == face_id ? neighs1.second : neighs1.first;
 | 
						|
        neighs[1] = neighs2.first == face_id ? neighs2.second : neighs2.first;
 | 
						|
        neighs[2] = neighs3.first == face_id ? neighs3.second : neighs3.first;
 | 
						|
    }
 | 
						|
 | 
						|
    return index;
 | 
						|
}
 | 
						|
 | 
						|
std::vector<Vec3crd> its_create_neighbors_index_9(const indexed_triangle_set &its)
 | 
						|
{
 | 
						|
    return create_face_neighbors_index(ex_seq, its);
 | 
						|
}
 | 
						|
 | 
						|
std::vector<Vec3i> its_create_neighbors_index_10(const indexed_triangle_set &its)
 | 
						|
{
 | 
						|
    return create_face_neighbors_index(ex_tbb, its);
 | 
						|
}
 | 
						|
 | 
						|
} // namespace Slic3r
 |