mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-10-31 04:31:15 -06:00 
			
		
		
		
	
		
			
				
	
	
		
			575 lines
		
	
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			575 lines
		
	
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include <functional>
 | |
| 
 | |
| #include <libslic3r/OpenVDBUtils.hpp>
 | |
| #include <libslic3r/TriangleMesh.hpp>
 | |
| #include <libslic3r/SLA/Hollowing.hpp>
 | |
| #include <libslic3r/SLA/IndexedMesh.hpp>
 | |
| #include <libslic3r/ClipperUtils.hpp>
 | |
| #include <libslic3r/SimplifyMesh.hpp>
 | |
| #include <libslic3r/SLA/SupportTreeMesher.hpp>
 | |
| 
 | |
| #include <boost/log/trivial.hpp>
 | |
| 
 | |
| #include <libslic3r/MTUtils.hpp>
 | |
| #include <libslic3r/I18N.hpp>
 | |
| 
 | |
| //! macro used to mark string used at localization,
 | |
| //! return same string
 | |
| #define L(s) Slic3r::I18N::translate(s)
 | |
| 
 | |
| namespace Slic3r {
 | |
| namespace sla {
 | |
| 
 | |
| template<class S, class = FloatingOnly<S>>
 | |
| inline void _scale(S s, TriangleMesh &m) { m.scale(float(s)); }
 | |
| 
 | |
| template<class S, class = FloatingOnly<S>>
 | |
| inline void _scale(S s, Contour3D &m) { for (auto &p : m.points) p *= s; }
 | |
| 
 | |
| struct Interior {
 | |
|     TriangleMesh mesh;
 | |
|     openvdb::FloatGrid::Ptr gridptr;
 | |
|     mutable std::optional<openvdb::FloatGrid::ConstAccessor> accessor;
 | |
| 
 | |
|     double closing_distance = 0.;
 | |
|     double thickness = 0.;
 | |
|     double voxel_scale = 1.;
 | |
|     double nb_in = 3.;  // narrow band width inwards
 | |
|     double nb_out = 3.; // narrow band width outwards
 | |
|     // Full narrow band is the sum of the two above values.
 | |
| 
 | |
|     void reset_accessor() const  // This resets the accessor and its cache
 | |
|     // Not a thread safe call!
 | |
|     {
 | |
|         if (gridptr)
 | |
|             accessor = gridptr->getConstAccessor();
 | |
|     }
 | |
| };
 | |
| 
 | |
| void InteriorDeleter::operator()(Interior *p)
 | |
| {
 | |
|     delete p;
 | |
| }
 | |
| 
 | |
| TriangleMesh &get_mesh(Interior &interior)
 | |
| {
 | |
|     return interior.mesh;
 | |
| }
 | |
| 
 | |
| const TriangleMesh &get_mesh(const Interior &interior)
 | |
| {
 | |
|     return interior.mesh;
 | |
| }
 | |
| 
 | |
| static InteriorPtr generate_interior_verbose(const TriangleMesh & mesh,
 | |
|                                              const JobController &ctl,
 | |
|                                              double min_thickness,
 | |
|                                              double voxel_scale,
 | |
|                                              double closing_dist)
 | |
| {
 | |
|     double offset = voxel_scale * min_thickness;
 | |
|     double D = voxel_scale * closing_dist;
 | |
|     float  out_range = 0.1f * float(offset);
 | |
|     float  in_range = 1.1f * float(offset + D);
 | |
| 
 | |
|     if (ctl.stopcondition()) return {};
 | |
|     else ctl.statuscb(0, L("Hollowing"));
 | |
| 
 | |
|     auto gridptr = mesh_to_grid(mesh, {}, voxel_scale, out_range, in_range);
 | |
| 
 | |
|     assert(gridptr);
 | |
| 
 | |
|     if (!gridptr) {
 | |
|         BOOST_LOG_TRIVIAL(error) << "Returned OpenVDB grid is NULL";
 | |
|         return {};
 | |
|     }
 | |
| 
 | |
|     if (ctl.stopcondition()) return {};
 | |
|     else ctl.statuscb(30, L("Hollowing"));
 | |
| 
 | |
|     double iso_surface = D;
 | |
|     auto   narrowb = double(in_range);
 | |
|     gridptr = redistance_grid(*gridptr, -(offset + D), narrowb, narrowb);
 | |
| 
 | |
|     if (ctl.stopcondition()) return {};
 | |
|     else ctl.statuscb(70, L("Hollowing"));
 | |
| 
 | |
|     double adaptivity = 0.;
 | |
|     InteriorPtr interior = InteriorPtr{new Interior{}};
 | |
| 
 | |
|     interior->mesh = grid_to_mesh(*gridptr, iso_surface, adaptivity);
 | |
|     interior->gridptr = gridptr;
 | |
| 
 | |
|     if (ctl.stopcondition()) return {};
 | |
|     else ctl.statuscb(100, L("Hollowing"));
 | |
| 
 | |
|     interior->closing_distance = D;
 | |
|     interior->thickness = offset;
 | |
|     interior->voxel_scale = voxel_scale;
 | |
|     interior->nb_in = narrowb;
 | |
|     interior->nb_out = narrowb;
 | |
| 
 | |
|     return interior;
 | |
| }
 | |
| 
 | |
| InteriorPtr generate_interior(const TriangleMesh &   mesh,
 | |
|                               const HollowingConfig &hc,
 | |
|                               const JobController &  ctl)
 | |
| {
 | |
|     static const double MIN_OVERSAMPL = 3.;
 | |
|     static const double MAX_OVERSAMPL = 8.;
 | |
| 
 | |
|     // I can't figure out how to increase the grid resolution through openvdb
 | |
|     // API so the model will be scaled up before conversion and the result
 | |
|     // scaled down. Voxels have a unit size. If I set voxelSize smaller, it
 | |
|     // scales the whole geometry down, and doesn't increase the number of
 | |
|     // voxels.
 | |
|     //
 | |
|     // max 8x upscale, min is native voxel size
 | |
|     auto voxel_scale = MIN_OVERSAMPL + (MAX_OVERSAMPL - MIN_OVERSAMPL) * hc.quality;
 | |
| 
 | |
|     InteriorPtr interior =
 | |
|         generate_interior_verbose(mesh, ctl, hc.min_thickness, voxel_scale,
 | |
|                                   hc.closing_distance);
 | |
| 
 | |
|     if (interior && !interior->mesh.empty()) {
 | |
| 
 | |
|         // This flips the normals to be outward facing...
 | |
|         interior->mesh.require_shared_vertices();
 | |
|         indexed_triangle_set its = std::move(interior->mesh.its);
 | |
| 
 | |
|         Slic3r::simplify_mesh(its);
 | |
| 
 | |
|         // flip normals back...
 | |
|         for (stl_triangle_vertex_indices &ind : its.indices)
 | |
|             std::swap(ind(0), ind(2));
 | |
| 
 | |
|         interior->mesh = Slic3r::TriangleMesh{its};
 | |
|         interior->mesh.repaired = true;
 | |
|         interior->mesh.require_shared_vertices();
 | |
|     }
 | |
| 
 | |
|     return interior;
 | |
| }
 | |
| 
 | |
| Contour3D DrainHole::to_mesh() const
 | |
| {
 | |
|     auto r = double(radius);
 | |
|     auto h = double(height);
 | |
|     sla::Contour3D hole = sla::cylinder(r, h, steps);
 | |
|     Eigen::Quaterniond q;
 | |
|     q.setFromTwoVectors(Vec3d{0., 0., 1.}, normal.cast<double>());
 | |
|     for(auto& p : hole.points) p = q * p + pos.cast<double>();
 | |
|     
 | |
|     return hole;
 | |
| }
 | |
| 
 | |
| bool DrainHole::operator==(const DrainHole &sp) const
 | |
| {
 | |
|     return (pos == sp.pos) && (normal == sp.normal) &&
 | |
|             is_approx(radius, sp.radius) &&
 | |
|             is_approx(height, sp.height);
 | |
| }
 | |
| 
 | |
| bool DrainHole::is_inside(const Vec3f& pt) const
 | |
| {
 | |
|     Eigen::Hyperplane<float, 3> plane(normal, pos);
 | |
|     float dist = plane.signedDistance(pt);
 | |
|     if (dist < float(EPSILON) || dist > height)
 | |
|         return false;
 | |
| 
 | |
|     Eigen::ParametrizedLine<float, 3> axis(pos, normal);
 | |
|     if ( axis.squaredDistance(pt) < pow(radius, 2.f))
 | |
|         return true;
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Given a line s+dir*t, find parameter t of intersections with the hole
 | |
| // and the normal (points inside the hole). Outputs through out reference,
 | |
| // returns true if two intersections were found.
 | |
| bool DrainHole::get_intersections(const Vec3f& s, const Vec3f& dir,
 | |
|                                   std::array<std::pair<float, Vec3d>, 2>& out)
 | |
|                                   const
 | |
| {
 | |
|     assert(is_approx(normal.norm(), 1.f));
 | |
|     const Eigen::ParametrizedLine<float, 3> ray(s, dir.normalized());
 | |
| 
 | |
|     for (size_t i=0; i<2; ++i)
 | |
|         out[i] = std::make_pair(sla::IndexedMesh::hit_result::infty(), Vec3d::Zero());
 | |
| 
 | |
|     const float sqr_radius = pow(radius, 2.f);
 | |
| 
 | |
|     // first check a bounding sphere of the hole:
 | |
|     Vec3f center = pos+normal*height/2.f;
 | |
|     float sqr_dist_limit = pow(height/2.f, 2.f) + sqr_radius ;
 | |
|     if (ray.squaredDistance(center) > sqr_dist_limit)
 | |
|         return false;
 | |
| 
 | |
|     // The line intersects the bounding sphere, look for intersections with
 | |
|     // bases of the cylinder.
 | |
| 
 | |
|     size_t found = 0; // counts how many intersections were found
 | |
|     Eigen::Hyperplane<float, 3> base;
 | |
|     if (! is_approx(ray.direction().dot(normal), 0.f)) {
 | |
|         for (size_t i=1; i<=1; --i) {
 | |
|             Vec3f cylinder_center = pos+i*height*normal;
 | |
|             if (i == 0) {
 | |
|                 // The hole base can be identical to mesh surface if it is flat
 | |
|                 // let's better move the base outward a bit
 | |
|                 cylinder_center -= EPSILON*normal;
 | |
|             }
 | |
|             base = Eigen::Hyperplane<float, 3>(normal, cylinder_center);
 | |
|             Vec3f intersection = ray.intersectionPoint(base);
 | |
|             // Only accept the point if it is inside the cylinder base.
 | |
|             if ((cylinder_center-intersection).squaredNorm() < sqr_radius) {
 | |
|                 out[found].first = ray.intersectionParameter(base);
 | |
|                 out[found].second = (i==0 ? 1. : -1.) * normal.cast<double>();
 | |
|                 ++found;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         // In case the line was perpendicular to the cylinder axis, previous
 | |
|         // block was skipped, but base will later be assumed to be valid.
 | |
|         base = Eigen::Hyperplane<float, 3>(normal, pos-EPSILON*normal);
 | |
|     }
 | |
| 
 | |
|     // In case there is still an intersection to be found, check the wall
 | |
|     if (found != 2 && ! is_approx(std::abs(ray.direction().dot(normal)), 1.f)) {
 | |
|         // Project the ray onto the base plane
 | |
|         Vec3f proj_origin = base.projection(ray.origin());
 | |
|         Vec3f proj_dir = base.projection(ray.origin()+ray.direction())-proj_origin;
 | |
|         // save how the parameter scales and normalize the projected direction
 | |
|         float par_scale = proj_dir.norm();
 | |
|         proj_dir = proj_dir/par_scale;
 | |
|         Eigen::ParametrizedLine<float, 3> projected_ray(proj_origin, proj_dir);
 | |
|         // Calculate point on the secant that's closest to the center
 | |
|         // and its distance to the circle along the projected line
 | |
|         Vec3f closest = projected_ray.projection(pos);
 | |
|         float dist = sqrt((sqr_radius - (closest-pos).squaredNorm()));
 | |
|         // Unproject both intersections on the original line and check
 | |
|         // they are on the cylinder and not past it:
 | |
|         for (int i=-1; i<=1 && found !=2; i+=2) {
 | |
|             Vec3f isect = closest + i*dist * projected_ray.direction();
 | |
|             Vec3f to_isect = isect-proj_origin;
 | |
|             float par = to_isect.norm() / par_scale;
 | |
|             if (to_isect.normalized().dot(proj_dir.normalized()) < 0.f)
 | |
|                 par *= -1.f;
 | |
|             Vec3d hit_normal = (pos-isect).normalized().cast<double>();
 | |
|             isect = ray.pointAt(par);
 | |
|             // check that the intersection is between the base planes:
 | |
|             float vert_dist = base.signedDistance(isect);
 | |
|             if (vert_dist > 0.f && vert_dist < height) {
 | |
|                 out[found].first = par;
 | |
|                 out[found].second = hit_normal;
 | |
|                 ++found;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // If only one intersection was found, it is some corner case,
 | |
|     // no intersection will be returned:
 | |
|     if (found != 2)
 | |
|         return false;
 | |
| 
 | |
|     // Sort the intersections:
 | |
|     if (out[0].first > out[1].first)
 | |
|         std::swap(out[0], out[1]);
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| void cut_drainholes(std::vector<ExPolygons> & obj_slices,
 | |
|                     const std::vector<float> &slicegrid,
 | |
|                     float                     closing_radius,
 | |
|                     const sla::DrainHoles &   holes,
 | |
|                     std::function<void(void)> thr)
 | |
| {
 | |
|     TriangleMesh mesh;
 | |
|     for (const sla::DrainHole &holept : holes)
 | |
|         mesh.merge(sla::to_triangle_mesh(holept.to_mesh()));
 | |
|     
 | |
|     if (mesh.empty()) return;
 | |
|     
 | |
|     mesh.require_shared_vertices();
 | |
|     
 | |
|     TriangleMeshSlicer slicer(&mesh);
 | |
|     
 | |
|     std::vector<ExPolygons> hole_slices;
 | |
|     slicer.slice(slicegrid, SlicingMode::Regular, closing_radius, &hole_slices, thr);
 | |
|     
 | |
|     if (obj_slices.size() != hole_slices.size())
 | |
|         BOOST_LOG_TRIVIAL(warning)
 | |
|             << "Sliced object and drain-holes layer count does not match!";
 | |
| 
 | |
|     size_t until = std::min(obj_slices.size(), hole_slices.size());
 | |
|     
 | |
|     for (size_t i = 0; i < until; ++i)
 | |
|         obj_slices[i] = diff_ex(obj_slices[i], hole_slices[i]);
 | |
| }
 | |
| 
 | |
| void hollow_mesh(TriangleMesh &mesh, const HollowingConfig &cfg, int flags)
 | |
| {
 | |
|     InteriorPtr interior = generate_interior(mesh, cfg, JobController{});
 | |
|     if (!interior) return;
 | |
| 
 | |
|     hollow_mesh(mesh, *interior, flags);
 | |
| }
 | |
| 
 | |
| void hollow_mesh(TriangleMesh &mesh, const Interior &interior, int flags)
 | |
| {
 | |
|     if (mesh.empty() || interior.mesh.empty()) return;
 | |
| 
 | |
|     if (flags & hfRemoveInsideTriangles && interior.gridptr)
 | |
|         remove_inside_triangles(mesh, interior);
 | |
| 
 | |
|     mesh.merge(interior.mesh);
 | |
|     mesh.require_shared_vertices();
 | |
| }
 | |
| 
 | |
| // Get the distance of p to the interior's zero iso_surface. Interior should
 | |
| // have its zero isosurface positioned at offset + closing_distance inwards form
 | |
| // the model surface.
 | |
| static double get_distance_raw(const Vec3f &p, const Interior &interior)
 | |
| {
 | |
|     assert(interior.gridptr);
 | |
| 
 | |
|     if (!interior.accessor) interior.reset_accessor();
 | |
| 
 | |
|     auto v       = (p * interior.voxel_scale).cast<double>();
 | |
|     auto grididx = interior.gridptr->transform().worldToIndexCellCentered(
 | |
|         {v.x(), v.y(), v.z()});
 | |
| 
 | |
|     return interior.accessor->getValue(grididx) ;
 | |
| }
 | |
| 
 | |
| struct TriangleBubble { Vec3f center; double R; };
 | |
| 
 | |
| // Return the distance of bubble center to the interior boundary or NaN if the
 | |
| // triangle is too big to be measured.
 | |
| static double get_distance(const TriangleBubble &b, const Interior &interior)
 | |
| {
 | |
|     double R = b.R * interior.voxel_scale;
 | |
|     double D = get_distance_raw(b.center, interior);
 | |
| 
 | |
|     return (D > 0. && R >= interior.nb_out) ||
 | |
|            (D < 0. && R >= interior.nb_in)  ||
 | |
|            ((D - R) < 0. && 2 * R > interior.thickness) ?
 | |
|                 std::nan("") :
 | |
|                 // FIXME: Adding interior.voxel_scale is a compromise supposed
 | |
|                 // to prevent the deletion of the triangles forming the interior
 | |
|                 // itself. This has a side effect that a small portion of the
 | |
|                 // bad triangles will still be visible.
 | |
|                 D - interior.closing_distance /*+ 2 * interior.voxel_scale*/;
 | |
| }
 | |
| 
 | |
| double get_distance(const Vec3f &p, const Interior &interior)
 | |
| {
 | |
|     double d = get_distance_raw(p, interior) - interior.closing_distance;
 | |
|     return d / interior.voxel_scale;
 | |
| }
 | |
| 
 | |
| // A face that can be divided. Stores the indices into the original mesh if its
 | |
| // part of that mesh and the vertices it consists of.
 | |
| enum { NEW_FACE = -1};
 | |
| struct DivFace {
 | |
|     Vec3i indx;
 | |
|     std::array<Vec3f, 3> verts;
 | |
|     long faceid = NEW_FACE;
 | |
|     long parent = NEW_FACE;
 | |
| };
 | |
| 
 | |
| // Divide a face recursively and call visitor on all the sub-faces.
 | |
| template<class Fn>
 | |
| void divide_triangle(const DivFace &face, Fn &&visitor)
 | |
| {
 | |
|     std::array<Vec3f, 3> edges = {(face.verts[0] - face.verts[1]),
 | |
|                                   (face.verts[1] - face.verts[2]),
 | |
|                                   (face.verts[2] - face.verts[0])};
 | |
| 
 | |
|     std::array<size_t, 3> edgeidx = {0, 1, 2};
 | |
| 
 | |
|     std::sort(edgeidx.begin(), edgeidx.end(), [&edges](size_t e1, size_t e2) {
 | |
|         return edges[e1].squaredNorm() > edges[e2].squaredNorm();
 | |
|     });
 | |
| 
 | |
|     DivFace child1, child2;
 | |
| 
 | |
|     child1.parent   = face.faceid == NEW_FACE ? face.parent : face.faceid;
 | |
|     child1.indx(0)  = -1;
 | |
|     child1.indx(1)  = face.indx(edgeidx[1]);
 | |
|     child1.indx(2)  = face.indx((edgeidx[1] + 1) % 3);
 | |
|     child1.verts[0] = (face.verts[edgeidx[0]] + face.verts[(edgeidx[0] + 1) % 3]) / 2.;
 | |
|     child1.verts[1] = face.verts[edgeidx[1]];
 | |
|     child1.verts[2] = face.verts[(edgeidx[1] + 1) % 3];
 | |
| 
 | |
|     if (visitor(child1))
 | |
|         divide_triangle(child1, std::forward<Fn>(visitor));
 | |
| 
 | |
|     child2.parent   = face.faceid == NEW_FACE ? face.parent : face.faceid;
 | |
|     child2.indx(0)  = -1;
 | |
|     child2.indx(1)  = face.indx(edgeidx[2]);
 | |
|     child2.indx(2)  = face.indx((edgeidx[2] + 1) % 3);
 | |
|     child2.verts[0] = child1.verts[0];
 | |
|     child2.verts[1] = face.verts[edgeidx[2]];
 | |
|     child2.verts[2] = face.verts[(edgeidx[2] + 1) % 3];
 | |
| 
 | |
|     if (visitor(child2))
 | |
|         divide_triangle(child2, std::forward<Fn>(visitor));
 | |
| }
 | |
| 
 | |
| void remove_inside_triangles(TriangleMesh &mesh, const Interior &interior,
 | |
|                              const std::vector<bool> &exclude_mask)
 | |
| {
 | |
|     enum TrPos { posInside, posTouch, posOutside };
 | |
| 
 | |
|     auto &faces       = mesh.its.indices;
 | |
|     auto &vertices    = mesh.its.vertices;
 | |
|     auto bb           = mesh.bounding_box();
 | |
| 
 | |
|     bool use_exclude_mask = faces.size() == exclude_mask.size();
 | |
|     auto is_excluded = [&exclude_mask, use_exclude_mask](size_t face_id) {
 | |
|         return use_exclude_mask && exclude_mask[face_id];
 | |
|     };
 | |
| 
 | |
|     // TODO: Parallel mode not working yet
 | |
|     using exec_policy = ccr_seq;
 | |
| 
 | |
|     // Info about the needed modifications on the input mesh.
 | |
|     struct MeshMods {
 | |
| 
 | |
|         // Just a thread safe wrapper for a vector of triangles.
 | |
|         struct {
 | |
|             std::vector<std::array<Vec3f, 3>> data;
 | |
|             exec_policy::SpinningMutex        mutex;
 | |
| 
 | |
|             void emplace_back(const std::array<Vec3f, 3> &pts)
 | |
|             {
 | |
|                 std::lock_guard lk{mutex};
 | |
|                 data.emplace_back(pts);
 | |
|             }
 | |
| 
 | |
|             size_t size() const { return data.size(); }
 | |
|             const std::array<Vec3f, 3>& operator[](size_t idx) const
 | |
|             {
 | |
|                 return data[idx];
 | |
|             }
 | |
| 
 | |
|         } new_triangles;
 | |
| 
 | |
|         // A vector of bool for all faces signaling if it needs to be removed
 | |
|         // or not.
 | |
|         std::vector<bool> to_remove;
 | |
| 
 | |
|         MeshMods(const TriangleMesh &mesh):
 | |
|             to_remove(mesh.its.indices.size(), false) {}
 | |
| 
 | |
|         // Number of triangles that need to be removed.
 | |
|         size_t to_remove_cnt() const
 | |
|         {
 | |
|             return std::accumulate(to_remove.begin(), to_remove.end(), size_t(0));
 | |
|         }
 | |
| 
 | |
|     } mesh_mods{mesh};
 | |
| 
 | |
|     // Must return true if further division of the face is needed.
 | |
|     auto divfn = [&interior, bb, &mesh_mods](const DivFace &f) {
 | |
|         BoundingBoxf3 facebb { f.verts.begin(), f.verts.end() };
 | |
| 
 | |
|         // Face is certainly outside the cavity
 | |
|         if (! facebb.intersects(bb) && f.faceid != NEW_FACE) {
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         TriangleBubble bubble{facebb.center().cast<float>(), facebb.radius()};
 | |
| 
 | |
|         double D = get_distance(bubble, interior);
 | |
|         double R = bubble.R * interior.voxel_scale;
 | |
| 
 | |
|         if (std::isnan(D)) // The distance cannot be measured, triangle too big
 | |
|             return true;
 | |
| 
 | |
|         // Distance of the bubble wall to the interior wall. Negative if the
 | |
|         // bubble is overlapping with the interior
 | |
|         double bubble_distance = D - R;
 | |
| 
 | |
|         // The face is crossing the interior or inside, it must be removed and
 | |
|         // parts of it re-added, that are outside the interior
 | |
|         if (bubble_distance < 0.) {
 | |
|             if (f.faceid != NEW_FACE)
 | |
|                 mesh_mods.to_remove[f.faceid] = true;
 | |
| 
 | |
|             if (f.parent != NEW_FACE) // Top parent needs to be removed as well
 | |
|                 mesh_mods.to_remove[f.parent] = true;
 | |
| 
 | |
|             // If the outside part is between the interior end the exterior
 | |
|             // (inside the wall being invisible), no further division is needed.
 | |
|             if ((R + D) < interior.thickness)
 | |
|                 return false;
 | |
| 
 | |
|             return true;
 | |
|         } else if (f.faceid == NEW_FACE) {
 | |
|             // New face completely outside needs to be re-added.
 | |
|             mesh_mods.new_triangles.emplace_back(f.verts);
 | |
|         }
 | |
| 
 | |
|         return false;
 | |
|     };
 | |
| 
 | |
|     interior.reset_accessor();
 | |
| 
 | |
|     exec_policy::for_each(size_t(0), faces.size(), [&] (size_t face_idx) {
 | |
|         const Vec3i &face = faces[face_idx];
 | |
| 
 | |
|         // If the triangle is excluded, we need to keep it.
 | |
|         if (is_excluded(face_idx))
 | |
|             return;
 | |
| 
 | |
|         std::array<Vec3f, 3> pts =
 | |
|             { vertices[face(0)], vertices[face(1)], vertices[face(2)] };
 | |
| 
 | |
|         BoundingBoxf3 facebb { pts.begin(), pts.end() };
 | |
| 
 | |
|         // Face is certainly outside the cavity
 | |
|         if (! facebb.intersects(bb)) return;
 | |
| 
 | |
|         DivFace df{face, pts, long(face_idx)};
 | |
| 
 | |
|         if (divfn(df))
 | |
|             divide_triangle(df, divfn);
 | |
| 
 | |
|     }, exec_policy::max_concurreny());
 | |
| 
 | |
|     auto new_faces = reserve_vector<Vec3i>(faces.size() +
 | |
|                                            mesh_mods.new_triangles.size());
 | |
| 
 | |
|     for (size_t face_idx = 0; face_idx < faces.size(); ++face_idx) {
 | |
|         if (!mesh_mods.to_remove[face_idx])
 | |
|             new_faces.emplace_back(faces[face_idx]);
 | |
|     }
 | |
| 
 | |
|     for(size_t i = 0; i < mesh_mods.new_triangles.size(); ++i) {
 | |
|         size_t o = vertices.size();
 | |
|         vertices.emplace_back(mesh_mods.new_triangles[i][0]);
 | |
|         vertices.emplace_back(mesh_mods.new_triangles[i][1]);
 | |
|         vertices.emplace_back(mesh_mods.new_triangles[i][2]);
 | |
|         new_faces.emplace_back(int(o), int(o + 1), int(o + 2));
 | |
|     }
 | |
| 
 | |
|     BOOST_LOG_TRIVIAL(info)
 | |
|             << "Trimming: " << mesh_mods.to_remove_cnt() << " triangles removed";
 | |
|     BOOST_LOG_TRIVIAL(info)
 | |
|             << "Trimming: " << mesh_mods.new_triangles.size() << " triangles added";
 | |
| 
 | |
|     faces.swap(new_faces);
 | |
|     new_faces = {};
 | |
| 
 | |
|     mesh = TriangleMesh{mesh.its};
 | |
|     mesh.repaired = true;
 | |
|     mesh.require_shared_vertices();
 | |
| }
 | |
| 
 | |
| }} // namespace Slic3r::sla
 | 
