mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-10-26 02:01:12 -06:00
Fixing dep build script on Windows and removing some warnings. Use bundled igl by default. Not building with the dependency scripts if not explicitly stated. This way, it will stay in Fix the libigl patch to include C source files in header only mode.
597 lines
23 KiB
C++
597 lines
23 KiB
C++
// This file is part of libigl, a simple c++ geometry processing library.
|
|
//
|
|
// Copyright (C) 2016 Alec Jacobson <alecjacobson@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla Public License
|
|
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
|
|
// obtain one at http://mozilla.org/MPL/2.0/.
|
|
#include "min_quad_with_fixed.h"
|
|
|
|
#include "slice.h"
|
|
#include "is_symmetric.h"
|
|
#include "find.h"
|
|
#include "sparse.h"
|
|
#include "repmat.h"
|
|
#include "matlab_format.h"
|
|
#include "EPS.h"
|
|
#include "cat.h"
|
|
|
|
//#include <Eigen/SparseExtra>
|
|
// Bug in unsupported/Eigen/SparseExtra needs iostream first
|
|
#include <iostream>
|
|
#include <unsupported/Eigen/SparseExtra>
|
|
#include <cassert>
|
|
#include <cstdio>
|
|
#include <iostream>
|
|
|
|
template <typename T, typename Derivedknown>
|
|
IGL_INLINE bool igl::min_quad_with_fixed_precompute(
|
|
const Eigen::SparseMatrix<T>& A2,
|
|
const Eigen::MatrixBase<Derivedknown> & known,
|
|
const Eigen::SparseMatrix<T>& Aeq,
|
|
const bool pd,
|
|
min_quad_with_fixed_data<T> & data
|
|
)
|
|
{
|
|
//#define MIN_QUAD_WITH_FIXED_CPP_DEBUG
|
|
using namespace Eigen;
|
|
using namespace std;
|
|
const Eigen::SparseMatrix<T> A = 0.5*A2;
|
|
#ifdef MIN_QUAD_WITH_FIXED_CPP_DEBUG
|
|
cout<<" pre"<<endl;
|
|
#endif
|
|
// number of rows
|
|
int n = A.rows();
|
|
// cache problem size
|
|
data.n = n;
|
|
|
|
int neq = Aeq.rows();
|
|
// default is to have 0 linear equality constraints
|
|
if(Aeq.size() != 0)
|
|
{
|
|
assert(n == Aeq.cols() && "#Aeq.cols() should match A.rows()");
|
|
}
|
|
|
|
assert(A.rows() == n && "A should be square");
|
|
assert(A.cols() == n && "A should be square");
|
|
|
|
// number of known rows
|
|
int kr = known.size();
|
|
|
|
assert((kr == 0 || known.minCoeff() >= 0)&& "known indices should be in [0,n)");
|
|
assert((kr == 0 || known.maxCoeff() < n) && "known indices should be in [0,n)");
|
|
assert(neq <= n && "Number of equality constraints should be less than DOFs");
|
|
|
|
|
|
// cache known
|
|
data.known = known;
|
|
// get list of unknown indices
|
|
data.unknown.resize(n-kr);
|
|
std::vector<bool> unknown_mask;
|
|
unknown_mask.resize(n,true);
|
|
for(int i = 0;i<kr;i++)
|
|
{
|
|
unknown_mask[known(i)] = false;
|
|
}
|
|
int u = 0;
|
|
for(int i = 0;i<n;i++)
|
|
{
|
|
if(unknown_mask[i])
|
|
{
|
|
data.unknown(u) = i;
|
|
u++;
|
|
}
|
|
}
|
|
// get list of lagrange multiplier indices
|
|
data.lagrange.resize(neq);
|
|
for(int i = 0;i<neq;i++)
|
|
{
|
|
data.lagrange(i) = n + i;
|
|
}
|
|
// cache unknown followed by lagrange indices
|
|
data.unknown_lagrange.resize(data.unknown.size()+data.lagrange.size());
|
|
// Would like to do:
|
|
//data.unknown_lagrange << data.unknown, data.lagrange;
|
|
// but Eigen can't handle empty vectors in comma initialization
|
|
// https://forum.kde.org/viewtopic.php?f=74&t=107974&p=364947#p364947
|
|
if(data.unknown.size() > 0)
|
|
{
|
|
data.unknown_lagrange.head(data.unknown.size()) = data.unknown;
|
|
}
|
|
if(data.lagrange.size() > 0)
|
|
{
|
|
data.unknown_lagrange.tail(data.lagrange.size()) = data.lagrange;
|
|
}
|
|
|
|
SparseMatrix<T> Auu;
|
|
slice(A,data.unknown,data.unknown,Auu);
|
|
assert(Auu.size() != 0 && Auu.rows() > 0 && "There should be at least one unknown.");
|
|
|
|
// Positive definiteness is *not* determined, rather it is given as a
|
|
// parameter
|
|
data.Auu_pd = pd;
|
|
if(data.Auu_pd)
|
|
{
|
|
// PD implies symmetric
|
|
data.Auu_sym = true;
|
|
// This is an annoying assertion unless EPS can be chosen in a nicer way.
|
|
//assert(is_symmetric(Auu,EPS<double>()));
|
|
assert(is_symmetric(Auu,1.0) &&
|
|
"Auu should be symmetric if positive definite");
|
|
}else
|
|
{
|
|
// determine if A(unknown,unknown) is symmetric and/or positive definite
|
|
VectorXi AuuI,AuuJ;
|
|
MatrixXd AuuV;
|
|
find(Auu,AuuI,AuuJ,AuuV);
|
|
data.Auu_sym = is_symmetric(Auu,EPS<double>()*AuuV.maxCoeff());
|
|
}
|
|
|
|
// Determine number of linearly independent constraints
|
|
int nc = 0;
|
|
if(neq>0)
|
|
{
|
|
#ifdef MIN_QUAD_WITH_FIXED_CPP_DEBUG
|
|
cout<<" qr"<<endl;
|
|
#endif
|
|
// QR decomposition to determine row rank in Aequ
|
|
slice(Aeq,data.unknown,2,data.Aequ);
|
|
assert(data.Aequ.rows() == neq &&
|
|
"#Rows in Aequ should match #constraints");
|
|
assert(data.Aequ.cols() == data.unknown.size() &&
|
|
"#cols in Aequ should match #unknowns");
|
|
data.AeqTQR.compute(data.Aequ.transpose().eval());
|
|
#ifdef MIN_QUAD_WITH_FIXED_CPP_DEBUG
|
|
cout<<endl<<matlab_format(SparseMatrix<T>(data.Aequ.transpose().eval()),"AeqT")<<endl<<endl;
|
|
#endif
|
|
switch(data.AeqTQR.info())
|
|
{
|
|
case Eigen::Success:
|
|
break;
|
|
case Eigen::NumericalIssue:
|
|
cerr<<"Error: Numerical issue."<<endl;
|
|
return false;
|
|
case Eigen::InvalidInput:
|
|
cerr<<"Error: Invalid input."<<endl;
|
|
return false;
|
|
default:
|
|
cerr<<"Error: Other."<<endl;
|
|
return false;
|
|
}
|
|
nc = data.AeqTQR.rank();
|
|
assert(nc<=neq &&
|
|
"Rank of reduced constraints should be <= #original constraints");
|
|
data.Aeq_li = nc == neq;
|
|
//cout<<"data.Aeq_li: "<<data.Aeq_li<<endl;
|
|
}else
|
|
{
|
|
data.Aeq_li = true;
|
|
}
|
|
|
|
if(data.Aeq_li)
|
|
{
|
|
#ifdef MIN_QUAD_WITH_FIXED_CPP_DEBUG
|
|
cout<<" Aeq_li=true"<<endl;
|
|
#endif
|
|
// Append lagrange multiplier quadratic terms
|
|
SparseMatrix<T> new_A;
|
|
SparseMatrix<T> AeqT = Aeq.transpose();
|
|
SparseMatrix<T> Z(neq,neq);
|
|
// This is a bit slower. But why isn't cat fast?
|
|
new_A = cat(1, cat(2, A, AeqT ),
|
|
cat(2, Aeq, Z ));
|
|
|
|
// precompute RHS builders
|
|
if(kr > 0)
|
|
{
|
|
SparseMatrix<T> Aulk,Akul;
|
|
// Slow
|
|
slice(new_A,data.unknown_lagrange,data.known,Aulk);
|
|
//// This doesn't work!!!
|
|
//data.preY = Aulk + Akul.transpose();
|
|
// Slow
|
|
if(data.Auu_sym)
|
|
{
|
|
data.preY = Aulk*2;
|
|
}else
|
|
{
|
|
slice(new_A,data.known,data.unknown_lagrange,Akul);
|
|
SparseMatrix<T> AkulT = Akul.transpose();
|
|
data.preY = Aulk + AkulT;
|
|
}
|
|
}else
|
|
{
|
|
data.preY.resize(data.unknown_lagrange.size(),0);
|
|
}
|
|
|
|
// Positive definite and no equality constraints (Positive definiteness
|
|
// implies symmetric)
|
|
#ifdef MIN_QUAD_WITH_FIXED_CPP_DEBUG
|
|
cout<<" factorize"<<endl;
|
|
#endif
|
|
if(data.Auu_pd && neq == 0)
|
|
{
|
|
#ifdef MIN_QUAD_WITH_FIXED_CPP_DEBUG
|
|
cout<<" llt"<<endl;
|
|
#endif
|
|
data.llt.compute(Auu);
|
|
switch(data.llt.info())
|
|
{
|
|
case Eigen::Success:
|
|
break;
|
|
case Eigen::NumericalIssue:
|
|
cerr<<"Error: Numerical issue."<<endl;
|
|
return false;
|
|
default:
|
|
cerr<<"Error: Other."<<endl;
|
|
return false;
|
|
}
|
|
data.solver_type = min_quad_with_fixed_data<T>::LLT;
|
|
}else
|
|
{
|
|
#ifdef MIN_QUAD_WITH_FIXED_CPP_DEBUG
|
|
cout<<" ldlt"<<endl;
|
|
#endif
|
|
// Either not PD or there are equality constraints
|
|
SparseMatrix<T> NA;
|
|
slice(new_A,data.unknown_lagrange,data.unknown_lagrange,NA);
|
|
data.NA = NA;
|
|
// Ideally we'd use LDLT but Eigen doesn't support positive semi-definite
|
|
// matrices:
|
|
// http://forum.kde.org/viewtopic.php?f=74&t=106962&p=291990#p291990
|
|
if(data.Auu_sym && false)
|
|
{
|
|
data.ldlt.compute(NA);
|
|
switch(data.ldlt.info())
|
|
{
|
|
case Eigen::Success:
|
|
break;
|
|
case Eigen::NumericalIssue:
|
|
cerr<<"Error: Numerical issue."<<endl;
|
|
return false;
|
|
default:
|
|
cerr<<"Error: Other."<<endl;
|
|
return false;
|
|
}
|
|
data.solver_type = min_quad_with_fixed_data<T>::LDLT;
|
|
}else
|
|
{
|
|
#ifdef MIN_QUAD_WITH_FIXED_CPP_DEBUG
|
|
cout<<" lu"<<endl;
|
|
#endif
|
|
// Resort to LU
|
|
// Bottleneck >1/2
|
|
data.lu.compute(NA);
|
|
//std::cout<<"NA=["<<std::endl<<NA<<std::endl<<"];"<<std::endl;
|
|
switch(data.lu.info())
|
|
{
|
|
case Eigen::Success:
|
|
break;
|
|
case Eigen::NumericalIssue:
|
|
cerr<<"Error: Numerical issue."<<endl;
|
|
return false;
|
|
case Eigen::InvalidInput:
|
|
cerr<<"Error: Invalid Input."<<endl;
|
|
return false;
|
|
default:
|
|
cerr<<"Error: Other."<<endl;
|
|
return false;
|
|
}
|
|
data.solver_type = min_quad_with_fixed_data<T>::LU;
|
|
}
|
|
}
|
|
}else
|
|
{
|
|
#ifdef MIN_QUAD_WITH_FIXED_CPP_DEBUG
|
|
cout<<" Aeq_li=false"<<endl;
|
|
#endif
|
|
data.neq = neq;
|
|
const int nu = data.unknown.size();
|
|
//cout<<"nu: "<<nu<<endl;
|
|
//cout<<"neq: "<<neq<<endl;
|
|
//cout<<"nc: "<<nc<<endl;
|
|
//cout<<" matrixR"<<endl;
|
|
SparseMatrix<T> AeqTR,AeqTQ;
|
|
AeqTR = data.AeqTQR.matrixR();
|
|
// This shouldn't be necessary
|
|
AeqTR.prune(0.0);
|
|
#ifdef MIN_QUAD_WITH_FIXED_CPP_DEBUG
|
|
cout<<" matrixQ"<<endl;
|
|
#endif
|
|
// THIS IS ESSENTIALLY DENSE AND THIS IS BY FAR THE BOTTLENECK
|
|
// http://forum.kde.org/viewtopic.php?f=74&t=117500
|
|
AeqTQ = data.AeqTQR.matrixQ();
|
|
#ifdef MIN_QUAD_WITH_FIXED_CPP_DEBUG
|
|
cout<<" prune"<<endl;
|
|
cout<<" nnz: "<<AeqTQ.nonZeros()<<endl;
|
|
#endif
|
|
// This shouldn't be necessary
|
|
AeqTQ.prune(0.0);
|
|
//cout<<"AeqTQ: "<<AeqTQ.rows()<<" "<<AeqTQ.cols()<<endl;
|
|
//cout<<matlab_format(AeqTQ,"AeqTQ")<<endl;
|
|
//cout<<" perms"<<endl;
|
|
#ifdef MIN_QUAD_WITH_FIXED_CPP_DEBUG
|
|
cout<<" nnz: "<<AeqTQ.nonZeros()<<endl;
|
|
cout<<" perm"<<endl;
|
|
#endif
|
|
SparseMatrix<double> I(neq,neq);
|
|
I.setIdentity();
|
|
data.AeqTE = data.AeqTQR.colsPermutation() * I;
|
|
data.AeqTET = data.AeqTQR.colsPermutation().transpose() * I;
|
|
assert(AeqTR.rows() == nu && "#rows in AeqTR should match #unknowns");
|
|
assert(AeqTR.cols() == neq && "#cols in AeqTR should match #constraints");
|
|
assert(AeqTQ.rows() == nu && "#rows in AeqTQ should match #unknowns");
|
|
assert(AeqTQ.cols() == nu && "#cols in AeqTQ should match #unknowns");
|
|
//cout<<" slice"<<endl;
|
|
#ifdef MIN_QUAD_WITH_FIXED_CPP_DEBUG
|
|
cout<<" slice"<<endl;
|
|
#endif
|
|
data.AeqTQ1 = AeqTQ.topLeftCorner(nu,nc);
|
|
data.AeqTQ1T = data.AeqTQ1.transpose().eval();
|
|
// ALREADY TRIM (Not 100% sure about this)
|
|
data.AeqTR1 = AeqTR.topLeftCorner(nc,nc);
|
|
data.AeqTR1T = data.AeqTR1.transpose().eval();
|
|
//cout<<"AeqTR1T.size() "<<data.AeqTR1T.rows()<<" "<<data.AeqTR1T.cols()<<endl;
|
|
// Null space
|
|
data.AeqTQ2 = AeqTQ.bottomRightCorner(nu,nu-nc);
|
|
data.AeqTQ2T = data.AeqTQ2.transpose().eval();
|
|
#ifdef MIN_QUAD_WITH_FIXED_CPP_DEBUG
|
|
cout<<" proj"<<endl;
|
|
#endif
|
|
// Projected hessian
|
|
SparseMatrix<T> QRAuu = data.AeqTQ2T * Auu * data.AeqTQ2;
|
|
{
|
|
#ifdef MIN_QUAD_WITH_FIXED_CPP_DEBUG
|
|
cout<<" factorize"<<endl;
|
|
#endif
|
|
// QRAuu should always be PD
|
|
data.llt.compute(QRAuu);
|
|
switch(data.llt.info())
|
|
{
|
|
case Eigen::Success:
|
|
break;
|
|
case Eigen::NumericalIssue:
|
|
cerr<<"Error: Numerical issue."<<endl;
|
|
return false;
|
|
default:
|
|
cerr<<"Error: Other."<<endl;
|
|
return false;
|
|
}
|
|
data.solver_type = min_quad_with_fixed_data<T>::QR_LLT;
|
|
}
|
|
#ifdef MIN_QUAD_WITH_FIXED_CPP_DEBUG
|
|
cout<<" smash"<<endl;
|
|
#endif
|
|
// Known value multiplier
|
|
SparseMatrix<T> Auk;
|
|
slice(A,data.unknown,data.known,Auk);
|
|
SparseMatrix<T> Aku;
|
|
slice(A,data.known,data.unknown,Aku);
|
|
SparseMatrix<T> AkuT = Aku.transpose();
|
|
data.preY = Auk + AkuT;
|
|
// Needed during solve
|
|
data.Auu = Auu;
|
|
slice(Aeq,data.known,2,data.Aeqk);
|
|
assert(data.Aeqk.rows() == neq);
|
|
assert(data.Aeqk.cols() == data.known.size());
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
template <
|
|
typename T,
|
|
typename DerivedB,
|
|
typename DerivedY,
|
|
typename DerivedBeq,
|
|
typename DerivedZ,
|
|
typename Derivedsol>
|
|
IGL_INLINE bool igl::min_quad_with_fixed_solve(
|
|
const min_quad_with_fixed_data<T> & data,
|
|
const Eigen::MatrixBase<DerivedB> & B,
|
|
const Eigen::MatrixBase<DerivedY> & Y,
|
|
const Eigen::MatrixBase<DerivedBeq> & Beq,
|
|
Eigen::PlainObjectBase<DerivedZ> & Z,
|
|
Eigen::PlainObjectBase<Derivedsol> & sol)
|
|
{
|
|
using namespace std;
|
|
using namespace Eigen;
|
|
typedef Matrix<T,Dynamic,1> VectorXT;
|
|
typedef Matrix<T,Dynamic,Dynamic> MatrixXT;
|
|
// number of known rows
|
|
int kr = data.known.size();
|
|
if(kr!=0)
|
|
{
|
|
assert(kr == Y.rows());
|
|
}
|
|
// number of columns to solve
|
|
int cols = Y.cols();
|
|
assert(B.cols() == 1 || B.cols() == cols);
|
|
assert(Beq.size() == 0 || Beq.cols() == 1 || Beq.cols() == cols);
|
|
|
|
// resize output
|
|
Z.resize(data.n,cols);
|
|
// Set known values
|
|
for(int i = 0;i < kr;i++)
|
|
{
|
|
for(int j = 0;j < cols;j++)
|
|
{
|
|
Z(data.known(i),j) = Y(i,j);
|
|
}
|
|
}
|
|
|
|
if(data.Aeq_li)
|
|
{
|
|
// number of lagrange multipliers aka linear equality constraints
|
|
int neq = data.lagrange.size();
|
|
// append lagrange multiplier rhs's
|
|
MatrixXT BBeq(B.rows() + Beq.rows(),cols);
|
|
if(B.size() > 0)
|
|
{
|
|
BBeq.topLeftCorner(B.rows(),cols) = B.replicate(1,B.cols()==cols?1:cols);
|
|
}
|
|
if(Beq.size() > 0)
|
|
{
|
|
BBeq.bottomLeftCorner(Beq.rows(),cols) = -2.0*Beq.replicate(1,Beq.cols()==cols?1:cols);
|
|
}
|
|
|
|
// Build right hand side
|
|
MatrixXT BBequlcols;
|
|
igl::slice(BBeq,data.unknown_lagrange,1,BBequlcols);
|
|
MatrixXT NB;
|
|
if(kr == 0)
|
|
{
|
|
NB = BBequlcols;
|
|
}else
|
|
{
|
|
NB = data.preY * Y + BBequlcols;
|
|
}
|
|
|
|
//std::cout<<"NB=["<<std::endl<<NB<<std::endl<<"];"<<std::endl;
|
|
//cout<<matlab_format(NB,"NB")<<endl;
|
|
switch(data.solver_type)
|
|
{
|
|
case igl::min_quad_with_fixed_data<T>::LLT:
|
|
sol = data.llt.solve(NB);
|
|
break;
|
|
case igl::min_quad_with_fixed_data<T>::LDLT:
|
|
sol = data.ldlt.solve(NB);
|
|
break;
|
|
case igl::min_quad_with_fixed_data<T>::LU:
|
|
// Not a bottleneck
|
|
sol = data.lu.solve(NB);
|
|
break;
|
|
default:
|
|
cerr<<"Error: invalid solver type"<<endl;
|
|
return false;
|
|
}
|
|
//std::cout<<"sol=["<<std::endl<<sol<<std::endl<<"];"<<std::endl;
|
|
// Now sol contains sol/-0.5
|
|
sol *= -0.5;
|
|
// Now sol contains solution
|
|
// Place solution in Z
|
|
for(int i = 0;i<(sol.rows()-neq);i++)
|
|
{
|
|
for(int j = 0;j<sol.cols();j++)
|
|
{
|
|
Z(data.unknown_lagrange(i),j) = sol(i,j);
|
|
}
|
|
}
|
|
}else
|
|
{
|
|
assert(data.solver_type == min_quad_with_fixed_data<T>::QR_LLT);
|
|
MatrixXT eff_Beq;
|
|
// Adjust Aeq rhs to include known parts
|
|
eff_Beq =
|
|
//data.AeqTQR.colsPermutation().transpose() * (-data.Aeqk * Y + Beq);
|
|
data.AeqTET * (-data.Aeqk * Y + Beq.replicate(1,Beq.cols()==cols?1:cols));
|
|
// Where did this -0.5 come from? Probably the same place as above.
|
|
MatrixXT Bu;
|
|
slice(B,data.unknown,1,Bu);
|
|
MatrixXT NB;
|
|
NB = -0.5*(Bu.replicate(1,B.cols()==cols?1:cols) + data.preY * Y);
|
|
// Trim eff_Beq
|
|
const int nc = data.AeqTQR.rank();
|
|
const int neq = Beq.rows();
|
|
eff_Beq = eff_Beq.topLeftCorner(nc,cols).eval();
|
|
data.AeqTR1T.template triangularView<Lower>().solveInPlace(eff_Beq);
|
|
// Now eff_Beq = (data.AeqTR1T \ (data.AeqTET * (-data.Aeqk * Y + Beq)))
|
|
MatrixXT lambda_0;
|
|
lambda_0 = data.AeqTQ1 * eff_Beq;
|
|
//cout<<matlab_format(lambda_0,"lambda_0")<<endl;
|
|
MatrixXT QRB;
|
|
QRB = -data.AeqTQ2T * (data.Auu * lambda_0) + data.AeqTQ2T * NB;
|
|
Derivedsol lambda;
|
|
lambda = data.llt.solve(QRB);
|
|
// prepare output
|
|
Derivedsol solu;
|
|
solu = data.AeqTQ2 * lambda + lambda_0;
|
|
// http://www.math.uh.edu/~rohop/fall_06/Chapter3.pdf
|
|
Derivedsol solLambda;
|
|
{
|
|
Derivedsol temp1,temp2;
|
|
temp1 = (data.AeqTQ1T * NB - data.AeqTQ1T * data.Auu * solu);
|
|
data.AeqTR1.template triangularView<Upper>().solveInPlace(temp1);
|
|
//cout<<matlab_format(temp1,"temp1")<<endl;
|
|
temp2 = Derivedsol::Zero(neq,cols);
|
|
temp2.topLeftCorner(nc,cols) = temp1;
|
|
//solLambda = data.AeqTQR.colsPermutation() * temp2;
|
|
solLambda = data.AeqTE * temp2;
|
|
}
|
|
// sol is [Z(unknown);Lambda]
|
|
assert(data.unknown.size() == solu.rows());
|
|
assert(cols == solu.cols());
|
|
assert(data.neq == neq);
|
|
assert(data.neq == solLambda.rows());
|
|
assert(cols == solLambda.cols());
|
|
sol.resize(data.unknown.size()+data.neq,cols);
|
|
sol.block(0,0,solu.rows(),solu.cols()) = solu;
|
|
sol.block(solu.rows(),0,solLambda.rows(),solLambda.cols()) = solLambda;
|
|
for(int u = 0;u<data.unknown.size();u++)
|
|
{
|
|
for(int j = 0;j<Z.cols();j++)
|
|
{
|
|
Z(data.unknown(u),j) = solu(u,j);
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <
|
|
typename T,
|
|
typename DerivedB,
|
|
typename DerivedY,
|
|
typename DerivedBeq,
|
|
typename DerivedZ>
|
|
IGL_INLINE bool igl::min_quad_with_fixed_solve(
|
|
const min_quad_with_fixed_data<T> & data,
|
|
const Eigen::MatrixBase<DerivedB> & B,
|
|
const Eigen::MatrixBase<DerivedY> & Y,
|
|
const Eigen::MatrixBase<DerivedBeq> & Beq,
|
|
Eigen::PlainObjectBase<DerivedZ> & Z)
|
|
{
|
|
Eigen::Matrix<typename DerivedZ::Scalar, Eigen::Dynamic, Eigen::Dynamic> sol;
|
|
return min_quad_with_fixed_solve(data,B,Y,Beq,Z,sol);
|
|
}
|
|
|
|
template <
|
|
typename T,
|
|
typename Derivedknown,
|
|
typename DerivedB,
|
|
typename DerivedY,
|
|
typename DerivedBeq,
|
|
typename DerivedZ>
|
|
IGL_INLINE bool igl::min_quad_with_fixed(
|
|
const Eigen::SparseMatrix<T>& A,
|
|
const Eigen::MatrixBase<DerivedB> & B,
|
|
const Eigen::MatrixBase<Derivedknown> & known,
|
|
const Eigen::MatrixBase<DerivedY> & Y,
|
|
const Eigen::SparseMatrix<T>& Aeq,
|
|
const Eigen::MatrixBase<DerivedBeq> & Beq,
|
|
const bool pd,
|
|
Eigen::PlainObjectBase<DerivedZ> & Z)
|
|
{
|
|
min_quad_with_fixed_data<T> data;
|
|
if(!min_quad_with_fixed_precompute(A,known,Aeq,pd,data))
|
|
{
|
|
return false;
|
|
}
|
|
return min_quad_with_fixed_solve(data,B,Y,Beq,Z);
|
|
}
|
|
|
|
#ifdef IGL_STATIC_LIBRARY
|
|
// Explicit template instantiation
|
|
// generated by autoexplicit.sh
|
|
template bool igl::min_quad_with_fixed<double, Eigen::Matrix<int, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::SparseMatrix<double, 0, int> const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::SparseMatrix<double, 0, int> const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, bool, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&);
|
|
template bool igl::min_quad_with_fixed_solve<double, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1> >(igl::min_quad_with_fixed_data<double> const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&);
|
|
template bool igl::min_quad_with_fixed_precompute<double, Eigen::Matrix<int, -1, 1, 0, -1, 1> >(Eigen::SparseMatrix<double, 0, int> const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> > const&, Eigen::SparseMatrix<double, 0, int> const&, bool, igl::min_quad_with_fixed_data<double>&);
|
|
template bool igl::min_quad_with_fixed_solve<double, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1> >(igl::min_quad_with_fixed_data<double> const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&);
|
|
template bool igl::min_quad_with_fixed_solve<double, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(igl::min_quad_with_fixed_data<double> const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&);
|
|
template bool igl::min_quad_with_fixed_precompute<double, Eigen::Matrix<int, -1, -1, 0, -1, -1> >(Eigen::SparseMatrix<double, 0, int> const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::SparseMatrix<double, 0, int> const&, bool, igl::min_quad_with_fixed_data<double>&);
|
|
template bool igl::min_quad_with_fixed_solve<double, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(igl::min_quad_with_fixed_data<double> const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&);
|
|
template bool igl::min_quad_with_fixed_solve<double, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(igl::min_quad_with_fixed_data<double> const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&);
|
|
template bool igl::min_quad_with_fixed_solve<double, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(igl::min_quad_with_fixed_data<double> const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&);
|
|
template bool igl::min_quad_with_fixed_solve<double, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(igl::min_quad_with_fixed_data<double> const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&);
|
|
template bool igl::min_quad_with_fixed<double, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::SparseMatrix<double, 0, int> const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::SparseMatrix<double, 0, int> const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, bool, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&);
|
|
#endif
|