OrcaSlicer/src/libigl/igl/min_quad_with_fixed.cpp
tamasmeszaros 2ae2672ee9 Building igl statically and moving to the dep scripts
Fixing dep build script on Windows and removing some warnings.

Use bundled igl by default.

Not building with the dependency scripts if not explicitly stated. This way, it will stay in
Fix the libigl patch to include C source files in header only mode.
2019-06-19 14:52:55 +02:00

597 lines
23 KiB
C++

// This file is part of libigl, a simple c++ geometry processing library.
//
// Copyright (C) 2016 Alec Jacobson <alecjacobson@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#include "min_quad_with_fixed.h"
#include "slice.h"
#include "is_symmetric.h"
#include "find.h"
#include "sparse.h"
#include "repmat.h"
#include "matlab_format.h"
#include "EPS.h"
#include "cat.h"
//#include <Eigen/SparseExtra>
// Bug in unsupported/Eigen/SparseExtra needs iostream first
#include <iostream>
#include <unsupported/Eigen/SparseExtra>
#include <cassert>
#include <cstdio>
#include <iostream>
template <typename T, typename Derivedknown>
IGL_INLINE bool igl::min_quad_with_fixed_precompute(
const Eigen::SparseMatrix<T>& A2,
const Eigen::MatrixBase<Derivedknown> & known,
const Eigen::SparseMatrix<T>& Aeq,
const bool pd,
min_quad_with_fixed_data<T> & data
)
{
//#define MIN_QUAD_WITH_FIXED_CPP_DEBUG
using namespace Eigen;
using namespace std;
const Eigen::SparseMatrix<T> A = 0.5*A2;
#ifdef MIN_QUAD_WITH_FIXED_CPP_DEBUG
cout<<" pre"<<endl;
#endif
// number of rows
int n = A.rows();
// cache problem size
data.n = n;
int neq = Aeq.rows();
// default is to have 0 linear equality constraints
if(Aeq.size() != 0)
{
assert(n == Aeq.cols() && "#Aeq.cols() should match A.rows()");
}
assert(A.rows() == n && "A should be square");
assert(A.cols() == n && "A should be square");
// number of known rows
int kr = known.size();
assert((kr == 0 || known.minCoeff() >= 0)&& "known indices should be in [0,n)");
assert((kr == 0 || known.maxCoeff() < n) && "known indices should be in [0,n)");
assert(neq <= n && "Number of equality constraints should be less than DOFs");
// cache known
data.known = known;
// get list of unknown indices
data.unknown.resize(n-kr);
std::vector<bool> unknown_mask;
unknown_mask.resize(n,true);
for(int i = 0;i<kr;i++)
{
unknown_mask[known(i)] = false;
}
int u = 0;
for(int i = 0;i<n;i++)
{
if(unknown_mask[i])
{
data.unknown(u) = i;
u++;
}
}
// get list of lagrange multiplier indices
data.lagrange.resize(neq);
for(int i = 0;i<neq;i++)
{
data.lagrange(i) = n + i;
}
// cache unknown followed by lagrange indices
data.unknown_lagrange.resize(data.unknown.size()+data.lagrange.size());
// Would like to do:
//data.unknown_lagrange << data.unknown, data.lagrange;
// but Eigen can't handle empty vectors in comma initialization
// https://forum.kde.org/viewtopic.php?f=74&t=107974&p=364947#p364947
if(data.unknown.size() > 0)
{
data.unknown_lagrange.head(data.unknown.size()) = data.unknown;
}
if(data.lagrange.size() > 0)
{
data.unknown_lagrange.tail(data.lagrange.size()) = data.lagrange;
}
SparseMatrix<T> Auu;
slice(A,data.unknown,data.unknown,Auu);
assert(Auu.size() != 0 && Auu.rows() > 0 && "There should be at least one unknown.");
// Positive definiteness is *not* determined, rather it is given as a
// parameter
data.Auu_pd = pd;
if(data.Auu_pd)
{
// PD implies symmetric
data.Auu_sym = true;
// This is an annoying assertion unless EPS can be chosen in a nicer way.
//assert(is_symmetric(Auu,EPS<double>()));
assert(is_symmetric(Auu,1.0) &&
"Auu should be symmetric if positive definite");
}else
{
// determine if A(unknown,unknown) is symmetric and/or positive definite
VectorXi AuuI,AuuJ;
MatrixXd AuuV;
find(Auu,AuuI,AuuJ,AuuV);
data.Auu_sym = is_symmetric(Auu,EPS<double>()*AuuV.maxCoeff());
}
// Determine number of linearly independent constraints
int nc = 0;
if(neq>0)
{
#ifdef MIN_QUAD_WITH_FIXED_CPP_DEBUG
cout<<" qr"<<endl;
#endif
// QR decomposition to determine row rank in Aequ
slice(Aeq,data.unknown,2,data.Aequ);
assert(data.Aequ.rows() == neq &&
"#Rows in Aequ should match #constraints");
assert(data.Aequ.cols() == data.unknown.size() &&
"#cols in Aequ should match #unknowns");
data.AeqTQR.compute(data.Aequ.transpose().eval());
#ifdef MIN_QUAD_WITH_FIXED_CPP_DEBUG
cout<<endl<<matlab_format(SparseMatrix<T>(data.Aequ.transpose().eval()),"AeqT")<<endl<<endl;
#endif
switch(data.AeqTQR.info())
{
case Eigen::Success:
break;
case Eigen::NumericalIssue:
cerr<<"Error: Numerical issue."<<endl;
return false;
case Eigen::InvalidInput:
cerr<<"Error: Invalid input."<<endl;
return false;
default:
cerr<<"Error: Other."<<endl;
return false;
}
nc = data.AeqTQR.rank();
assert(nc<=neq &&
"Rank of reduced constraints should be <= #original constraints");
data.Aeq_li = nc == neq;
//cout<<"data.Aeq_li: "<<data.Aeq_li<<endl;
}else
{
data.Aeq_li = true;
}
if(data.Aeq_li)
{
#ifdef MIN_QUAD_WITH_FIXED_CPP_DEBUG
cout<<" Aeq_li=true"<<endl;
#endif
// Append lagrange multiplier quadratic terms
SparseMatrix<T> new_A;
SparseMatrix<T> AeqT = Aeq.transpose();
SparseMatrix<T> Z(neq,neq);
// This is a bit slower. But why isn't cat fast?
new_A = cat(1, cat(2, A, AeqT ),
cat(2, Aeq, Z ));
// precompute RHS builders
if(kr > 0)
{
SparseMatrix<T> Aulk,Akul;
// Slow
slice(new_A,data.unknown_lagrange,data.known,Aulk);
//// This doesn't work!!!
//data.preY = Aulk + Akul.transpose();
// Slow
if(data.Auu_sym)
{
data.preY = Aulk*2;
}else
{
slice(new_A,data.known,data.unknown_lagrange,Akul);
SparseMatrix<T> AkulT = Akul.transpose();
data.preY = Aulk + AkulT;
}
}else
{
data.preY.resize(data.unknown_lagrange.size(),0);
}
// Positive definite and no equality constraints (Positive definiteness
// implies symmetric)
#ifdef MIN_QUAD_WITH_FIXED_CPP_DEBUG
cout<<" factorize"<<endl;
#endif
if(data.Auu_pd && neq == 0)
{
#ifdef MIN_QUAD_WITH_FIXED_CPP_DEBUG
cout<<" llt"<<endl;
#endif
data.llt.compute(Auu);
switch(data.llt.info())
{
case Eigen::Success:
break;
case Eigen::NumericalIssue:
cerr<<"Error: Numerical issue."<<endl;
return false;
default:
cerr<<"Error: Other."<<endl;
return false;
}
data.solver_type = min_quad_with_fixed_data<T>::LLT;
}else
{
#ifdef MIN_QUAD_WITH_FIXED_CPP_DEBUG
cout<<" ldlt"<<endl;
#endif
// Either not PD or there are equality constraints
SparseMatrix<T> NA;
slice(new_A,data.unknown_lagrange,data.unknown_lagrange,NA);
data.NA = NA;
// Ideally we'd use LDLT but Eigen doesn't support positive semi-definite
// matrices:
// http://forum.kde.org/viewtopic.php?f=74&t=106962&p=291990#p291990
if(data.Auu_sym && false)
{
data.ldlt.compute(NA);
switch(data.ldlt.info())
{
case Eigen::Success:
break;
case Eigen::NumericalIssue:
cerr<<"Error: Numerical issue."<<endl;
return false;
default:
cerr<<"Error: Other."<<endl;
return false;
}
data.solver_type = min_quad_with_fixed_data<T>::LDLT;
}else
{
#ifdef MIN_QUAD_WITH_FIXED_CPP_DEBUG
cout<<" lu"<<endl;
#endif
// Resort to LU
// Bottleneck >1/2
data.lu.compute(NA);
//std::cout<<"NA=["<<std::endl<<NA<<std::endl<<"];"<<std::endl;
switch(data.lu.info())
{
case Eigen::Success:
break;
case Eigen::NumericalIssue:
cerr<<"Error: Numerical issue."<<endl;
return false;
case Eigen::InvalidInput:
cerr<<"Error: Invalid Input."<<endl;
return false;
default:
cerr<<"Error: Other."<<endl;
return false;
}
data.solver_type = min_quad_with_fixed_data<T>::LU;
}
}
}else
{
#ifdef MIN_QUAD_WITH_FIXED_CPP_DEBUG
cout<<" Aeq_li=false"<<endl;
#endif
data.neq = neq;
const int nu = data.unknown.size();
//cout<<"nu: "<<nu<<endl;
//cout<<"neq: "<<neq<<endl;
//cout<<"nc: "<<nc<<endl;
//cout<<" matrixR"<<endl;
SparseMatrix<T> AeqTR,AeqTQ;
AeqTR = data.AeqTQR.matrixR();
// This shouldn't be necessary
AeqTR.prune(0.0);
#ifdef MIN_QUAD_WITH_FIXED_CPP_DEBUG
cout<<" matrixQ"<<endl;
#endif
// THIS IS ESSENTIALLY DENSE AND THIS IS BY FAR THE BOTTLENECK
// http://forum.kde.org/viewtopic.php?f=74&t=117500
AeqTQ = data.AeqTQR.matrixQ();
#ifdef MIN_QUAD_WITH_FIXED_CPP_DEBUG
cout<<" prune"<<endl;
cout<<" nnz: "<<AeqTQ.nonZeros()<<endl;
#endif
// This shouldn't be necessary
AeqTQ.prune(0.0);
//cout<<"AeqTQ: "<<AeqTQ.rows()<<" "<<AeqTQ.cols()<<endl;
//cout<<matlab_format(AeqTQ,"AeqTQ")<<endl;
//cout<<" perms"<<endl;
#ifdef MIN_QUAD_WITH_FIXED_CPP_DEBUG
cout<<" nnz: "<<AeqTQ.nonZeros()<<endl;
cout<<" perm"<<endl;
#endif
SparseMatrix<double> I(neq,neq);
I.setIdentity();
data.AeqTE = data.AeqTQR.colsPermutation() * I;
data.AeqTET = data.AeqTQR.colsPermutation().transpose() * I;
assert(AeqTR.rows() == nu && "#rows in AeqTR should match #unknowns");
assert(AeqTR.cols() == neq && "#cols in AeqTR should match #constraints");
assert(AeqTQ.rows() == nu && "#rows in AeqTQ should match #unknowns");
assert(AeqTQ.cols() == nu && "#cols in AeqTQ should match #unknowns");
//cout<<" slice"<<endl;
#ifdef MIN_QUAD_WITH_FIXED_CPP_DEBUG
cout<<" slice"<<endl;
#endif
data.AeqTQ1 = AeqTQ.topLeftCorner(nu,nc);
data.AeqTQ1T = data.AeqTQ1.transpose().eval();
// ALREADY TRIM (Not 100% sure about this)
data.AeqTR1 = AeqTR.topLeftCorner(nc,nc);
data.AeqTR1T = data.AeqTR1.transpose().eval();
//cout<<"AeqTR1T.size() "<<data.AeqTR1T.rows()<<" "<<data.AeqTR1T.cols()<<endl;
// Null space
data.AeqTQ2 = AeqTQ.bottomRightCorner(nu,nu-nc);
data.AeqTQ2T = data.AeqTQ2.transpose().eval();
#ifdef MIN_QUAD_WITH_FIXED_CPP_DEBUG
cout<<" proj"<<endl;
#endif
// Projected hessian
SparseMatrix<T> QRAuu = data.AeqTQ2T * Auu * data.AeqTQ2;
{
#ifdef MIN_QUAD_WITH_FIXED_CPP_DEBUG
cout<<" factorize"<<endl;
#endif
// QRAuu should always be PD
data.llt.compute(QRAuu);
switch(data.llt.info())
{
case Eigen::Success:
break;
case Eigen::NumericalIssue:
cerr<<"Error: Numerical issue."<<endl;
return false;
default:
cerr<<"Error: Other."<<endl;
return false;
}
data.solver_type = min_quad_with_fixed_data<T>::QR_LLT;
}
#ifdef MIN_QUAD_WITH_FIXED_CPP_DEBUG
cout<<" smash"<<endl;
#endif
// Known value multiplier
SparseMatrix<T> Auk;
slice(A,data.unknown,data.known,Auk);
SparseMatrix<T> Aku;
slice(A,data.known,data.unknown,Aku);
SparseMatrix<T> AkuT = Aku.transpose();
data.preY = Auk + AkuT;
// Needed during solve
data.Auu = Auu;
slice(Aeq,data.known,2,data.Aeqk);
assert(data.Aeqk.rows() == neq);
assert(data.Aeqk.cols() == data.known.size());
}
return true;
}
template <
typename T,
typename DerivedB,
typename DerivedY,
typename DerivedBeq,
typename DerivedZ,
typename Derivedsol>
IGL_INLINE bool igl::min_quad_with_fixed_solve(
const min_quad_with_fixed_data<T> & data,
const Eigen::MatrixBase<DerivedB> & B,
const Eigen::MatrixBase<DerivedY> & Y,
const Eigen::MatrixBase<DerivedBeq> & Beq,
Eigen::PlainObjectBase<DerivedZ> & Z,
Eigen::PlainObjectBase<Derivedsol> & sol)
{
using namespace std;
using namespace Eigen;
typedef Matrix<T,Dynamic,1> VectorXT;
typedef Matrix<T,Dynamic,Dynamic> MatrixXT;
// number of known rows
int kr = data.known.size();
if(kr!=0)
{
assert(kr == Y.rows());
}
// number of columns to solve
int cols = Y.cols();
assert(B.cols() == 1 || B.cols() == cols);
assert(Beq.size() == 0 || Beq.cols() == 1 || Beq.cols() == cols);
// resize output
Z.resize(data.n,cols);
// Set known values
for(int i = 0;i < kr;i++)
{
for(int j = 0;j < cols;j++)
{
Z(data.known(i),j) = Y(i,j);
}
}
if(data.Aeq_li)
{
// number of lagrange multipliers aka linear equality constraints
int neq = data.lagrange.size();
// append lagrange multiplier rhs's
MatrixXT BBeq(B.rows() + Beq.rows(),cols);
if(B.size() > 0)
{
BBeq.topLeftCorner(B.rows(),cols) = B.replicate(1,B.cols()==cols?1:cols);
}
if(Beq.size() > 0)
{
BBeq.bottomLeftCorner(Beq.rows(),cols) = -2.0*Beq.replicate(1,Beq.cols()==cols?1:cols);
}
// Build right hand side
MatrixXT BBequlcols;
igl::slice(BBeq,data.unknown_lagrange,1,BBequlcols);
MatrixXT NB;
if(kr == 0)
{
NB = BBequlcols;
}else
{
NB = data.preY * Y + BBequlcols;
}
//std::cout<<"NB=["<<std::endl<<NB<<std::endl<<"];"<<std::endl;
//cout<<matlab_format(NB,"NB")<<endl;
switch(data.solver_type)
{
case igl::min_quad_with_fixed_data<T>::LLT:
sol = data.llt.solve(NB);
break;
case igl::min_quad_with_fixed_data<T>::LDLT:
sol = data.ldlt.solve(NB);
break;
case igl::min_quad_with_fixed_data<T>::LU:
// Not a bottleneck
sol = data.lu.solve(NB);
break;
default:
cerr<<"Error: invalid solver type"<<endl;
return false;
}
//std::cout<<"sol=["<<std::endl<<sol<<std::endl<<"];"<<std::endl;
// Now sol contains sol/-0.5
sol *= -0.5;
// Now sol contains solution
// Place solution in Z
for(int i = 0;i<(sol.rows()-neq);i++)
{
for(int j = 0;j<sol.cols();j++)
{
Z(data.unknown_lagrange(i),j) = sol(i,j);
}
}
}else
{
assert(data.solver_type == min_quad_with_fixed_data<T>::QR_LLT);
MatrixXT eff_Beq;
// Adjust Aeq rhs to include known parts
eff_Beq =
//data.AeqTQR.colsPermutation().transpose() * (-data.Aeqk * Y + Beq);
data.AeqTET * (-data.Aeqk * Y + Beq.replicate(1,Beq.cols()==cols?1:cols));
// Where did this -0.5 come from? Probably the same place as above.
MatrixXT Bu;
slice(B,data.unknown,1,Bu);
MatrixXT NB;
NB = -0.5*(Bu.replicate(1,B.cols()==cols?1:cols) + data.preY * Y);
// Trim eff_Beq
const int nc = data.AeqTQR.rank();
const int neq = Beq.rows();
eff_Beq = eff_Beq.topLeftCorner(nc,cols).eval();
data.AeqTR1T.template triangularView<Lower>().solveInPlace(eff_Beq);
// Now eff_Beq = (data.AeqTR1T \ (data.AeqTET * (-data.Aeqk * Y + Beq)))
MatrixXT lambda_0;
lambda_0 = data.AeqTQ1 * eff_Beq;
//cout<<matlab_format(lambda_0,"lambda_0")<<endl;
MatrixXT QRB;
QRB = -data.AeqTQ2T * (data.Auu * lambda_0) + data.AeqTQ2T * NB;
Derivedsol lambda;
lambda = data.llt.solve(QRB);
// prepare output
Derivedsol solu;
solu = data.AeqTQ2 * lambda + lambda_0;
// http://www.math.uh.edu/~rohop/fall_06/Chapter3.pdf
Derivedsol solLambda;
{
Derivedsol temp1,temp2;
temp1 = (data.AeqTQ1T * NB - data.AeqTQ1T * data.Auu * solu);
data.AeqTR1.template triangularView<Upper>().solveInPlace(temp1);
//cout<<matlab_format(temp1,"temp1")<<endl;
temp2 = Derivedsol::Zero(neq,cols);
temp2.topLeftCorner(nc,cols) = temp1;
//solLambda = data.AeqTQR.colsPermutation() * temp2;
solLambda = data.AeqTE * temp2;
}
// sol is [Z(unknown);Lambda]
assert(data.unknown.size() == solu.rows());
assert(cols == solu.cols());
assert(data.neq == neq);
assert(data.neq == solLambda.rows());
assert(cols == solLambda.cols());
sol.resize(data.unknown.size()+data.neq,cols);
sol.block(0,0,solu.rows(),solu.cols()) = solu;
sol.block(solu.rows(),0,solLambda.rows(),solLambda.cols()) = solLambda;
for(int u = 0;u<data.unknown.size();u++)
{
for(int j = 0;j<Z.cols();j++)
{
Z(data.unknown(u),j) = solu(u,j);
}
}
}
return true;
}
template <
typename T,
typename DerivedB,
typename DerivedY,
typename DerivedBeq,
typename DerivedZ>
IGL_INLINE bool igl::min_quad_with_fixed_solve(
const min_quad_with_fixed_data<T> & data,
const Eigen::MatrixBase<DerivedB> & B,
const Eigen::MatrixBase<DerivedY> & Y,
const Eigen::MatrixBase<DerivedBeq> & Beq,
Eigen::PlainObjectBase<DerivedZ> & Z)
{
Eigen::Matrix<typename DerivedZ::Scalar, Eigen::Dynamic, Eigen::Dynamic> sol;
return min_quad_with_fixed_solve(data,B,Y,Beq,Z,sol);
}
template <
typename T,
typename Derivedknown,
typename DerivedB,
typename DerivedY,
typename DerivedBeq,
typename DerivedZ>
IGL_INLINE bool igl::min_quad_with_fixed(
const Eigen::SparseMatrix<T>& A,
const Eigen::MatrixBase<DerivedB> & B,
const Eigen::MatrixBase<Derivedknown> & known,
const Eigen::MatrixBase<DerivedY> & Y,
const Eigen::SparseMatrix<T>& Aeq,
const Eigen::MatrixBase<DerivedBeq> & Beq,
const bool pd,
Eigen::PlainObjectBase<DerivedZ> & Z)
{
min_quad_with_fixed_data<T> data;
if(!min_quad_with_fixed_precompute(A,known,Aeq,pd,data))
{
return false;
}
return min_quad_with_fixed_solve(data,B,Y,Beq,Z);
}
#ifdef IGL_STATIC_LIBRARY
// Explicit template instantiation
// generated by autoexplicit.sh
template bool igl::min_quad_with_fixed<double, Eigen::Matrix<int, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::SparseMatrix<double, 0, int> const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::SparseMatrix<double, 0, int> const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, bool, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&);
template bool igl::min_quad_with_fixed_solve<double, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1> >(igl::min_quad_with_fixed_data<double> const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&);
template bool igl::min_quad_with_fixed_precompute<double, Eigen::Matrix<int, -1, 1, 0, -1, 1> >(Eigen::SparseMatrix<double, 0, int> const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> > const&, Eigen::SparseMatrix<double, 0, int> const&, bool, igl::min_quad_with_fixed_data<double>&);
template bool igl::min_quad_with_fixed_solve<double, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1> >(igl::min_quad_with_fixed_data<double> const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&);
template bool igl::min_quad_with_fixed_solve<double, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(igl::min_quad_with_fixed_data<double> const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&);
template bool igl::min_quad_with_fixed_precompute<double, Eigen::Matrix<int, -1, -1, 0, -1, -1> >(Eigen::SparseMatrix<double, 0, int> const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::SparseMatrix<double, 0, int> const&, bool, igl::min_quad_with_fixed_data<double>&);
template bool igl::min_quad_with_fixed_solve<double, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(igl::min_quad_with_fixed_data<double> const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&);
template bool igl::min_quad_with_fixed_solve<double, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(igl::min_quad_with_fixed_data<double> const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&);
template bool igl::min_quad_with_fixed_solve<double, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(igl::min_quad_with_fixed_data<double> const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&);
template bool igl::min_quad_with_fixed_solve<double, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(igl::min_quad_with_fixed_data<double> const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&);
template bool igl::min_quad_with_fixed<double, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::SparseMatrix<double, 0, int> const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::SparseMatrix<double, 0, int> const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, bool, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&);
#endif