mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-10-31 12:41:20 -06:00 
			
		
		
		
	
		
			
				
	
	
		
			576 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			576 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include <cmath>
 | |
| #include "SLA/SLASupportTree.hpp"
 | |
| #include "SLA/SLABoilerPlate.hpp"
 | |
| #include "SLA/SLASpatIndex.hpp"
 | |
| 
 | |
| // Workaround: IGL signed_distance.h will define PI in the igl namespace.
 | |
| #undef PI
 | |
| 
 | |
| // HEAVY headers... takes eternity to compile
 | |
| 
 | |
| // for concave hull merging decisions
 | |
| #include "SLABoostAdapter.hpp"
 | |
| #include "boost/geometry/index/rtree.hpp"
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| #pragma warning(push)
 | |
| #pragma warning(disable: 4244)
 | |
| #pragma warning(disable: 4267)
 | |
| #endif
 | |
| #include <igl/ray_mesh_intersect.h>
 | |
| #include <igl/point_mesh_squared_distance.h>
 | |
| #include <igl/remove_duplicate_vertices.h>
 | |
| #include <igl/signed_distance.h>
 | |
| #ifdef _MSC_VER
 | |
| #pragma warning(pop)
 | |
| #endif
 | |
| 
 | |
| #include <tbb/parallel_for.h>
 | |
| 
 | |
| #include "SLASpatIndex.hpp"
 | |
| #include "ClipperUtils.hpp"
 | |
| 
 | |
| namespace Slic3r {
 | |
| namespace sla {
 | |
| 
 | |
| // Bring back PI from the igl namespace
 | |
| using igl::PI;
 | |
| 
 | |
| /* **************************************************************************
 | |
|  * PointIndex implementation
 | |
|  * ************************************************************************** */
 | |
| 
 | |
| class PointIndex::Impl {
 | |
| public:
 | |
|     using BoostIndex = boost::geometry::index::rtree< PointIndexEl,
 | |
|                        boost::geometry::index::rstar<16, 4> /* ? */ >;
 | |
| 
 | |
|     BoostIndex m_store;
 | |
| };
 | |
| 
 | |
| PointIndex::PointIndex(): m_impl(new Impl()) {}
 | |
| PointIndex::~PointIndex() {}
 | |
| 
 | |
| PointIndex::PointIndex(const PointIndex &cpy): m_impl(new Impl(*cpy.m_impl)) {}
 | |
| PointIndex::PointIndex(PointIndex&& cpy): m_impl(std::move(cpy.m_impl)) {}
 | |
| 
 | |
| PointIndex& PointIndex::operator=(const PointIndex &cpy)
 | |
| {
 | |
|     m_impl.reset(new Impl(*cpy.m_impl));
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| PointIndex& PointIndex::operator=(PointIndex &&cpy)
 | |
| {
 | |
|     m_impl.swap(cpy.m_impl);
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| void PointIndex::insert(const PointIndexEl &el)
 | |
| {
 | |
|     m_impl->m_store.insert(el);
 | |
| }
 | |
| 
 | |
| bool PointIndex::remove(const PointIndexEl& el)
 | |
| {
 | |
|     return m_impl->m_store.remove(el) == 1;
 | |
| }
 | |
| 
 | |
| std::vector<PointIndexEl>
 | |
| PointIndex::query(std::function<bool(const PointIndexEl &)> fn) const
 | |
| {
 | |
|     namespace bgi = boost::geometry::index;
 | |
| 
 | |
|     std::vector<PointIndexEl> ret;
 | |
|     m_impl->m_store.query(bgi::satisfies(fn), std::back_inserter(ret));
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| std::vector<PointIndexEl> PointIndex::nearest(const Vec3d &el, unsigned k = 1) const
 | |
| {
 | |
|     namespace bgi = boost::geometry::index;
 | |
|     std::vector<PointIndexEl> ret; ret.reserve(k);
 | |
|     m_impl->m_store.query(bgi::nearest(el, k), std::back_inserter(ret));
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| size_t PointIndex::size() const
 | |
| {
 | |
|     return m_impl->m_store.size();
 | |
| }
 | |
| 
 | |
| void PointIndex::foreach(std::function<void (const PointIndexEl &)> fn)
 | |
| {
 | |
|     for(auto& el : m_impl->m_store) fn(el);
 | |
| }
 | |
| 
 | |
| void PointIndex::foreach(std::function<void (const PointIndexEl &)> fn) const
 | |
| {
 | |
|     for(const auto &el : m_impl->m_store) fn(el);
 | |
| }
 | |
| 
 | |
| /* **************************************************************************
 | |
|  * BoxIndex implementation
 | |
|  * ************************************************************************** */
 | |
| 
 | |
| class BoxIndex::Impl {
 | |
| public:
 | |
|     using BoostIndex = boost::geometry::index::
 | |
|         rtree<BoxIndexEl, boost::geometry::index::rstar<16, 4> /* ? */>;
 | |
| 
 | |
|     BoostIndex m_store;
 | |
| };
 | |
| 
 | |
| BoxIndex::BoxIndex(): m_impl(new Impl()) {}
 | |
| BoxIndex::~BoxIndex() {}
 | |
| 
 | |
| BoxIndex::BoxIndex(const BoxIndex &cpy): m_impl(new Impl(*cpy.m_impl)) {}
 | |
| BoxIndex::BoxIndex(BoxIndex&& cpy): m_impl(std::move(cpy.m_impl)) {}
 | |
| 
 | |
| BoxIndex& BoxIndex::operator=(const BoxIndex &cpy)
 | |
| {
 | |
|     m_impl.reset(new Impl(*cpy.m_impl));
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| BoxIndex& BoxIndex::operator=(BoxIndex &&cpy)
 | |
| {
 | |
|     m_impl.swap(cpy.m_impl);
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| void BoxIndex::insert(const BoxIndexEl &el)
 | |
| {
 | |
|     m_impl->m_store.insert(el);
 | |
| }
 | |
| 
 | |
| bool BoxIndex::remove(const BoxIndexEl& el)
 | |
| {
 | |
|     return m_impl->m_store.remove(el) == 1;
 | |
| }
 | |
| 
 | |
| std::vector<BoxIndexEl> BoxIndex::query(const BoundingBox &qrbb,
 | |
|                                         BoxIndex::QueryType qt)
 | |
| {
 | |
|     namespace bgi = boost::geometry::index;
 | |
| 
 | |
|     std::vector<BoxIndexEl> ret; ret.reserve(m_impl->m_store.size());
 | |
| 
 | |
|     switch (qt) {
 | |
|     case qtIntersects:
 | |
|         m_impl->m_store.query(bgi::intersects(qrbb), std::back_inserter(ret));
 | |
|         break;
 | |
|     case qtWithin:
 | |
|         m_impl->m_store.query(bgi::within(qrbb), std::back_inserter(ret));
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| size_t BoxIndex::size() const
 | |
| {
 | |
|     return m_impl->m_store.size();
 | |
| }
 | |
| 
 | |
| void BoxIndex::foreach(std::function<void (const BoxIndexEl &)> fn)
 | |
| {
 | |
|     for(auto& el : m_impl->m_store) fn(el);
 | |
| }
 | |
| 
 | |
| /* ****************************************************************************
 | |
|  * EigenMesh3D implementation
 | |
|  * ****************************************************************************/
 | |
| 
 | |
| class EigenMesh3D::AABBImpl: public igl::AABB<Eigen::MatrixXd, 3> {
 | |
| public:
 | |
| #ifdef SLIC3R_SLA_NEEDS_WINDTREE
 | |
|     igl::WindingNumberAABB<Vec3d, Eigen::MatrixXd, Eigen::MatrixXi> windtree;
 | |
| #endif /* SLIC3R_SLA_NEEDS_WINDTREE */
 | |
| };
 | |
| 
 | |
| EigenMesh3D::EigenMesh3D(const TriangleMesh& tmesh): m_aabb(new AABBImpl()) {
 | |
|     static const double dEPS = 1e-6;
 | |
| 
 | |
|     const stl_file& stl = tmesh.stl;
 | |
| 
 | |
|     auto&& bb = tmesh.bounding_box();
 | |
|     m_ground_level += bb.min(Z);
 | |
| 
 | |
|     Eigen::MatrixXd V;
 | |
|     Eigen::MatrixXi F;
 | |
| 
 | |
|     V.resize(3*stl.stats.number_of_facets, 3);
 | |
|     F.resize(stl.stats.number_of_facets, 3);
 | |
|     for (unsigned int i = 0; i < stl.stats.number_of_facets; ++i) {
 | |
|         const stl_facet &facet = stl.facet_start[i];
 | |
|         V.block<1, 3>(3 * i + 0, 0) = facet.vertex[0].cast<double>();
 | |
|         V.block<1, 3>(3 * i + 1, 0) = facet.vertex[1].cast<double>();
 | |
|         V.block<1, 3>(3 * i + 2, 0) = facet.vertex[2].cast<double>();
 | |
|         F(i, 0) = int(3*i+0);
 | |
|         F(i, 1) = int(3*i+1);
 | |
|         F(i, 2) = int(3*i+2);
 | |
|     }
 | |
| 
 | |
|     // We will convert this to a proper 3d mesh with no duplicate points.
 | |
|     Eigen::VectorXi SVI, SVJ;
 | |
|     igl::remove_duplicate_vertices(V, F, dEPS, m_V, SVI, SVJ, m_F);
 | |
| 
 | |
|     // Build the AABB accelaration tree
 | |
|     m_aabb->init(m_V, m_F);
 | |
| #ifdef SLIC3R_SLA_NEEDS_WINDTREE
 | |
|     m_aabb->windtree.set_mesh(m_V, m_F);
 | |
| #endif /* SLIC3R_SLA_NEEDS_WINDTREE */
 | |
| }
 | |
| 
 | |
| EigenMesh3D::~EigenMesh3D() {}
 | |
| 
 | |
| EigenMesh3D::EigenMesh3D(const EigenMesh3D &other):
 | |
|     m_V(other.m_V), m_F(other.m_F), m_ground_level(other.m_ground_level),
 | |
|     m_aabb( new AABBImpl(*other.m_aabb) ) {}
 | |
| 
 | |
| EigenMesh3D &EigenMesh3D::operator=(const EigenMesh3D &other)
 | |
| {
 | |
|     m_V = other.m_V;
 | |
|     m_F = other.m_F;
 | |
|     m_ground_level = other.m_ground_level;
 | |
|     m_aabb.reset(new AABBImpl(*other.m_aabb)); return *this;
 | |
| }
 | |
| 
 | |
| EigenMesh3D::hit_result
 | |
| EigenMesh3D::query_ray_hit(const Vec3d &s, const Vec3d &dir) const
 | |
| {
 | |
|     igl::Hit hit;
 | |
|     hit.t = std::numeric_limits<float>::infinity();
 | |
|     m_aabb->intersect_ray(m_V, m_F, s, dir, hit);
 | |
| 
 | |
|     hit_result ret(*this);
 | |
|     ret.m_t = double(hit.t);
 | |
|     ret.m_dir = dir;
 | |
|     ret.m_source = s;
 | |
|     if(!std::isinf(hit.t) && !std::isnan(hit.t)) ret.m_face_id = hit.id;
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #ifdef SLIC3R_SLA_NEEDS_WINDTREE
 | |
| EigenMesh3D::si_result EigenMesh3D::signed_distance(const Vec3d &p) const {
 | |
|     double sign = 0; double sqdst = 0; int i = 0;  Vec3d c;
 | |
|     igl::signed_distance_winding_number(*m_aabb, m_V, m_F, m_aabb->windtree,
 | |
|                                         p, sign, sqdst, i, c);
 | |
| 
 | |
|     return si_result(sign * std::sqrt(sqdst), i, c);
 | |
| }
 | |
| 
 | |
| bool EigenMesh3D::inside(const Vec3d &p) const {
 | |
|     return m_aabb->windtree.inside(p);
 | |
| }
 | |
| #endif /* SLIC3R_SLA_NEEDS_WINDTREE */
 | |
| 
 | |
| double EigenMesh3D::squared_distance(const Vec3d &p, int& i, Vec3d& c) const {
 | |
|     double sqdst = 0;
 | |
|     Eigen::Matrix<double, 1, 3> pp = p;
 | |
|     Eigen::Matrix<double, 1, 3> cc;
 | |
|     sqdst = m_aabb->squared_distance(m_V, m_F, pp, i, cc);
 | |
|     c = cc;
 | |
|     return sqdst;
 | |
| }
 | |
| 
 | |
| /* ****************************************************************************
 | |
|  * Misc functions
 | |
|  * ****************************************************************************/
 | |
| 
 | |
| namespace  {
 | |
| 
 | |
| bool point_on_edge(const Vec3d& p, const Vec3d& e1, const Vec3d& e2,
 | |
|                    double eps = 0.05)
 | |
| {
 | |
|     using Line3D = Eigen::ParametrizedLine<double, 3>;
 | |
| 
 | |
|     auto line = Line3D::Through(e1, e2);
 | |
|     double d = line.distance(p);
 | |
|     return std::abs(d) < eps;
 | |
| }
 | |
| 
 | |
| template<class Vec> double distance(const Vec& pp1, const Vec& pp2) {
 | |
|     auto p = pp2 - pp1;
 | |
|     return std::sqrt(p.transpose() * p);
 | |
| }
 | |
| 
 | |
| }
 | |
| 
 | |
| PointSet normals(const PointSet& points,
 | |
|                  const EigenMesh3D& mesh,
 | |
|                  double eps,
 | |
|                  std::function<void()> thr, // throw on cancel
 | |
|                  const std::vector<unsigned>& pt_indices)
 | |
| {
 | |
|     if(points.rows() == 0 || mesh.V().rows() == 0 || mesh.F().rows() == 0)
 | |
|         return {};
 | |
| 
 | |
|     std::vector<unsigned> range = pt_indices;
 | |
|     if(range.empty()) {
 | |
|         range.resize(size_t(points.rows()), 0);
 | |
|         std::iota(range.begin(), range.end(), 0);
 | |
|     }
 | |
| 
 | |
|     PointSet            ret(range.size(), 3);
 | |
| 
 | |
| //    for (size_t ridx = 0; ridx < range.size(); ++ridx)
 | |
|     tbb::parallel_for(size_t(0), range.size(),
 | |
|                       [&ret, &range, &mesh, &points, thr, eps](size_t ridx)
 | |
|     {
 | |
|         thr();
 | |
|         auto eidx = Eigen::Index(range[ridx]);
 | |
|         int faceid = 0;
 | |
|         Vec3d p;
 | |
| 
 | |
|         mesh.squared_distance(points.row(eidx), faceid, p);
 | |
| 
 | |
|         auto trindex = mesh.F().row(faceid);
 | |
| 
 | |
|         const Vec3d& p1 = mesh.V().row(trindex(0));
 | |
|         const Vec3d& p2 = mesh.V().row(trindex(1));
 | |
|         const Vec3d& p3 = mesh.V().row(trindex(2));
 | |
| 
 | |
|         // We should check if the point lies on an edge of the hosting triangle.
 | |
|         // If it does then all the other triangles using the same two points
 | |
|         // have to be searched and the final normal should be some kind of
 | |
|         // aggregation of the participating triangle normals. We should also
 | |
|         // consider the cases where the support point lies right on a vertex
 | |
|         // of its triangle. The procedure is the same, get the neighbor
 | |
|         // triangles and calculate an average normal.
 | |
| 
 | |
|         // mark the vertex indices of the edge. ia and ib marks and edge ic
 | |
|         // will mark a single vertex.
 | |
|         int ia = -1, ib = -1, ic = -1;
 | |
| 
 | |
|         if(std::abs(distance(p, p1)) < eps) {
 | |
|             ic = trindex(0);
 | |
|         }
 | |
|         else if(std::abs(distance(p, p2)) < eps) {
 | |
|             ic = trindex(1);
 | |
|         }
 | |
|         else if(std::abs(distance(p, p3)) < eps) {
 | |
|             ic = trindex(2);
 | |
|         }
 | |
|         else if(point_on_edge(p, p1, p2, eps)) {
 | |
|             ia = trindex(0); ib = trindex(1);
 | |
|         }
 | |
|         else if(point_on_edge(p, p2, p3, eps)) {
 | |
|             ia = trindex(1); ib = trindex(2);
 | |
|         }
 | |
|         else if(point_on_edge(p, p1, p3, eps)) {
 | |
|             ia = trindex(0); ib = trindex(2);
 | |
|         }
 | |
| 
 | |
|         // vector for the neigboring triangles including the detected one.
 | |
|         std::vector<Vec3i> neigh;
 | |
|         if(ic >= 0) { // The point is right on a vertex of the triangle
 | |
|             for(int n = 0; n < mesh.F().rows(); ++n) {
 | |
|                 thr();
 | |
|                 Vec3i ni = mesh.F().row(n);
 | |
|                 if((ni(X) == ic || ni(Y) == ic || ni(Z) == ic))
 | |
|                     neigh.emplace_back(ni);
 | |
|             }
 | |
|         }
 | |
|         else if(ia >= 0 && ib >= 0) { // the point is on and edge
 | |
|             // now get all the neigboring triangles
 | |
|             for(int n = 0; n < mesh.F().rows(); ++n) {
 | |
|                 thr();
 | |
|                 Vec3i ni = mesh.F().row(n);
 | |
|                 if((ni(X) == ia || ni(Y) == ia || ni(Z) == ia) &&
 | |
|                    (ni(X) == ib || ni(Y) == ib || ni(Z) == ib))
 | |
|                     neigh.emplace_back(ni);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Calculate the normals for the neighboring triangles
 | |
|         std::vector<Vec3d> neighnorms; neighnorms.reserve(neigh.size());
 | |
|         for(const Vec3i& tri : neigh) {
 | |
|             const Vec3d& pt1 = mesh.V().row(tri(0));
 | |
|             const Vec3d& pt2 = mesh.V().row(tri(1));
 | |
|             const Vec3d& pt3 = mesh.V().row(tri(2));
 | |
|             Eigen::Vector3d U = pt2 - pt1;
 | |
|             Eigen::Vector3d V = pt3 - pt1;
 | |
|             neighnorms.emplace_back(U.cross(V).normalized());
 | |
|         }
 | |
| 
 | |
|         // Throw out duplicates. They would cause trouble with summing. We will
 | |
|         // use std::unique which works on sorted ranges. We will sort by the
 | |
|         // coefficient-wise sum of the normals. It should force the same
 | |
|         // elements to be consecutive.
 | |
|         std::sort(neighnorms.begin(), neighnorms.end(),
 | |
|                   [](const Vec3d& v1, const Vec3d& v2){
 | |
|             return v1.sum() < v2.sum();
 | |
|         });
 | |
| 
 | |
|         auto lend = std::unique(neighnorms.begin(), neighnorms.end(),
 | |
|                                 [](const Vec3d& n1, const Vec3d& n2) {
 | |
|             // Compare normals for equivalence. This is controvers stuff.
 | |
|             auto deq = [](double a, double b) { return std::abs(a-b) < 1e-3; };
 | |
|             return deq(n1(X), n2(X)) && deq(n1(Y), n2(Y)) && deq(n1(Z), n2(Z));
 | |
|         });
 | |
| 
 | |
|         if(!neighnorms.empty()) { // there were neighbors to count with
 | |
|             // sum up the normals and then normalize the result again.
 | |
|             // This unification seems to be enough.
 | |
|             Vec3d sumnorm(0, 0, 0);
 | |
|             sumnorm = std::accumulate(neighnorms.begin(), lend, sumnorm);
 | |
|             sumnorm.normalize();
 | |
|             ret.row(long(ridx)) = sumnorm;
 | |
|         }
 | |
|         else { // point lies safely within its triangle
 | |
|             Eigen::Vector3d U = p2 - p1;
 | |
|             Eigen::Vector3d V = p3 - p1;
 | |
|             ret.row(long(ridx)) = U.cross(V).normalized();
 | |
|         }
 | |
|     });
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| namespace bgi = boost::geometry::index;
 | |
| using Index3D = bgi::rtree< PointIndexEl, bgi::rstar<16, 4> /* ? */ >;
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| bool cmp_ptidx_elements(const PointIndexEl& e1, const PointIndexEl& e2)
 | |
| {
 | |
|     return e1.second < e2.second;
 | |
| };
 | |
| 
 | |
| ClusteredPoints cluster(Index3D &sindex,
 | |
|                         unsigned max_points,
 | |
|                         std::function<std::vector<PointIndexEl>(
 | |
|                             const Index3D &, const PointIndexEl &)> qfn)
 | |
| {
 | |
|     using Elems = std::vector<PointIndexEl>;
 | |
| 
 | |
|     // Recursive function for visiting all the points in a given distance to
 | |
|     // each other
 | |
|     std::function<void(Elems&, Elems&)> group =
 | |
|     [&sindex, &group, max_points, qfn](Elems& pts, Elems& cluster)
 | |
|     {        
 | |
|         for(auto& p : pts) {
 | |
|             std::vector<PointIndexEl> tmp = qfn(sindex, p);
 | |
|            
 | |
|             std::sort(tmp.begin(), tmp.end(), cmp_ptidx_elements);
 | |
| 
 | |
|             Elems newpts;
 | |
|             std::set_difference(tmp.begin(), tmp.end(),
 | |
|                                 cluster.begin(), cluster.end(),
 | |
|                                 std::back_inserter(newpts), cmp_ptidx_elements);
 | |
| 
 | |
|             int c = max_points && newpts.size() + cluster.size() > max_points?
 | |
|                         int(max_points - cluster.size()) : int(newpts.size());
 | |
| 
 | |
|             cluster.insert(cluster.end(), newpts.begin(), newpts.begin() + c);
 | |
|             std::sort(cluster.begin(), cluster.end(), cmp_ptidx_elements);
 | |
| 
 | |
|             if(!newpts.empty() && (!max_points || cluster.size() < max_points))
 | |
|                 group(newpts, cluster);
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     std::vector<Elems> clusters;
 | |
|     for(auto it = sindex.begin(); it != sindex.end();) {
 | |
|         Elems cluster = {};
 | |
|         Elems pts = {*it};
 | |
|         group(pts, cluster);
 | |
| 
 | |
|         for(auto& c : cluster) sindex.remove(c);
 | |
|         it = sindex.begin();
 | |
| 
 | |
|         clusters.emplace_back(cluster);
 | |
|     }
 | |
| 
 | |
|     ClusteredPoints result;
 | |
|     for(auto& cluster : clusters) {
 | |
|         result.emplace_back();
 | |
|         for(auto c : cluster) result.back().emplace_back(c.second);
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| std::vector<PointIndexEl> distance_queryfn(const Index3D& sindex,
 | |
|                                           const PointIndexEl& p,
 | |
|                                           double dist,
 | |
|                                           unsigned max_points)
 | |
| {
 | |
|     std::vector<PointIndexEl> tmp; tmp.reserve(max_points);
 | |
|     sindex.query(
 | |
|         bgi::nearest(p.first, max_points),
 | |
|         std::back_inserter(tmp)
 | |
|     );
 | |
| 
 | |
|     for(auto it = tmp.begin(); it < tmp.end(); ++it)
 | |
|         if(distance(p.first, it->first) > dist) it = tmp.erase(it);
 | |
| 
 | |
|     return tmp;
 | |
| }
 | |
| 
 | |
| } // namespace
 | |
| 
 | |
| // Clustering a set of points by the given criteria
 | |
| ClusteredPoints cluster(
 | |
|         const std::vector<unsigned>& indices,
 | |
|         std::function<Vec3d(unsigned)> pointfn,
 | |
|         double dist,
 | |
|         unsigned max_points)
 | |
| {
 | |
|     // A spatial index for querying the nearest points
 | |
|     Index3D sindex;
 | |
| 
 | |
|     // Build the index
 | |
|     for(auto idx : indices) sindex.insert( std::make_pair(pointfn(idx), idx));
 | |
| 
 | |
|     return cluster(sindex, max_points,
 | |
|                    [dist, max_points](const Index3D& sidx, const PointIndexEl& p)
 | |
|     {
 | |
|         return distance_queryfn(sidx, p, dist, max_points);
 | |
|     });
 | |
| }
 | |
| 
 | |
| // Clustering a set of points by the given criteria
 | |
| ClusteredPoints cluster(
 | |
|         const std::vector<unsigned>& indices,
 | |
|         std::function<Vec3d(unsigned)> pointfn,
 | |
|         std::function<bool(const PointIndexEl&, const PointIndexEl&)> predicate,
 | |
|         unsigned max_points)
 | |
| {
 | |
|     // A spatial index for querying the nearest points
 | |
|     Index3D sindex;
 | |
| 
 | |
|     // Build the index
 | |
|     for(auto idx : indices) sindex.insert( std::make_pair(pointfn(idx), idx));
 | |
| 
 | |
|     return cluster(sindex, max_points,
 | |
|         [max_points, predicate](const Index3D& sidx, const PointIndexEl& p)
 | |
|     {
 | |
|         std::vector<PointIndexEl> tmp; tmp.reserve(max_points);
 | |
|         sidx.query(bgi::satisfies([p, predicate](const PointIndexEl& e){
 | |
|             return predicate(p, e);
 | |
|         }), std::back_inserter(tmp));
 | |
|         return tmp;
 | |
|     });
 | |
| }
 | |
| 
 | |
| ClusteredPoints cluster(const PointSet& pts, double dist, unsigned max_points)
 | |
| {
 | |
|     // A spatial index for querying the nearest points
 | |
|     Index3D sindex;
 | |
| 
 | |
|     // Build the index
 | |
|     for(Eigen::Index i = 0; i < pts.rows(); i++)
 | |
|         sindex.insert(std::make_pair(Vec3d(pts.row(i)), unsigned(i)));
 | |
| 
 | |
|     return cluster(sindex, max_points,
 | |
|                    [dist, max_points](const Index3D& sidx, const PointIndexEl& p)
 | |
|     {
 | |
|         return distance_queryfn(sidx, p, dist, max_points);
 | |
|     });
 | |
| }
 | |
| 
 | |
| } // namespace sla
 | |
| } // namespace Slic3r
 | 
