mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-10-30 20:21:12 -06:00 
			
		
		
		
	
		
			
				
	
	
		
			1725 lines
		
	
	
	
		
			68 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1725 lines
		
	
	
	
		
			68 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include <GL/glew.h>
 | |
| 
 | |
| #if ENABLE_SMOOTH_NORMALS
 | |
| #include <igl/per_face_normals.h>
 | |
| #include <igl/per_corner_normals.h>
 | |
| #include <igl/per_vertex_normals.h>
 | |
| #endif // ENABLE_SMOOTH_NORMALS
 | |
| 
 | |
| #include "3DScene.hpp"
 | |
| #include "GLShader.hpp"
 | |
| #include "GUI_App.hpp"
 | |
| #if ENABLE_ENVIRONMENT_MAP
 | |
| #include "Plater.hpp"
 | |
| #endif // ENABLE_ENVIRONMENT_MAP
 | |
| 
 | |
| #include "libslic3r/ExtrusionEntity.hpp"
 | |
| #include "libslic3r/ExtrusionEntityCollection.hpp"
 | |
| #include "libslic3r/Geometry.hpp"
 | |
| #include "libslic3r/Print.hpp"
 | |
| #include "libslic3r/SLAPrint.hpp"
 | |
| #include "libslic3r/Slicing.hpp"
 | |
| #include "slic3r/GUI/BitmapCache.hpp"
 | |
| #include "libslic3r/Format/STL.hpp"
 | |
| #include "libslic3r/Utils.hpp"
 | |
| #include "libslic3r/AppConfig.hpp"
 | |
| #if DISABLE_ALLOW_NEGATIVE_Z_FOR_SLA
 | |
| #include "libslic3r/PresetBundle.hpp"
 | |
| #endif // DISABLE_ALLOW_NEGATIVE_Z_FOR_SLA
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <assert.h>
 | |
| 
 | |
| #include <boost/log/trivial.hpp>
 | |
| 
 | |
| #include <boost/filesystem/operations.hpp>
 | |
| #include <boost/algorithm/string/predicate.hpp>
 | |
| 
 | |
| #include <Eigen/Dense>
 | |
| 
 | |
| #ifdef HAS_GLSAFE
 | |
| void glAssertRecentCallImpl(const char* file_name, unsigned int line, const char* function_name)
 | |
| {
 | |
| #if defined(NDEBUG)
 | |
|     // In release mode, only show OpenGL errors if sufficiently high loglevel.
 | |
|     if (Slic3r::get_logging_level() < 5)
 | |
|         return;
 | |
| #endif // NDEBUG
 | |
| 
 | |
|     GLenum err = glGetError();
 | |
|     if (err == GL_NO_ERROR)
 | |
|         return;
 | |
|     const char* sErr = 0;
 | |
|     switch (err) {
 | |
|     case GL_INVALID_ENUM:       sErr = "Invalid Enum";      break;
 | |
|     case GL_INVALID_VALUE:      sErr = "Invalid Value";     break;
 | |
|     // be aware that GL_INVALID_OPERATION is generated if glGetError is executed between the execution of glBegin and the corresponding execution of glEnd 
 | |
|     case GL_INVALID_OPERATION:  sErr = "Invalid Operation"; break;
 | |
|     case GL_STACK_OVERFLOW:     sErr = "Stack Overflow";    break;
 | |
|     case GL_STACK_UNDERFLOW:    sErr = "Stack Underflow";   break;
 | |
|     case GL_OUT_OF_MEMORY:      sErr = "Out Of Memory";     break;
 | |
|     default:                    sErr = "Unknown";           break;
 | |
|     }
 | |
|     BOOST_LOG_TRIVIAL(error) << "OpenGL error in " << file_name << ":" << line << ", function " << function_name << "() : " << (int)err << " - " << sErr;
 | |
|     assert(false);
 | |
| }
 | |
| #endif // HAS_GLSAFE
 | |
| 
 | |
| namespace Slic3r {
 | |
| 
 | |
| #if ENABLE_SMOOTH_NORMALS
 | |
| static void smooth_normals_corner(TriangleMesh& mesh, std::vector<stl_normal>& normals)
 | |
| {
 | |
|     mesh.repair();
 | |
| 
 | |
|     using MapMatrixXfUnaligned = Eigen::Map<const Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor | Eigen::DontAlign>>;
 | |
|     using MapMatrixXiUnaligned = Eigen::Map<const Eigen::Matrix<int, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor | Eigen::DontAlign>>;
 | |
| 
 | |
|     std::vector<stl_normal> face_normals(mesh.stl.stats.number_of_facets);
 | |
|     for (uint32_t i = 0; i < mesh.stl.stats.number_of_facets; ++i) {
 | |
|         face_normals[i] = mesh.stl.facet_start[i].normal;
 | |
|     }
 | |
| 
 | |
|     Eigen::MatrixXd vertices = MapMatrixXfUnaligned(mesh.its.vertices.front().data(),
 | |
|         Eigen::Index(mesh.its.vertices.size()), 3).cast<double>();
 | |
|     Eigen::MatrixXi indices = MapMatrixXiUnaligned(mesh.its.indices.front().data(),
 | |
|         Eigen::Index(mesh.its.indices.size()), 3);
 | |
|     Eigen::MatrixXd in_normals = MapMatrixXfUnaligned(face_normals.front().data(),
 | |
|         Eigen::Index(face_normals.size()), 3).cast<double>();
 | |
|     Eigen::MatrixXd out_normals;
 | |
| 
 | |
|     igl::per_corner_normals(vertices, indices, in_normals, 1.0, out_normals);
 | |
| 
 | |
|     normals = std::vector<stl_normal>(mesh.its.vertices.size());
 | |
|     for (size_t i = 0; i < mesh.its.indices.size(); ++i) {
 | |
|         for (size_t j = 0; j < 3; ++j) {
 | |
|             normals[mesh.its.indices[i][j]] = out_normals.row(i * 3 + j).cast<float>();
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void smooth_normals_vertex(TriangleMesh& mesh, std::vector<stl_normal>& normals)
 | |
| {
 | |
|     mesh.repair();
 | |
| 
 | |
|     using MapMatrixXfUnaligned = Eigen::Map<const Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor | Eigen::DontAlign>>;
 | |
|     using MapMatrixXiUnaligned = Eigen::Map<const Eigen::Matrix<int, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor | Eigen::DontAlign>>;
 | |
| 
 | |
|     Eigen::MatrixXd vertices = MapMatrixXfUnaligned(mesh.its.vertices.front().data(),
 | |
|         Eigen::Index(mesh.its.vertices.size()), 3).cast<double>();
 | |
|     Eigen::MatrixXi indices = MapMatrixXiUnaligned(mesh.its.indices.front().data(),
 | |
|         Eigen::Index(mesh.its.indices.size()), 3);
 | |
|     Eigen::MatrixXd out_normals;
 | |
| 
 | |
| //    igl::per_vertex_normals(vertices, indices, igl::PER_VERTEX_NORMALS_WEIGHTING_TYPE_UNIFORM, out_normals);
 | |
| //    igl::per_vertex_normals(vertices, indices, igl::PER_VERTEX_NORMALS_WEIGHTING_TYPE_AREA, out_normals);
 | |
|     igl::per_vertex_normals(vertices, indices, igl::PER_VERTEX_NORMALS_WEIGHTING_TYPE_ANGLE, out_normals);
 | |
| //    igl::per_vertex_normals(vertices, indices, igl::PER_VERTEX_NORMALS_WEIGHTING_TYPE_DEFAULT, out_normals);
 | |
| 
 | |
|     normals = std::vector<stl_normal>(mesh.its.vertices.size());
 | |
|     for (size_t i = 0; i < static_cast<size_t>(out_normals.rows()); ++i) {
 | |
|         normals[i] = out_normals.row(i).cast<float>();
 | |
|     }
 | |
| }
 | |
| #endif // ENABLE_SMOOTH_NORMALS
 | |
| 
 | |
| #if ENABLE_SMOOTH_NORMALS
 | |
| void GLIndexedVertexArray::load_mesh_full_shading(const TriangleMesh& mesh, bool smooth_normals)
 | |
| #else
 | |
| void GLIndexedVertexArray::load_mesh_full_shading(const TriangleMesh& mesh)
 | |
| #endif // ENABLE_SMOOTH_NORMALS
 | |
| {
 | |
|     assert(triangle_indices.empty() && vertices_and_normals_interleaved_size == 0);
 | |
|     assert(quad_indices.empty() && triangle_indices_size == 0);
 | |
|     assert(vertices_and_normals_interleaved.size() % 6 == 0 && quad_indices_size == vertices_and_normals_interleaved.size());
 | |
| 
 | |
| #if ENABLE_SMOOTH_NORMALS
 | |
|     if (smooth_normals) {
 | |
|         TriangleMesh new_mesh(mesh);
 | |
|         std::vector<stl_normal> normals;
 | |
|         smooth_normals_corner(new_mesh, normals);
 | |
| //        smooth_normals_vertex(new_mesh, normals);
 | |
| 
 | |
|         this->vertices_and_normals_interleaved.reserve(this->vertices_and_normals_interleaved.size() + 3 * 2 * new_mesh.its.vertices.size());
 | |
|         for (size_t i = 0; i < new_mesh.its.vertices.size(); ++i) {
 | |
|             const stl_vertex& v = new_mesh.its.vertices[i];
 | |
|             const stl_normal& n = normals[i];
 | |
|             this->push_geometry(v(0), v(1), v(2), n(0), n(1), n(2));
 | |
|         }
 | |
| 
 | |
|         for (size_t i = 0; i < new_mesh.its.indices.size(); ++i) {
 | |
|             const stl_triangle_vertex_indices& idx = new_mesh.its.indices[i];
 | |
|             this->push_triangle(idx(0), idx(1), idx(2));
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
| #endif // ENABLE_SMOOTH_NORMALS
 | |
|         this->vertices_and_normals_interleaved.reserve(this->vertices_and_normals_interleaved.size() + 3 * 3 * 2 * mesh.facets_count());
 | |
| 
 | |
|         unsigned int vertices_count = 0;
 | |
|         for (int i = 0; i < (int)mesh.stl.stats.number_of_facets; ++i) {
 | |
|             const stl_facet& facet = mesh.stl.facet_start[i];
 | |
|             for (int j = 0; j < 3; ++j)
 | |
|                 this->push_geometry(facet.vertex[j](0), facet.vertex[j](1), facet.vertex[j](2), facet.normal(0), facet.normal(1), facet.normal(2));
 | |
| 
 | |
|             this->push_triangle(vertices_count, vertices_count + 1, vertices_count + 2);
 | |
|             vertices_count += 3;
 | |
|         }
 | |
| #if ENABLE_SMOOTH_NORMALS
 | |
|     }
 | |
| #endif // ENABLE_SMOOTH_NORMALS
 | |
| }
 | |
| 
 | |
| void GLIndexedVertexArray::finalize_geometry(bool opengl_initialized)
 | |
| {
 | |
|     assert(this->vertices_and_normals_interleaved_VBO_id == 0);
 | |
|     assert(this->triangle_indices_VBO_id == 0);
 | |
|     assert(this->quad_indices_VBO_id == 0);
 | |
| 
 | |
| 	if (! opengl_initialized) {
 | |
| 		// Shrink the data vectors to conserve memory in case the data cannot be transfered to the OpenGL driver yet.
 | |
| 		this->shrink_to_fit();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
|     if (! this->vertices_and_normals_interleaved.empty()) {
 | |
|         glsafe(::glGenBuffers(1, &this->vertices_and_normals_interleaved_VBO_id));
 | |
|         glsafe(::glBindBuffer(GL_ARRAY_BUFFER, this->vertices_and_normals_interleaved_VBO_id));
 | |
|         glsafe(::glBufferData(GL_ARRAY_BUFFER, this->vertices_and_normals_interleaved.size() * 4, this->vertices_and_normals_interleaved.data(), GL_STATIC_DRAW));
 | |
|         glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));
 | |
|         this->vertices_and_normals_interleaved.clear();
 | |
|     }
 | |
|     if (! this->triangle_indices.empty()) {
 | |
|         glsafe(::glGenBuffers(1, &this->triangle_indices_VBO_id));
 | |
|         glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->triangle_indices_VBO_id));
 | |
|         glsafe(::glBufferData(GL_ELEMENT_ARRAY_BUFFER, this->triangle_indices.size() * 4, this->triangle_indices.data(), GL_STATIC_DRAW));
 | |
|         glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
 | |
|         this->triangle_indices.clear();
 | |
|     }
 | |
|     if (! this->quad_indices.empty()) {
 | |
|         glsafe(::glGenBuffers(1, &this->quad_indices_VBO_id));
 | |
|         glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->quad_indices_VBO_id));
 | |
|         glsafe(::glBufferData(GL_ELEMENT_ARRAY_BUFFER, this->quad_indices.size() * 4, this->quad_indices.data(), GL_STATIC_DRAW));
 | |
|         glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
 | |
|         this->quad_indices.clear();
 | |
|     }
 | |
| }
 | |
| 
 | |
| void GLIndexedVertexArray::release_geometry()
 | |
| {
 | |
|     if (this->vertices_and_normals_interleaved_VBO_id) {
 | |
|         glsafe(::glDeleteBuffers(1, &this->vertices_and_normals_interleaved_VBO_id));
 | |
|         this->vertices_and_normals_interleaved_VBO_id = 0;
 | |
|     }
 | |
|     if (this->triangle_indices_VBO_id) {
 | |
|         glsafe(::glDeleteBuffers(1, &this->triangle_indices_VBO_id));
 | |
|         this->triangle_indices_VBO_id = 0;
 | |
|     }
 | |
|     if (this->quad_indices_VBO_id) {
 | |
|         glsafe(::glDeleteBuffers(1, &this->quad_indices_VBO_id));
 | |
|         this->quad_indices_VBO_id = 0;
 | |
|     }
 | |
|     this->clear();
 | |
| }
 | |
| 
 | |
| void GLIndexedVertexArray::render() const
 | |
| {
 | |
|     assert(this->vertices_and_normals_interleaved_VBO_id != 0);
 | |
|     assert(this->triangle_indices_VBO_id != 0 || this->quad_indices_VBO_id != 0);
 | |
| 
 | |
|     glsafe(::glBindBuffer(GL_ARRAY_BUFFER, this->vertices_and_normals_interleaved_VBO_id));
 | |
|     glsafe(::glVertexPointer(3, GL_FLOAT, 6 * sizeof(float), (const void*)(3 * sizeof(float))));
 | |
|     glsafe(::glNormalPointer(GL_FLOAT, 6 * sizeof(float), nullptr));
 | |
| 
 | |
|     glsafe(::glEnableClientState(GL_VERTEX_ARRAY));
 | |
|     glsafe(::glEnableClientState(GL_NORMAL_ARRAY));
 | |
| 
 | |
|     // Render using the Vertex Buffer Objects.
 | |
|     if (this->triangle_indices_size > 0) {
 | |
|         glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->triangle_indices_VBO_id));
 | |
|         glsafe(::glDrawElements(GL_TRIANGLES, GLsizei(this->triangle_indices_size), GL_UNSIGNED_INT, nullptr));
 | |
|         glsafe(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
 | |
|     }
 | |
|     if (this->quad_indices_size > 0) {
 | |
|         glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->quad_indices_VBO_id));
 | |
|         glsafe(::glDrawElements(GL_QUADS, GLsizei(this->quad_indices_size), GL_UNSIGNED_INT, nullptr));
 | |
|         glsafe(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
 | |
|     }
 | |
| 
 | |
|     glsafe(::glDisableClientState(GL_VERTEX_ARRAY));
 | |
|     glsafe(::glDisableClientState(GL_NORMAL_ARRAY));
 | |
| 
 | |
|     glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));
 | |
| }
 | |
| 
 | |
| void GLIndexedVertexArray::render(
 | |
|     const std::pair<size_t, size_t>& tverts_range,
 | |
|     const std::pair<size_t, size_t>& qverts_range) const
 | |
| {
 | |
|     assert(this->vertices_and_normals_interleaved_VBO_id != 0);
 | |
|     assert(this->triangle_indices_VBO_id != 0 || this->quad_indices_VBO_id != 0);
 | |
| 
 | |
|     // Render using the Vertex Buffer Objects.
 | |
|     glsafe(::glBindBuffer(GL_ARRAY_BUFFER, this->vertices_and_normals_interleaved_VBO_id));
 | |
|     glsafe(::glVertexPointer(3, GL_FLOAT, 6 * sizeof(float), (const void*)(3 * sizeof(float))));
 | |
|     glsafe(::glNormalPointer(GL_FLOAT, 6 * sizeof(float), nullptr));
 | |
| 
 | |
|     glsafe(::glEnableClientState(GL_VERTEX_ARRAY));
 | |
|     glsafe(::glEnableClientState(GL_NORMAL_ARRAY));
 | |
| 
 | |
|     if (this->triangle_indices_size > 0) {
 | |
|         glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->triangle_indices_VBO_id));
 | |
|         glsafe(::glDrawElements(GL_TRIANGLES, GLsizei(std::min(this->triangle_indices_size, tverts_range.second - tverts_range.first)), GL_UNSIGNED_INT, (const void*)(tverts_range.first * 4)));
 | |
|         glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
 | |
|     }
 | |
|     if (this->quad_indices_size > 0) {
 | |
|         glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->quad_indices_VBO_id));
 | |
|         glsafe(::glDrawElements(GL_QUADS, GLsizei(std::min(this->quad_indices_size, qverts_range.second - qverts_range.first)), GL_UNSIGNED_INT, (const void*)(qverts_range.first * 4)));
 | |
|         glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
 | |
|     }
 | |
| 
 | |
|     glsafe(::glDisableClientState(GL_VERTEX_ARRAY));
 | |
|     glsafe(::glDisableClientState(GL_NORMAL_ARRAY));
 | |
|     
 | |
|     glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));
 | |
| }
 | |
| 
 | |
| const float GLVolume::SELECTED_COLOR[4] = { 0.0f, 1.0f, 0.0f, 1.0f };
 | |
| const float GLVolume::HOVER_SELECT_COLOR[4] = { 0.4f, 0.9f, 0.1f, 1.0f };
 | |
| const float GLVolume::HOVER_DESELECT_COLOR[4] = { 1.0f, 0.75f, 0.75f, 1.0f };
 | |
| const float GLVolume::OUTSIDE_COLOR[4] = { 0.0f, 0.38f, 0.8f, 1.0f };
 | |
| const float GLVolume::SELECTED_OUTSIDE_COLOR[4] = { 0.19f, 0.58f, 1.0f, 1.0f };
 | |
| const float GLVolume::DISABLED_COLOR[4] = { 0.25f, 0.25f, 0.25f, 1.0f };
 | |
| const float GLVolume::MODEL_COLOR[4][4] = {
 | |
|     { 1.0f, 1.0f, 0.0f, 1.f },
 | |
|     { 1.0f, 0.5f, 0.5f, 1.f },
 | |
|     { 0.5f, 1.0f, 0.5f, 1.f },
 | |
|     { 0.5f, 0.5f, 1.0f, 1.f }
 | |
| };
 | |
| const float GLVolume::SLA_SUPPORT_COLOR[4] = { 0.75f, 0.75f, 0.75f, 1.0f };
 | |
| const float GLVolume::SLA_PAD_COLOR[4] = { 0.0f, 0.2f, 0.0f, 1.0f };
 | |
| const float GLVolume::NEUTRAL_COLOR[4] = { 0.9f, 0.9f, 0.9f, 1.0f };
 | |
| 
 | |
| GLVolume::GLVolume(float r, float g, float b, float a)
 | |
|     : m_transformed_bounding_box_dirty(true)
 | |
|     , m_sla_shift_z(0.0)
 | |
|     , m_transformed_convex_hull_bounding_box_dirty(true)
 | |
|     // geometry_id == 0 -> invalid
 | |
|     , geometry_id(std::pair<size_t, size_t>(0, 0))
 | |
|     , extruder_id(0)
 | |
|     , selected(false)
 | |
|     , disabled(false)
 | |
|     , printable(true)
 | |
|     , is_active(true)
 | |
|     , zoom_to_volumes(true)
 | |
|     , shader_outside_printer_detection_enabled(false)
 | |
|     , is_outside(false)
 | |
|     , hover(HS_None)
 | |
|     , is_modifier(false)
 | |
|     , is_wipe_tower(false)
 | |
|     , is_extrusion_path(false)
 | |
|     , force_transparent(false)
 | |
|     , force_native_color(false)
 | |
|     , force_neutral_color(false)
 | |
|     , tverts_range(0, size_t(-1))
 | |
|     , qverts_range(0, size_t(-1))
 | |
| {
 | |
|     color[0] = r;
 | |
|     color[1] = g;
 | |
|     color[2] = b;
 | |
|     color[3] = a;
 | |
|     set_render_color(r, g, b, a);
 | |
| }
 | |
| 
 | |
| void GLVolume::set_render_color(float r, float g, float b, float a)
 | |
| {
 | |
|     render_color[0] = r;
 | |
|     render_color[1] = g;
 | |
|     render_color[2] = b;
 | |
|     render_color[3] = a;
 | |
| }
 | |
| 
 | |
| void GLVolume::set_render_color(const float* rgba, unsigned int size)
 | |
| {
 | |
|     ::memcpy((void*)render_color, (const void*)rgba, (size_t)(std::min((unsigned int)4, size) * sizeof(float)));
 | |
| }
 | |
| 
 | |
| void GLVolume::set_render_color()
 | |
| {
 | |
| #if ENABLE_ALLOW_NEGATIVE_Z
 | |
|     bool outside = is_outside || is_below_printbed();
 | |
| #endif // ENABLE_ALLOW_NEGATIVE_Z
 | |
| 
 | |
|     if (force_native_color || force_neutral_color) {
 | |
| #if ENABLE_ALLOW_NEGATIVE_Z
 | |
|         if (outside && shader_outside_printer_detection_enabled)
 | |
| #else
 | |
|         if (is_outside && shader_outside_printer_detection_enabled)
 | |
| #endif // ENABLE_ALLOW_NEGATIVE_Z
 | |
|             set_render_color(OUTSIDE_COLOR, 4);
 | |
|         else {
 | |
|             if (force_native_color)
 | |
|                 set_render_color(color, 4);
 | |
|             else
 | |
|                 set_render_color(NEUTRAL_COLOR, 4);
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         if (hover == HS_Select)
 | |
|             set_render_color(HOVER_SELECT_COLOR, 4);
 | |
|         else if (hover == HS_Deselect)
 | |
|             set_render_color(HOVER_DESELECT_COLOR, 4);
 | |
|         else if (selected)
 | |
| #if ENABLE_ALLOW_NEGATIVE_Z
 | |
|             set_render_color(outside ? SELECTED_OUTSIDE_COLOR : SELECTED_COLOR, 4);
 | |
| #else
 | |
|             set_render_color(is_outside ? SELECTED_OUTSIDE_COLOR : SELECTED_COLOR, 4);
 | |
| #endif // ENABLE_ALLOW_NEGATIVE_Z
 | |
|         else if (disabled)
 | |
|             set_render_color(DISABLED_COLOR, 4);
 | |
| #if ENABLE_ALLOW_NEGATIVE_Z
 | |
|         else if (outside && shader_outside_printer_detection_enabled)
 | |
| #else
 | |
|         else if (is_outside && shader_outside_printer_detection_enabled)
 | |
| #endif // ENABLE_ALLOW_NEGATIVE_Z
 | |
|             set_render_color(OUTSIDE_COLOR, 4);
 | |
|         else
 | |
|             set_render_color(color, 4);
 | |
|     }
 | |
| 
 | |
|     if (!printable) {
 | |
|         render_color[0] /= 4;
 | |
|         render_color[1] /= 4;
 | |
|         render_color[2] /= 4;
 | |
|     }
 | |
| 
 | |
|     if (force_transparent)
 | |
|         render_color[3] = color[3];
 | |
| }
 | |
| 
 | |
| void GLVolume::set_color_from_model_volume(const ModelVolume *model_volume)
 | |
| {
 | |
|     if (model_volume->is_negative_volume()) {
 | |
|         color[0] = 0.2f;
 | |
|         color[1] = 0.2f;
 | |
|         color[2] = 0.2f;
 | |
|     }
 | |
|     else if (model_volume->is_modifier()) {
 | |
|         color[0] = 0.2f;
 | |
|         color[1] = 1.0f;
 | |
|         color[2] = 0.2f;
 | |
|     }
 | |
|     else if (model_volume->is_support_blocker()) {
 | |
|         color[0] = 1.0f;
 | |
|         color[1] = 0.2f;
 | |
|         color[2] = 0.2f;
 | |
|     }
 | |
|     else if (model_volume->is_support_enforcer()) {
 | |
|         color[0] = 0.2f;
 | |
|         color[1] = 0.2f;
 | |
|         color[2] = 1.0f;
 | |
|     }
 | |
|     color[3] = model_volume->is_model_part() ? 1.f : 0.5f;
 | |
| }
 | |
| 
 | |
| Transform3d GLVolume::world_matrix() const
 | |
| {
 | |
|     Transform3d m = m_instance_transformation.get_matrix() * m_volume_transformation.get_matrix();
 | |
|     m.translation()(2) += m_sla_shift_z;
 | |
|     return m;
 | |
| }
 | |
| 
 | |
| bool GLVolume::is_left_handed() const
 | |
| {
 | |
|     const Vec3d &m1 = m_instance_transformation.get_mirror();
 | |
|     const Vec3d &m2 = m_volume_transformation.get_mirror();
 | |
|     return m1.x() * m1.y() * m1.z() * m2.x() * m2.y() * m2.z() < 0.;
 | |
| }
 | |
| 
 | |
| const BoundingBoxf3& GLVolume::transformed_bounding_box() const
 | |
| {
 | |
|     const BoundingBoxf3& box = bounding_box();
 | |
|     assert(box.defined || box.min(0) >= box.max(0) || box.min(1) >= box.max(1) || box.min(2) >= box.max(2));
 | |
| 
 | |
|     BoundingBoxf3* transformed_bounding_box = const_cast<BoundingBoxf3*>(&m_transformed_bounding_box);
 | |
|     bool* transformed_bounding_box_dirty = const_cast<bool*>(&m_transformed_bounding_box_dirty);
 | |
|     if (*transformed_bounding_box_dirty) {
 | |
|         *transformed_bounding_box = box.transformed(world_matrix());
 | |
|         *transformed_bounding_box_dirty = false;
 | |
|     }
 | |
|     return *transformed_bounding_box;
 | |
| }
 | |
| 
 | |
| const BoundingBoxf3& GLVolume::transformed_convex_hull_bounding_box() const
 | |
| {
 | |
|     BoundingBoxf3* transformed_convex_hull_bounding_box = const_cast<BoundingBoxf3*>(&m_transformed_convex_hull_bounding_box);
 | |
|     bool* transformed_convex_hull_bounding_box_dirty = const_cast<bool*>(&m_transformed_convex_hull_bounding_box_dirty);
 | |
|     if (*transformed_convex_hull_bounding_box_dirty) {
 | |
|         *transformed_convex_hull_bounding_box = this->transformed_convex_hull_bounding_box(world_matrix());
 | |
|         *transformed_convex_hull_bounding_box_dirty = false;
 | |
|     }
 | |
|     return *transformed_convex_hull_bounding_box;
 | |
| }
 | |
| 
 | |
| BoundingBoxf3 GLVolume::transformed_convex_hull_bounding_box(const Transform3d &trafo) const
 | |
| {
 | |
| 	return (m_convex_hull && m_convex_hull->stl.stats.number_of_facets > 0) ? 
 | |
| 		m_convex_hull->transformed_bounding_box(trafo) :
 | |
|         bounding_box().transformed(trafo);
 | |
| }
 | |
| 
 | |
| void GLVolume::set_range(double min_z, double max_z)
 | |
| {
 | |
|     this->qverts_range.first = 0;
 | |
|     this->qverts_range.second = this->indexed_vertex_array.quad_indices_size;
 | |
|     this->tverts_range.first = 0;
 | |
|     this->tverts_range.second = this->indexed_vertex_array.triangle_indices_size;
 | |
|     if (! this->print_zs.empty()) {
 | |
|         // The Z layer range is specified.
 | |
|         // First test whether the Z span of this object is not out of (min_z, max_z) completely.
 | |
|         if (this->print_zs.front() > max_z || this->print_zs.back() < min_z) {
 | |
|             this->qverts_range.second = 0;
 | |
|             this->tverts_range.second = 0;
 | |
|         } else {
 | |
|             // Then find the lowest layer to be displayed.
 | |
|             size_t i = 0;
 | |
|             for (; i < this->print_zs.size() && this->print_zs[i] < min_z; ++ i);
 | |
|             if (i == this->print_zs.size()) {
 | |
|                 // This shall not happen.
 | |
|                 this->qverts_range.second = 0;
 | |
|                 this->tverts_range.second = 0;
 | |
|             } else {
 | |
|                 // Remember start of the layer.
 | |
|                 this->qverts_range.first = this->offsets[i * 2];
 | |
|                 this->tverts_range.first = this->offsets[i * 2 + 1];
 | |
|                 // Some layers are above $min_z. Which?
 | |
|                 for (; i < this->print_zs.size() && this->print_zs[i] <= max_z; ++ i);
 | |
|                 if (i < this->print_zs.size()) {
 | |
|                     this->qverts_range.second = this->offsets[i * 2];
 | |
|                     this->tverts_range.second = this->offsets[i * 2 + 1];
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void GLVolume::render() const
 | |
| {
 | |
|     if (!is_active)
 | |
|         return;
 | |
| 
 | |
|     if (this->is_left_handed())
 | |
|         glFrontFace(GL_CW);
 | |
|     glsafe(::glCullFace(GL_BACK));
 | |
|     glsafe(::glPushMatrix());
 | |
|     glsafe(::glMultMatrixd(world_matrix().data()));
 | |
| 
 | |
|     this->indexed_vertex_array.render(this->tverts_range, this->qverts_range);
 | |
| 
 | |
|     glsafe(::glPopMatrix());
 | |
|     if (this->is_left_handed())
 | |
|         glFrontFace(GL_CCW);
 | |
| }
 | |
| 
 | |
| bool GLVolume::is_sla_support() const { return this->composite_id.volume_id == -int(slaposSupportTree); }
 | |
| bool GLVolume::is_sla_pad() const { return this->composite_id.volume_id == -int(slaposPad); }
 | |
| 
 | |
| #if ENABLE_ALLOW_NEGATIVE_Z
 | |
| bool GLVolume::is_sinking() const
 | |
| {
 | |
| #if DISABLE_ALLOW_NEGATIVE_Z_FOR_SLA
 | |
|     if (is_modifier || GUI::wxGetApp().preset_bundle->printers.get_edited_preset().printer_technology() == ptSLA)
 | |
| #else
 | |
|     if (is_modifier)
 | |
| #endif // DISABLE_ALLOW_NEGATIVE_Z_FOR_SLA
 | |
|         return false;
 | |
|     const BoundingBoxf3& box = transformed_convex_hull_bounding_box();
 | |
|     return box.min.z() < SINKING_Z_THRESHOLD && box.max.z() >= SINKING_Z_THRESHOLD;
 | |
| }
 | |
| 
 | |
| bool GLVolume::is_below_printbed() const
 | |
| {
 | |
|     return transformed_convex_hull_bounding_box().max(2) < 0.0;
 | |
| }
 | |
| #endif // ENABLE_ALLOW_NEGATIVE_Z
 | |
| 
 | |
| std::vector<int> GLVolumeCollection::load_object(
 | |
|     const ModelObject       *model_object,
 | |
|     int                      obj_idx,
 | |
|     const std::vector<int>  &instance_idxs,
 | |
|     const std::string       &color_by,
 | |
|     bool 					 opengl_initialized)
 | |
| {
 | |
|     std::vector<int> volumes_idx;
 | |
|     for (int volume_idx = 0; volume_idx < int(model_object->volumes.size()); ++volume_idx)
 | |
|         for (int instance_idx : instance_idxs)
 | |
|             volumes_idx.emplace_back(this->GLVolumeCollection::load_object_volume(model_object, obj_idx, volume_idx, instance_idx, color_by, opengl_initialized));
 | |
|     return volumes_idx;
 | |
| }
 | |
| 
 | |
| int GLVolumeCollection::load_object_volume(
 | |
|     const ModelObject   *model_object,
 | |
|     int                  obj_idx,
 | |
|     int                  volume_idx,
 | |
|     int                  instance_idx,
 | |
|     const std::string   &color_by,
 | |
|     bool 				 opengl_initialized)
 | |
| {
 | |
|     const ModelVolume   *model_volume = model_object->volumes[volume_idx];
 | |
|     const int            extruder_id  = model_volume->extruder_id();
 | |
|     const ModelInstance *instance 	  = model_object->instances[instance_idx];
 | |
|     const TriangleMesh  &mesh 		  = model_volume->mesh();
 | |
|     float 				 color[4];
 | |
|     memcpy(color, GLVolume::MODEL_COLOR[((color_by == "volume") ? volume_idx : obj_idx) % 4], sizeof(float) * 3);
 | |
|     /*    if (model_volume->is_support_blocker()) {
 | |
|             color[0] = 1.0f;
 | |
|             color[1] = 0.2f;
 | |
|             color[2] = 0.2f;
 | |
|         } else if (model_volume->is_support_enforcer()) {
 | |
|             color[0] = 0.2f;
 | |
|             color[1] = 0.2f;
 | |
|             color[2] = 1.0f;
 | |
|         }
 | |
|         color[3] = model_volume->is_model_part() ? 1.f : 0.5f; */
 | |
|     color[3] = model_volume->is_model_part() ? 1.f : 0.5f;
 | |
|     this->volumes.emplace_back(new GLVolume(color));
 | |
|     GLVolume& v = *this->volumes.back();
 | |
|     v.set_color_from_model_volume(model_volume);
 | |
| #if ENABLE_SMOOTH_NORMALS
 | |
|     v.indexed_vertex_array.load_mesh(mesh, true);
 | |
| #else
 | |
|     v.indexed_vertex_array.load_mesh(mesh);
 | |
| #endif // ENABLE_SMOOTH_NORMALS
 | |
|     v.indexed_vertex_array.finalize_geometry(opengl_initialized);
 | |
|     v.composite_id = GLVolume::CompositeID(obj_idx, volume_idx, instance_idx);
 | |
|     if (model_volume->is_model_part())
 | |
|     {
 | |
|         // GLVolume will reference a convex hull from model_volume!
 | |
|         v.set_convex_hull(model_volume->get_convex_hull_shared_ptr());
 | |
|         if (extruder_id != -1)
 | |
|             v.extruder_id = extruder_id;
 | |
|     }
 | |
|     v.is_modifier = !model_volume->is_model_part();
 | |
|     v.shader_outside_printer_detection_enabled = model_volume->is_model_part();
 | |
|     v.set_instance_transformation(instance->get_transformation());
 | |
|     v.set_volume_transformation(model_volume->get_transformation());
 | |
| 
 | |
|     return int(this->volumes.size() - 1);
 | |
| }
 | |
| 
 | |
| // Load SLA auxiliary GLVolumes (for support trees or pad).
 | |
| // This function produces volumes for multiple instances in a single shot,
 | |
| // as some object specific mesh conversions may be expensive.
 | |
| void GLVolumeCollection::load_object_auxiliary(
 | |
|     const SLAPrintObject 		   *print_object,
 | |
|     int                             obj_idx,
 | |
|     // pairs of <instance_idx, print_instance_idx>
 | |
|     const std::vector<std::pair<size_t, size_t>>& instances,
 | |
|     SLAPrintObjectStep              milestone,
 | |
|     // Timestamp of the last change of the milestone
 | |
|     size_t                          timestamp,
 | |
|     bool 				 			opengl_initialized)
 | |
| {
 | |
|     assert(print_object->is_step_done(milestone));
 | |
|     Transform3d  mesh_trafo_inv = print_object->trafo().inverse();
 | |
|     // Get the support mesh.
 | |
|     TriangleMesh mesh = print_object->get_mesh(milestone);
 | |
|     mesh.transform(mesh_trafo_inv);
 | |
|     // Convex hull is required for out of print bed detection.
 | |
|     TriangleMesh convex_hull = mesh.convex_hull_3d();
 | |
|     for (const std::pair<size_t, size_t>& instance_idx : instances) {
 | |
|         const ModelInstance& model_instance = *print_object->model_object()->instances[instance_idx.first];
 | |
|         this->volumes.emplace_back(new GLVolume((milestone == slaposPad) ? GLVolume::SLA_PAD_COLOR : GLVolume::SLA_SUPPORT_COLOR));
 | |
|         GLVolume& v = *this->volumes.back();
 | |
| #if ENABLE_SMOOTH_NORMALS
 | |
|         v.indexed_vertex_array.load_mesh(mesh, true);
 | |
| #else
 | |
|         v.indexed_vertex_array.load_mesh(mesh);
 | |
| #endif // ENABLE_SMOOTH_NORMALS
 | |
|         v.indexed_vertex_array.finalize_geometry(opengl_initialized);
 | |
|         v.composite_id = GLVolume::CompositeID(obj_idx, -int(milestone), (int)instance_idx.first);
 | |
|         v.geometry_id = std::pair<size_t, size_t>(timestamp, model_instance.id().id);
 | |
|         // Create a copy of the convex hull mesh for each instance. Use a move operator on the last instance.
 | |
|         if (&instance_idx == &instances.back())
 | |
|             v.set_convex_hull(std::move(convex_hull));
 | |
|         else
 | |
|             v.set_convex_hull(convex_hull);
 | |
|         v.is_modifier = false;
 | |
|         v.shader_outside_printer_detection_enabled = (milestone == slaposSupportTree);
 | |
|         v.set_instance_transformation(model_instance.get_transformation());
 | |
|         // Leave the volume transformation at identity.
 | |
|         // v.set_volume_transformation(model_volume->get_transformation());
 | |
|     }
 | |
| }
 | |
| 
 | |
| int GLVolumeCollection::load_wipe_tower_preview(
 | |
|     int obj_idx, float pos_x, float pos_y, float width, float depth, float height,
 | |
|     float rotation_angle, bool size_unknown, float brim_width, bool opengl_initialized)
 | |
| {
 | |
|     if (depth < 0.01f)
 | |
|         return int(this->volumes.size() - 1);
 | |
|     if (height == 0.0f)
 | |
|         height = 0.1f;
 | |
| 
 | |
|     TriangleMesh mesh;
 | |
|     float color[4] = { 0.5f, 0.5f, 0.0f, 1.f };
 | |
| 
 | |
|     // In case we don't know precise dimensions of the wipe tower yet, we'll draw
 | |
|     // the box with different color with one side jagged:
 | |
|     if (size_unknown) {
 | |
|         color[0] = 0.9f;
 | |
|         color[1] = 0.6f;
 | |
| 
 | |
|         // Too narrow tower would interfere with the teeth. The estimate is not precise anyway.
 | |
|         depth = std::max(depth, 10.f);
 | |
|         float min_width = 30.f;
 | |
|         // We'll now create the box with jagged edge. y-coordinates of the pre-generated model
 | |
|         // are shifted so that the front edge has y=0 and centerline of the back edge has y=depth:
 | |
|         Pointf3s points;
 | |
|         std::vector<Vec3i> facets;
 | |
|         float out_points_idx[][3] = { { 0, -depth, 0 }, { 0, 0, 0 }, { 38.453f, 0, 0 }, { 61.547f, 0, 0 }, { 100.0f, 0, 0 }, { 100.0f, -depth, 0 }, { 55.7735f, -10.0f, 0 }, { 44.2265f, 10.0f, 0 },
 | |
|         { 38.453f, 0, 1 }, { 0, 0, 1 }, { 0, -depth, 1 }, { 100.0f, -depth, 1 }, { 100.0f, 0, 1 }, { 61.547f, 0, 1 }, { 55.7735f, -10.0f, 1 }, { 44.2265f, 10.0f, 1 } };
 | |
|         int out_facets_idx[][3] = { { 0, 1, 2 }, { 3, 4, 5 }, { 6, 5, 0 }, { 3, 5, 6 }, { 6, 2, 7 }, { 6, 0, 2 }, { 8, 9, 10 }, { 11, 12, 13 }, { 10, 11, 14 }, { 14, 11, 13 }, { 15, 8, 14 },
 | |
|                                    {8, 10, 14}, {3, 12, 4}, {3, 13, 12}, {6, 13, 3}, {6, 14, 13}, {7, 14, 6}, {7, 15, 14}, {2, 15, 7}, {2, 8, 15}, {1, 8, 2}, {1, 9, 8},
 | |
|                                    {0, 9, 1}, {0, 10, 9}, {5, 10, 0}, {5, 11, 10}, {4, 11, 5}, {4, 12, 11} };
 | |
|         for (int i = 0; i < 16; ++i)
 | |
|             points.emplace_back(out_points_idx[i][0] / (100.f / min_width),
 | |
|                                 out_points_idx[i][1] + depth, out_points_idx[i][2]);
 | |
|         for (int i = 0; i < 28; ++i)
 | |
|             facets.emplace_back(out_facets_idx[i][0],
 | |
|                                 out_facets_idx[i][1],
 | |
|                                 out_facets_idx[i][2]);
 | |
|         TriangleMesh tooth_mesh(points, facets);
 | |
| 
 | |
|         // We have the mesh ready. It has one tooth and width of min_width. We will now
 | |
|         // append several of these together until we are close to the required width
 | |
|         // of the block. Than we can scale it precisely.
 | |
|         size_t n = std::max(1, int(width / min_width)); // How many shall be merged?
 | |
|         for (size_t i = 0; i < n; ++i) {
 | |
|             mesh.merge(tooth_mesh);
 | |
|             tooth_mesh.translate(min_width, 0.f, 0.f);
 | |
|         }
 | |
| 
 | |
|         mesh.scale(Vec3d(width / (n * min_width), 1.f, height)); // Scaling to proper width
 | |
|     }
 | |
|     else
 | |
|         mesh = make_cube(width, depth, height);
 | |
| 
 | |
|     // We'll make another mesh to show the brim (fixed layer height):
 | |
|     TriangleMesh brim_mesh = make_cube(width + 2.f * brim_width, depth + 2.f * brim_width, 0.2f);
 | |
|     brim_mesh.translate(-brim_width, -brim_width, 0.f);
 | |
|     mesh.merge(brim_mesh);
 | |
| 
 | |
|     this->volumes.emplace_back(new GLVolume(color));
 | |
|     GLVolume& v = *this->volumes.back();
 | |
|     v.indexed_vertex_array.load_mesh(mesh);
 | |
|     v.indexed_vertex_array.finalize_geometry(opengl_initialized);
 | |
|     v.set_volume_offset(Vec3d(pos_x, pos_y, 0.0));
 | |
|     v.set_volume_rotation(Vec3d(0., 0., (M_PI / 180.) * rotation_angle));
 | |
|     v.composite_id = GLVolume::CompositeID(obj_idx, 0, 0);
 | |
|     v.geometry_id.first = 0;
 | |
|     v.geometry_id.second = wipe_tower_instance_id().id;
 | |
|     v.is_wipe_tower = true;
 | |
|     v.shader_outside_printer_detection_enabled = !size_unknown;
 | |
|     return int(this->volumes.size() - 1);
 | |
| }
 | |
| 
 | |
| GLVolume* GLVolumeCollection::new_toolpath_volume(const float *rgba, size_t reserve_vbo_floats)
 | |
| {
 | |
| 	GLVolume *out = new_nontoolpath_volume(rgba, reserve_vbo_floats);
 | |
| 	out->is_extrusion_path = true;
 | |
| 	return out;
 | |
| }
 | |
| 
 | |
| GLVolume* GLVolumeCollection::new_nontoolpath_volume(const float *rgba, size_t reserve_vbo_floats)
 | |
| {
 | |
| 	GLVolume *out = new GLVolume(rgba);
 | |
| 	out->is_extrusion_path = false;
 | |
| 	// Reserving number of vertices (3x position + 3x color)
 | |
| 	out->indexed_vertex_array.reserve(reserve_vbo_floats / 6);
 | |
| 	this->volumes.emplace_back(out);
 | |
| 	return out;
 | |
| }
 | |
| 
 | |
| GLVolumeWithIdAndZList volumes_to_render(const GLVolumePtrs& volumes, GLVolumeCollection::ERenderType type, const Transform3d& view_matrix, std::function<bool(const GLVolume&)> filter_func)
 | |
| {
 | |
|     GLVolumeWithIdAndZList list;
 | |
|     list.reserve(volumes.size());
 | |
| 
 | |
|     for (unsigned int i = 0; i < (unsigned int)volumes.size(); ++i)
 | |
|     {
 | |
|         GLVolume* volume = volumes[i];
 | |
|         bool is_transparent = (volume->render_color[3] < 1.0f);
 | |
|         if ((((type == GLVolumeCollection::Opaque) && !is_transparent) ||
 | |
|              ((type == GLVolumeCollection::Transparent) && is_transparent) ||
 | |
|              (type == GLVolumeCollection::All)) &&
 | |
|             (! filter_func || filter_func(*volume)))
 | |
|             list.emplace_back(std::make_pair(volume, std::make_pair(i, 0.0)));
 | |
|     }
 | |
| 
 | |
|     if ((type == GLVolumeCollection::Transparent) && (list.size() > 1))
 | |
|     {
 | |
|         for (GLVolumeWithIdAndZ& volume : list)
 | |
|         {
 | |
|             volume.second.second = volume.first->bounding_box().transformed(view_matrix * volume.first->world_matrix()).max(2);
 | |
|         }
 | |
| 
 | |
|         std::sort(list.begin(), list.end(),
 | |
|             [](const GLVolumeWithIdAndZ& v1, const GLVolumeWithIdAndZ& v2) -> bool { return v1.second.second < v2.second.second; }
 | |
|         );
 | |
|     }
 | |
|     else if ((type == GLVolumeCollection::Opaque) && (list.size() > 1))
 | |
|     {
 | |
|         std::sort(list.begin(), list.end(),
 | |
|             [](const GLVolumeWithIdAndZ& v1, const GLVolumeWithIdAndZ& v2) -> bool { return v1.first->selected && !v2.first->selected; }
 | |
|         );
 | |
|     }
 | |
| 
 | |
|     return list;
 | |
| }
 | |
| 
 | |
| void GLVolumeCollection::render(GLVolumeCollection::ERenderType type, bool disable_cullface, const Transform3d& view_matrix, std::function<bool(const GLVolume&)> filter_func) const
 | |
| {
 | |
|     GLShaderProgram* shader = GUI::wxGetApp().get_current_shader();
 | |
|     if (shader == nullptr)
 | |
|         return;
 | |
| 
 | |
|     glsafe(::glEnable(GL_BLEND));
 | |
|     glsafe(::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA));
 | |
| 
 | |
|     glsafe(::glCullFace(GL_BACK));
 | |
|     if (disable_cullface)
 | |
|         glsafe(::glDisable(GL_CULL_FACE));
 | |
| 
 | |
|     glsafe(::glEnableClientState(GL_VERTEX_ARRAY));
 | |
|     glsafe(::glEnableClientState(GL_NORMAL_ARRAY));
 | |
|  
 | |
|     shader->set_uniform("print_box.min", m_print_box_min, 3);
 | |
|     shader->set_uniform("print_box.max", m_print_box_max, 3);
 | |
|     shader->set_uniform("z_range", m_z_range, 2);
 | |
|     shader->set_uniform("clipping_plane", m_clipping_plane, 4);
 | |
|     shader->set_uniform("slope.normal_z", m_slope.normal_z);
 | |
| 
 | |
| #if ENABLE_ENVIRONMENT_MAP
 | |
|     unsigned int environment_texture_id = GUI::wxGetApp().plater()->get_environment_texture_id();
 | |
|     bool use_environment_texture = environment_texture_id > 0 && GUI::wxGetApp().app_config->get("use_environment_map") == "1";
 | |
|     shader->set_uniform("use_environment_tex", use_environment_texture);
 | |
|     if (use_environment_texture)
 | |
|         glsafe(::glBindTexture(GL_TEXTURE_2D, environment_texture_id));
 | |
| #endif // ENABLE_ENVIRONMENT_MAP
 | |
|     glcheck();
 | |
| 
 | |
|     GLVolumeWithIdAndZList to_render = volumes_to_render(this->volumes, type, view_matrix, filter_func);
 | |
|     for (GLVolumeWithIdAndZ& volume : to_render) {
 | |
|         volume.first->set_render_color();
 | |
|         shader->set_uniform("uniform_color", volume.first->render_color, 4);
 | |
|         shader->set_uniform("print_box.actived", volume.first->shader_outside_printer_detection_enabled);
 | |
|         shader->set_uniform("print_box.volume_world_matrix", volume.first->world_matrix());
 | |
|         shader->set_uniform("slope.actived", m_slope.active && !volume.first->is_modifier && !volume.first->is_wipe_tower);
 | |
|         shader->set_uniform("slope.volume_world_normal_matrix", static_cast<Matrix3f>(volume.first->world_matrix().matrix().block(0, 0, 3, 3).inverse().transpose().cast<float>()));
 | |
| #if ENABLE_ALLOW_NEGATIVE_Z
 | |
|         shader->set_uniform("sinking", volume.first->is_sinking());
 | |
| #endif // ENABLE_ALLOW_NEGATIVE_Z
 | |
| 
 | |
|         volume.first->render();
 | |
|     }
 | |
| 
 | |
| #if ENABLE_ENVIRONMENT_MAP
 | |
|     if (use_environment_texture)
 | |
|         glsafe(::glBindTexture(GL_TEXTURE_2D, 0));
 | |
| #endif // ENABLE_ENVIRONMENT_MAP
 | |
| 
 | |
|     glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));
 | |
|     glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
 | |
| 
 | |
|     glsafe(::glDisableClientState(GL_VERTEX_ARRAY));
 | |
|     glsafe(::glDisableClientState(GL_NORMAL_ARRAY));
 | |
| 
 | |
|     if (disable_cullface)
 | |
|         glsafe(::glEnable(GL_CULL_FACE));
 | |
| 
 | |
|     glsafe(::glDisable(GL_BLEND));
 | |
| }
 | |
| 
 | |
| bool GLVolumeCollection::check_outside_state(const DynamicPrintConfig* config, ModelInstanceEPrintVolumeState* out_state) const
 | |
| {
 | |
|     if (config == nullptr)
 | |
|         return false;
 | |
| 
 | |
|     const ConfigOptionPoints* opt = dynamic_cast<const ConfigOptionPoints*>(config->option("bed_shape"));
 | |
|     if (opt == nullptr)
 | |
|         return false;
 | |
| 
 | |
|     BoundingBox bed_box_2D = get_extents(Polygon::new_scale(opt->values));
 | |
|     BoundingBoxf3 print_volume({ unscale<double>(bed_box_2D.min(0)), unscale<double>(bed_box_2D.min(1)), 0.0 }, { unscale<double>(bed_box_2D.max(0)), unscale<double>(bed_box_2D.max(1)), config->opt_float("max_print_height") });
 | |
|     // Allow the objects to protrude below the print bed
 | |
|     print_volume.min(2) = -1e10;
 | |
|     print_volume.min(0) -= BedEpsilon;
 | |
|     print_volume.min(1) -= BedEpsilon;
 | |
|     print_volume.max(0) += BedEpsilon;
 | |
|     print_volume.max(1) += BedEpsilon;
 | |
| 
 | |
|     ModelInstanceEPrintVolumeState state = ModelInstancePVS_Inside;
 | |
| 
 | |
|     bool contained_min_one = false;
 | |
| 
 | |
|     for (GLVolume* volume : this->volumes) {
 | |
|         if (volume == nullptr || volume->is_modifier || (volume->is_wipe_tower && !volume->shader_outside_printer_detection_enabled) || (volume->composite_id.volume_id < 0 && !volume->shader_outside_printer_detection_enabled))
 | |
|             continue;
 | |
| 
 | |
|         const BoundingBoxf3& bb = volume->transformed_convex_hull_bounding_box();
 | |
|         bool contained = print_volume.contains(bb);
 | |
| 
 | |
|         volume->is_outside = !contained;
 | |
|         if (!volume->printable)
 | |
|             continue;
 | |
| 
 | |
|         if (contained)
 | |
|             contained_min_one = true;
 | |
| 
 | |
|         if (state == ModelInstancePVS_Inside && volume->is_outside)
 | |
|             state = ModelInstancePVS_Fully_Outside;
 | |
| 
 | |
|         if (state == ModelInstancePVS_Fully_Outside && volume->is_outside && print_volume.intersects(bb))
 | |
|             state = ModelInstancePVS_Partly_Outside;
 | |
|     }
 | |
| 
 | |
|     if (out_state != nullptr)
 | |
|         *out_state = state;
 | |
| 
 | |
|     return contained_min_one;
 | |
| }
 | |
| 
 | |
| bool GLVolumeCollection::check_outside_state(const DynamicPrintConfig* config, bool& partlyOut, bool& fullyOut) const
 | |
| {
 | |
|     if (config == nullptr)
 | |
|         return false;
 | |
| 
 | |
|     const ConfigOptionPoints* opt = dynamic_cast<const ConfigOptionPoints*>(config->option("bed_shape"));
 | |
|     if (opt == nullptr)
 | |
|         return false;
 | |
| 
 | |
|     BoundingBox bed_box_2D = get_extents(Polygon::new_scale(opt->values));
 | |
|     BoundingBoxf3 print_volume(Vec3d(unscale<double>(bed_box_2D.min(0)), unscale<double>(bed_box_2D.min(1)), 0.0), Vec3d(unscale<double>(bed_box_2D.max(0)), unscale<double>(bed_box_2D.max(1)), config->opt_float("max_print_height")));
 | |
|     // Allow the objects to protrude below the print bed
 | |
|     print_volume.min(2) = -1e10;
 | |
|     print_volume.min(0) -= BedEpsilon;
 | |
|     print_volume.min(1) -= BedEpsilon;
 | |
|     print_volume.max(0) += BedEpsilon;
 | |
|     print_volume.max(1) += BedEpsilon;
 | |
| 
 | |
|     bool contained_min_one = false;
 | |
| 
 | |
|     partlyOut = false;
 | |
|     fullyOut = false;
 | |
|     for (GLVolume* volume : this->volumes) {
 | |
|         if (volume == nullptr || volume->is_modifier || (volume->is_wipe_tower && !volume->shader_outside_printer_detection_enabled) || (volume->composite_id.volume_id < 0 && !volume->shader_outside_printer_detection_enabled))
 | |
|             continue;
 | |
| 
 | |
|         const BoundingBoxf3& bb = volume->transformed_convex_hull_bounding_box();
 | |
|         bool contained = print_volume.contains(bb);
 | |
| 
 | |
|         volume->is_outside = !contained;
 | |
|         if (!volume->printable)
 | |
|             continue;
 | |
| 
 | |
|         if (contained)
 | |
|             contained_min_one = true;
 | |
| 
 | |
|         if (volume->is_outside) {
 | |
|             if (print_volume.intersects(bb))
 | |
|                 partlyOut = true;
 | |
|             else 
 | |
|                 fullyOut = true;
 | |
|         }
 | |
|     }
 | |
|     /*
 | |
|     if (out_state != nullptr)
 | |
|         *out_state = state;
 | |
|     */
 | |
|     return contained_min_one;
 | |
| }
 | |
| 
 | |
| void GLVolumeCollection::reset_outside_state()
 | |
| {
 | |
|     for (GLVolume* volume : this->volumes)
 | |
|     {
 | |
|         if (volume != nullptr)
 | |
|             volume->is_outside = false;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void GLVolumeCollection::update_colors_by_extruder(const DynamicPrintConfig* config)
 | |
| {
 | |
|     static const float inv_255 = 1.0f / 255.0f;
 | |
| 
 | |
|     struct Color
 | |
|     {
 | |
|         std::string text;
 | |
|         unsigned char rgb[3];
 | |
| 
 | |
|         Color()
 | |
|             : text("")
 | |
|         {
 | |
|             rgb[0] = 255;
 | |
|             rgb[1] = 255;
 | |
|             rgb[2] = 255;
 | |
|         }
 | |
| 
 | |
|         void set(const std::string& text, unsigned char* rgb)
 | |
|         {
 | |
|             this->text = text;
 | |
|             ::memcpy((void*)this->rgb, (const void*)rgb, 3 * sizeof(unsigned char));
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     if (config == nullptr)
 | |
|         return;
 | |
| 
 | |
|     const ConfigOptionStrings* extruders_opt = dynamic_cast<const ConfigOptionStrings*>(config->option("extruder_colour"));
 | |
|     if (extruders_opt == nullptr)
 | |
|         return;
 | |
| 
 | |
|     const ConfigOptionStrings* filamemts_opt = dynamic_cast<const ConfigOptionStrings*>(config->option("filament_colour"));
 | |
|     if (filamemts_opt == nullptr)
 | |
|         return;
 | |
| 
 | |
|     unsigned int colors_count = std::max((unsigned int)extruders_opt->values.size(), (unsigned int)filamemts_opt->values.size());
 | |
|     if (colors_count == 0)
 | |
|         return;
 | |
| 
 | |
|     std::vector<Color> colors(colors_count);
 | |
| 
 | |
|     unsigned char rgb[3];
 | |
|     for (unsigned int i = 0; i < colors_count; ++i)
 | |
|     {
 | |
|         const std::string& txt_color = config->opt_string("extruder_colour", i);
 | |
|         if (Slic3r::GUI::BitmapCache::parse_color(txt_color, rgb))
 | |
|         {
 | |
|             colors[i].set(txt_color, rgb);
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             const std::string& txt_color = config->opt_string("filament_colour", i);
 | |
|             if (Slic3r::GUI::BitmapCache::parse_color(txt_color, rgb))
 | |
|                 colors[i].set(txt_color, rgb);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (GLVolume* volume : volumes)
 | |
|     {
 | |
|         if ((volume == nullptr) || volume->is_modifier || volume->is_wipe_tower || (volume->volume_idx() < 0))
 | |
|             continue;
 | |
| 
 | |
|         int extruder_id = volume->extruder_id - 1;
 | |
|         if ((extruder_id < 0) || ((int)colors.size() <= extruder_id))
 | |
|             extruder_id = 0;
 | |
| 
 | |
|         const Color& color = colors[extruder_id];
 | |
|         if (!color.text.empty())
 | |
|         {
 | |
|             for (int i = 0; i < 3; ++i)
 | |
|             {
 | |
|                 volume->color[i] = (float)color.rgb[i] * inv_255;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| std::vector<double> GLVolumeCollection::get_current_print_zs(bool active_only) const
 | |
| {
 | |
|     // Collect layer top positions of all volumes.
 | |
|     std::vector<double> print_zs;
 | |
|     for (GLVolume *vol : this->volumes)
 | |
|     {
 | |
|         if (!active_only || vol->is_active)
 | |
|             append(print_zs, vol->print_zs);
 | |
|     }
 | |
|     std::sort(print_zs.begin(), print_zs.end());
 | |
| 
 | |
|     // Replace intervals of layers with similar top positions with their average value.
 | |
|     int n = int(print_zs.size());
 | |
|     int k = 0;
 | |
|     for (int i = 0; i < n;) {
 | |
|         int j = i + 1;
 | |
|         coordf_t zmax = print_zs[i] + EPSILON;
 | |
|         for (; j < n && print_zs[j] <= zmax; ++ j) ;
 | |
|         print_zs[k ++] = (j > i + 1) ? (0.5 * (print_zs[i] + print_zs[j - 1])) : print_zs[i];
 | |
|         i = j;
 | |
|     }
 | |
|     if (k < n)
 | |
|         print_zs.erase(print_zs.begin() + k, print_zs.end());
 | |
| 
 | |
|     return print_zs;
 | |
| }
 | |
| 
 | |
| size_t GLVolumeCollection::cpu_memory_used() const 
 | |
| {
 | |
| 	size_t memsize = sizeof(*this) + this->volumes.capacity() * sizeof(GLVolume);
 | |
| 	for (const GLVolume *volume : this->volumes)
 | |
| 		memsize += volume->cpu_memory_used();
 | |
| 	return memsize;
 | |
| }
 | |
| 
 | |
| size_t GLVolumeCollection::gpu_memory_used() const 
 | |
| {
 | |
| 	size_t memsize = 0;
 | |
| 	for (const GLVolume *volume : this->volumes)
 | |
| 		memsize += volume->gpu_memory_used();
 | |
| 	return memsize;
 | |
| }
 | |
| 
 | |
| std::string GLVolumeCollection::log_memory_info() const 
 | |
| { 
 | |
| 	return " (GLVolumeCollection RAM: " + format_memsize_MB(this->cpu_memory_used()) + " GPU: " + format_memsize_MB(this->gpu_memory_used()) + " Both: " + format_memsize_MB(this->gpu_memory_used()) + ")";
 | |
| }
 | |
| 
 | |
| // caller is responsible for supplying NO lines with zero length
 | |
| static void thick_lines_to_indexed_vertex_array(
 | |
|     const Lines                 &lines, 
 | |
|     const std::vector<double>   &widths,
 | |
|     const std::vector<double>   &heights, 
 | |
|     bool                         closed,
 | |
|     double                       top_z,
 | |
|     GLIndexedVertexArray        &volume)
 | |
| {
 | |
|     assert(! lines.empty());
 | |
|     if (lines.empty())
 | |
|         return;
 | |
| 
 | |
| #define LEFT    0
 | |
| #define RIGHT   1
 | |
| #define TOP     2
 | |
| #define BOTTOM  3
 | |
| 
 | |
|     // right, left, top, bottom
 | |
|     int     idx_prev[4]      = { -1, -1, -1, -1 };
 | |
|     double  bottom_z_prev    = 0.;
 | |
|     Vec2d   b1_prev(Vec2d::Zero());
 | |
|     Vec2d   v_prev(Vec2d::Zero());
 | |
|     int     idx_initial[4]   = { -1, -1, -1, -1 };
 | |
|     double  width_initial    = 0.;
 | |
|     double  bottom_z_initial = 0.0;
 | |
|     double  len_prev = 0.0;
 | |
| 
 | |
|     // loop once more in case of closed loops
 | |
|     size_t lines_end = closed ? (lines.size() + 1) : lines.size();
 | |
|     for (size_t ii = 0; ii < lines_end; ++ ii) {
 | |
|         size_t i = (ii == lines.size()) ? 0 : ii;
 | |
|         const Line &line = lines[i];
 | |
|         double bottom_z = top_z - heights[i];
 | |
|         double middle_z = 0.5 * (top_z + bottom_z);
 | |
|         double width = widths[i];
 | |
| 
 | |
|         bool is_first = (ii == 0);
 | |
|         bool is_last = (ii == lines_end - 1);
 | |
|         bool is_closing = closed && is_last;
 | |
| 
 | |
|         Vec2d v = unscale(line.vector()).normalized();
 | |
|         double len = unscale<double>(line.length());
 | |
| 
 | |
|         Vec2d a = unscale(line.a);
 | |
|         Vec2d b = unscale(line.b);
 | |
|         Vec2d a1 = a;
 | |
|         Vec2d a2 = a;
 | |
|         Vec2d b1 = b;
 | |
|         Vec2d b2 = b;
 | |
|         {
 | |
|             double dist = 0.5 * width;  // scaled
 | |
|             double dx = dist * v(0);
 | |
|             double dy = dist * v(1);
 | |
|             a1 += Vec2d(+dy, -dx);
 | |
|             a2 += Vec2d(-dy, +dx);
 | |
|             b1 += Vec2d(+dy, -dx);
 | |
|             b2 += Vec2d(-dy, +dx);
 | |
|         }
 | |
| 
 | |
|         // calculate new XY normals
 | |
|         Vec2d xy_right_normal = unscale(line.normal()).normalized();
 | |
| 
 | |
|         int idx_a[4] = { 0, 0, 0, 0 }; // initialized to avoid warnings
 | |
|         int idx_b[4] = { 0, 0, 0, 0 }; // initialized to avoid warnings
 | |
|         int idx_last = int(volume.vertices_and_normals_interleaved.size() / 6);
 | |
| 
 | |
|         bool bottom_z_different = bottom_z_prev != bottom_z;
 | |
|         bottom_z_prev = bottom_z;
 | |
| 
 | |
|         if (!is_first && bottom_z_different)
 | |
|         {
 | |
|             // Found a change of the layer thickness -> Add a cap at the end of the previous segment.
 | |
|             volume.push_quad(idx_b[BOTTOM], idx_b[LEFT], idx_b[TOP], idx_b[RIGHT]);
 | |
|         }
 | |
| 
 | |
|         // Share top / bottom vertices if possible.
 | |
|         if (is_first) {
 | |
|             idx_a[TOP] = idx_last++;
 | |
|             volume.push_geometry(a(0), a(1), top_z   , 0., 0.,  1.); 
 | |
|         } else {
 | |
|             idx_a[TOP] = idx_prev[TOP];
 | |
|         }
 | |
| 
 | |
|         if (is_first || bottom_z_different) {
 | |
|             // Start of the 1st line segment or a change of the layer thickness while maintaining the print_z.
 | |
|             idx_a[BOTTOM] = idx_last ++;
 | |
|             volume.push_geometry(a(0), a(1), bottom_z, 0., 0., -1.);
 | |
|             idx_a[LEFT ] = idx_last ++;
 | |
|             volume.push_geometry(a2(0), a2(1), middle_z, -xy_right_normal(0), -xy_right_normal(1), 0.0);
 | |
|             idx_a[RIGHT] = idx_last ++;
 | |
|             volume.push_geometry(a1(0), a1(1), middle_z, xy_right_normal(0), xy_right_normal(1), 0.0);
 | |
|         }
 | |
|         else {
 | |
|             idx_a[BOTTOM] = idx_prev[BOTTOM];
 | |
|         }
 | |
| 
 | |
|         if (is_first) {
 | |
|             // Start of the 1st line segment.
 | |
|             width_initial    = width;
 | |
|             bottom_z_initial = bottom_z;
 | |
|             memcpy(idx_initial, idx_a, sizeof(int) * 4);
 | |
|         } else {
 | |
|             // Continuing a previous segment.
 | |
|             // Share left / right vertices if possible.
 | |
| 			double v_dot    = v_prev.dot(v);
 | |
|             // To reduce gpu memory usage, we try to reuse vertices
 | |
|             // To reduce the visual artifacts, due to averaged normals, we allow to reuse vertices only when any of two adjacent edges 
 | |
|             // is longer than a fixed threshold.
 | |
|             // The following value is arbitrary, it comes from tests made on a bunch of models showing the visual artifacts
 | |
|             double len_threshold = 2.5;
 | |
| 
 | |
|             // Generate new vertices if the angle between adjacent edges is greater than 45 degrees or thresholds conditions are met
 | |
|             bool sharp = (v_dot < 0.707) || (len_prev > len_threshold) || (len > len_threshold);
 | |
|             if (sharp) {
 | |
|                 if (!bottom_z_different)
 | |
|                 {
 | |
|                     // Allocate new left / right points for the start of this segment as these points will receive their own normals to indicate a sharp turn.
 | |
|                     idx_a[RIGHT] = idx_last++;
 | |
|                     volume.push_geometry(a1(0), a1(1), middle_z, xy_right_normal(0), xy_right_normal(1), 0.0);
 | |
|                     idx_a[LEFT] = idx_last++;
 | |
|                     volume.push_geometry(a2(0), a2(1), middle_z, -xy_right_normal(0), -xy_right_normal(1), 0.0);
 | |
|                     if (cross2(v_prev, v) > 0.) {
 | |
|                         // Right turn. Fill in the right turn wedge.
 | |
|                         volume.push_triangle(idx_prev[RIGHT], idx_a[RIGHT], idx_prev[TOP]);
 | |
|                         volume.push_triangle(idx_prev[RIGHT], idx_prev[BOTTOM], idx_a[RIGHT]);
 | |
|                     }
 | |
|                     else {
 | |
|                         // Left turn. Fill in the left turn wedge.
 | |
|                         volume.push_triangle(idx_prev[LEFT], idx_prev[TOP], idx_a[LEFT]);
 | |
|                         volume.push_triangle(idx_prev[LEFT], idx_a[LEFT], idx_prev[BOTTOM]);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 if (!bottom_z_different)
 | |
|                 {
 | |
|                     // The two successive segments are nearly collinear.
 | |
|                     idx_a[LEFT ] = idx_prev[LEFT];
 | |
|                     idx_a[RIGHT] = idx_prev[RIGHT];
 | |
|                 }
 | |
|             }
 | |
|             if (is_closing) {
 | |
|                 if (!sharp) {
 | |
|                     if (!bottom_z_different)
 | |
|                     {
 | |
|                         // Closing a loop with smooth transition. Unify the closing left / right vertices.
 | |
|                         memcpy(volume.vertices_and_normals_interleaved.data() + idx_initial[LEFT ] * 6, volume.vertices_and_normals_interleaved.data() + idx_prev[LEFT ] * 6, sizeof(float) * 6);
 | |
|                         memcpy(volume.vertices_and_normals_interleaved.data() + idx_initial[RIGHT] * 6, volume.vertices_and_normals_interleaved.data() + idx_prev[RIGHT] * 6, sizeof(float) * 6);
 | |
|                         volume.vertices_and_normals_interleaved.erase(volume.vertices_and_normals_interleaved.end() - 12, volume.vertices_and_normals_interleaved.end());
 | |
|                         // Replace the left / right vertex indices to point to the start of the loop. 
 | |
|                         for (size_t u = volume.quad_indices.size() - 16; u < volume.quad_indices.size(); ++ u) {
 | |
|                             if (volume.quad_indices[u] == idx_prev[LEFT])
 | |
|                                 volume.quad_indices[u] = idx_initial[LEFT];
 | |
|                             else if (volume.quad_indices[u] == idx_prev[RIGHT])
 | |
|                                 volume.quad_indices[u] = idx_initial[RIGHT];
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|                 // This is the last iteration, only required to solve the transition.
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Only new allocate top / bottom vertices, if not closing a loop.
 | |
|         if (is_closing) {
 | |
|             idx_b[TOP] = idx_initial[TOP];
 | |
|         } else {
 | |
|             idx_b[TOP] = idx_last ++;
 | |
|             volume.push_geometry(b(0), b(1), top_z   , 0., 0.,  1.);
 | |
|         }
 | |
| 
 | |
|         if (is_closing && (width == width_initial) && (bottom_z == bottom_z_initial)) {
 | |
|             idx_b[BOTTOM] = idx_initial[BOTTOM];
 | |
|         } else {
 | |
|             idx_b[BOTTOM] = idx_last ++;
 | |
|             volume.push_geometry(b(0), b(1), bottom_z, 0., 0., -1.);
 | |
|         }
 | |
|         // Generate new vertices for the end of this line segment.
 | |
|         idx_b[LEFT  ] = idx_last ++;
 | |
|         volume.push_geometry(b2(0), b2(1), middle_z, -xy_right_normal(0), -xy_right_normal(1), 0.0);
 | |
|         idx_b[RIGHT ] = idx_last ++;
 | |
|         volume.push_geometry(b1(0), b1(1), middle_z, xy_right_normal(0), xy_right_normal(1), 0.0);
 | |
| 
 | |
|         memcpy(idx_prev, idx_b, 4 * sizeof(int));
 | |
|         bottom_z_prev = bottom_z;
 | |
|         b1_prev = b1;
 | |
|         v_prev = v;
 | |
|         len_prev = len;
 | |
| 
 | |
|         if (bottom_z_different && (closed || (!is_first && !is_last)))
 | |
|         {
 | |
|             // Found a change of the layer thickness -> Add a cap at the beginning of this segment.
 | |
|             volume.push_quad(idx_a[BOTTOM], idx_a[RIGHT], idx_a[TOP], idx_a[LEFT]);
 | |
|         }
 | |
| 
 | |
|         if (! closed) {
 | |
|             // Terminate open paths with caps.
 | |
|             if (is_first)
 | |
|                 volume.push_quad(idx_a[BOTTOM], idx_a[RIGHT], idx_a[TOP], idx_a[LEFT]);
 | |
|             // We don't use 'else' because both cases are true if we have only one line.
 | |
|             if (is_last)
 | |
|                 volume.push_quad(idx_b[BOTTOM], idx_b[LEFT], idx_b[TOP], idx_b[RIGHT]);
 | |
|         }
 | |
| 
 | |
|         // Add quads for a straight hollow tube-like segment.
 | |
|         // bottom-right face
 | |
|         volume.push_quad(idx_a[BOTTOM], idx_b[BOTTOM], idx_b[RIGHT], idx_a[RIGHT]);
 | |
|         // top-right face
 | |
|         volume.push_quad(idx_a[RIGHT], idx_b[RIGHT], idx_b[TOP], idx_a[TOP]);
 | |
|         // top-left face
 | |
|         volume.push_quad(idx_a[TOP], idx_b[TOP], idx_b[LEFT], idx_a[LEFT]);
 | |
|         // bottom-left face
 | |
|         volume.push_quad(idx_a[LEFT], idx_b[LEFT], idx_b[BOTTOM], idx_a[BOTTOM]);
 | |
|     }
 | |
| 
 | |
| #undef LEFT
 | |
| #undef RIGHT
 | |
| #undef TOP
 | |
| #undef BOTTOM
 | |
| }
 | |
| 
 | |
| // caller is responsible for supplying NO lines with zero length
 | |
| static void thick_lines_to_indexed_vertex_array(const Lines3& lines,
 | |
|     const std::vector<double>& widths,
 | |
|     const std::vector<double>& heights,
 | |
|     bool closed,
 | |
|     GLIndexedVertexArray& volume)
 | |
| {
 | |
|     assert(!lines.empty());
 | |
|     if (lines.empty())
 | |
|         return;
 | |
| 
 | |
| #define LEFT    0
 | |
| #define RIGHT   1
 | |
| #define TOP     2
 | |
| #define BOTTOM  3
 | |
| 
 | |
|     // left, right, top, bottom
 | |
|     int      idx_initial[4] = { -1, -1, -1, -1 };
 | |
|     int      idx_prev[4] = { -1, -1, -1, -1 };
 | |
|     double   z_prev = 0.0;
 | |
|     double   len_prev = 0.0;
 | |
|     Vec3d    n_right_prev = Vec3d::Zero();
 | |
|     Vec3d    n_top_prev = Vec3d::Zero();
 | |
|     Vec3d    unit_v_prev = Vec3d::Zero();
 | |
|     double   width_initial = 0.0;
 | |
| 
 | |
|     // new vertices around the line endpoints
 | |
|     // left, right, top, bottom
 | |
|     Vec3d a[4] = { Vec3d::Zero(), Vec3d::Zero(), Vec3d::Zero(), Vec3d::Zero() };
 | |
|     Vec3d b[4] = { Vec3d::Zero(), Vec3d::Zero(), Vec3d::Zero(), Vec3d::Zero() };
 | |
| 
 | |
|     // loop once more in case of closed loops
 | |
|     size_t lines_end = closed ? (lines.size() + 1) : lines.size();
 | |
|     for (size_t ii = 0; ii < lines_end; ++ii)
 | |
|     {
 | |
|         size_t i = (ii == lines.size()) ? 0 : ii;
 | |
| 
 | |
|         const Line3& line = lines[i];
 | |
|         double height = heights[i];
 | |
|         double width = widths[i];
 | |
| 
 | |
|         Vec3d unit_v = unscale(line.vector()).normalized();
 | |
|         double len = unscale<double>(line.length());
 | |
| 
 | |
|         Vec3d n_top = Vec3d::Zero();
 | |
|         Vec3d n_right = Vec3d::Zero();
 | |
|         
 | |
|         if ((line.a(0) == line.b(0)) && (line.a(1) == line.b(1)))
 | |
|         {
 | |
|             // vertical segment
 | |
|             n_top = Vec3d::UnitY();
 | |
|             n_right = Vec3d::UnitX();
 | |
|             if (line.a(2) < line.b(2))
 | |
|                 n_right = -n_right;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             // horizontal segment
 | |
|             n_right = unit_v.cross(Vec3d::UnitZ()).normalized();
 | |
|             n_top = n_right.cross(unit_v).normalized();
 | |
|         }
 | |
| 
 | |
|         Vec3d rl_displacement = 0.5 * width * n_right;
 | |
|         Vec3d tb_displacement = 0.5 * height * n_top;
 | |
|         Vec3d l_a = unscale(line.a);
 | |
|         Vec3d l_b = unscale(line.b);
 | |
| 
 | |
|         a[RIGHT] = l_a + rl_displacement;
 | |
|         a[LEFT] = l_a - rl_displacement;
 | |
|         a[TOP] = l_a + tb_displacement;
 | |
|         a[BOTTOM] = l_a - tb_displacement;
 | |
|         b[RIGHT] = l_b + rl_displacement;
 | |
|         b[LEFT] = l_b - rl_displacement;
 | |
|         b[TOP] = l_b + tb_displacement;
 | |
|         b[BOTTOM] = l_b - tb_displacement;
 | |
| 
 | |
|         Vec3d n_bottom = -n_top;
 | |
|         Vec3d n_left = -n_right;
 | |
| 
 | |
|         int idx_a[4];
 | |
|         int idx_b[4];
 | |
|         int idx_last = int(volume.vertices_and_normals_interleaved.size() / 6);
 | |
| 
 | |
|         bool z_different = (z_prev != l_a(2));
 | |
|         z_prev = l_b(2);
 | |
| 
 | |
|         // Share top / bottom vertices if possible.
 | |
|         if (ii == 0)
 | |
|         {
 | |
|             idx_a[TOP] = idx_last++;
 | |
|             volume.push_geometry(a[TOP], n_top);
 | |
|         }
 | |
|         else
 | |
|             idx_a[TOP] = idx_prev[TOP];
 | |
| 
 | |
|         if ((ii == 0) || z_different)
 | |
|         {
 | |
|             // Start of the 1st line segment or a change of the layer thickness while maintaining the print_z.
 | |
|             idx_a[BOTTOM] = idx_last++;
 | |
|             volume.push_geometry(a[BOTTOM], n_bottom);
 | |
|             idx_a[LEFT] = idx_last++;
 | |
|             volume.push_geometry(a[LEFT], n_left);
 | |
|             idx_a[RIGHT] = idx_last++;
 | |
|             volume.push_geometry(a[RIGHT], n_right);
 | |
|         }
 | |
|         else
 | |
|             idx_a[BOTTOM] = idx_prev[BOTTOM];
 | |
| 
 | |
|         if (ii == 0)
 | |
|         {
 | |
|             // Start of the 1st line segment.
 | |
|             width_initial = width;
 | |
|             ::memcpy(idx_initial, idx_a, sizeof(int) * 4);
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             // Continuing a previous segment.
 | |
|             // Share left / right vertices if possible.
 | |
|             double v_dot = unit_v_prev.dot(unit_v);
 | |
|             bool is_right_turn = n_top_prev.dot(unit_v_prev.cross(unit_v)) > 0.0;
 | |
| 
 | |
|             // To reduce gpu memory usage, we try to reuse vertices
 | |
|             // To reduce the visual artifacts, due to averaged normals, we allow to reuse vertices only when any of two adjacent edges 
 | |
|             // is longer than a fixed threshold.
 | |
|             // The following value is arbitrary, it comes from tests made on a bunch of models showing the visual artifacts
 | |
|             double len_threshold = 2.5;
 | |
| 
 | |
|             // Generate new vertices if the angle between adjacent edges is greater than 45 degrees or thresholds conditions are met
 | |
|             bool is_sharp = (v_dot < 0.707) || (len_prev > len_threshold) || (len > len_threshold);
 | |
|             if (is_sharp)
 | |
|             {
 | |
|                 // Allocate new left / right points for the start of this segment as these points will receive their own normals to indicate a sharp turn.
 | |
|                 idx_a[RIGHT] = idx_last++;
 | |
|                 volume.push_geometry(a[RIGHT], n_right);
 | |
|                 idx_a[LEFT] = idx_last++;
 | |
|                 volume.push_geometry(a[LEFT], n_left);
 | |
| 
 | |
|                 if (is_right_turn)
 | |
|                 {
 | |
|                     // Right turn. Fill in the right turn wedge.
 | |
|                     volume.push_triangle(idx_prev[RIGHT], idx_a[RIGHT], idx_prev[TOP]);
 | |
|                     volume.push_triangle(idx_prev[RIGHT], idx_prev[BOTTOM], idx_a[RIGHT]);
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     // Left turn. Fill in the left turn wedge.
 | |
|                     volume.push_triangle(idx_prev[LEFT], idx_prev[TOP], idx_a[LEFT]);
 | |
|                     volume.push_triangle(idx_prev[LEFT], idx_a[LEFT], idx_prev[BOTTOM]);
 | |
|                 }
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 // The two successive segments are nearly collinear.
 | |
|                 idx_a[LEFT] = idx_prev[LEFT];
 | |
|                 idx_a[RIGHT] = idx_prev[RIGHT];
 | |
|             }
 | |
| 
 | |
|             if (ii == lines.size())
 | |
|             {
 | |
|                 if (!is_sharp)
 | |
|                 {
 | |
|                     // Closing a loop with smooth transition. Unify the closing left / right vertices.
 | |
|                     ::memcpy(volume.vertices_and_normals_interleaved.data() + idx_initial[LEFT] * 6, volume.vertices_and_normals_interleaved.data() + idx_prev[LEFT] * 6, sizeof(float) * 6);
 | |
|                     ::memcpy(volume.vertices_and_normals_interleaved.data() + idx_initial[RIGHT] * 6, volume.vertices_and_normals_interleaved.data() + idx_prev[RIGHT] * 6, sizeof(float) * 6);
 | |
|                     volume.vertices_and_normals_interleaved.erase(volume.vertices_and_normals_interleaved.end() - 12, volume.vertices_and_normals_interleaved.end());
 | |
|                     // Replace the left / right vertex indices to point to the start of the loop. 
 | |
|                     for (size_t u = volume.quad_indices.size() - 16; u < volume.quad_indices.size(); ++u)
 | |
|                     {
 | |
|                         if (volume.quad_indices[u] == idx_prev[LEFT])
 | |
|                             volume.quad_indices[u] = idx_initial[LEFT];
 | |
|                         else if (volume.quad_indices[u] == idx_prev[RIGHT])
 | |
|                             volume.quad_indices[u] = idx_initial[RIGHT];
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 // This is the last iteration, only required to solve the transition.
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Only new allocate top / bottom vertices, if not closing a loop.
 | |
|         if (closed && (ii + 1 == lines.size()))
 | |
|             idx_b[TOP] = idx_initial[TOP];
 | |
|         else
 | |
|         {
 | |
|             idx_b[TOP] = idx_last++;
 | |
|             volume.push_geometry(b[TOP], n_top);
 | |
|         }
 | |
| 
 | |
|         if (closed && (ii + 1 == lines.size()) && (width == width_initial))
 | |
|             idx_b[BOTTOM] = idx_initial[BOTTOM];
 | |
|         else
 | |
|         {
 | |
|             idx_b[BOTTOM] = idx_last++;
 | |
|             volume.push_geometry(b[BOTTOM], n_bottom);
 | |
|         }
 | |
| 
 | |
|         // Generate new vertices for the end of this line segment.
 | |
|         idx_b[LEFT] = idx_last++;
 | |
|         volume.push_geometry(b[LEFT], n_left);
 | |
|         idx_b[RIGHT] = idx_last++;
 | |
|         volume.push_geometry(b[RIGHT], n_right);
 | |
| 
 | |
|         ::memcpy(idx_prev, idx_b, 4 * sizeof(int));
 | |
|         n_right_prev = n_right;
 | |
|         n_top_prev = n_top;
 | |
|         unit_v_prev = unit_v;
 | |
|         len_prev = len;
 | |
| 
 | |
|         if (!closed)
 | |
|         {
 | |
|             // Terminate open paths with caps.
 | |
|             if (i == 0)
 | |
|                 volume.push_quad(idx_a[BOTTOM], idx_a[RIGHT], idx_a[TOP], idx_a[LEFT]);
 | |
| 
 | |
|             // We don't use 'else' because both cases are true if we have only one line.
 | |
|             if (i + 1 == lines.size())
 | |
|                 volume.push_quad(idx_b[BOTTOM], idx_b[LEFT], idx_b[TOP], idx_b[RIGHT]);
 | |
|         }
 | |
| 
 | |
|         // Add quads for a straight hollow tube-like segment.
 | |
|         // bottom-right face
 | |
|         volume.push_quad(idx_a[BOTTOM], idx_b[BOTTOM], idx_b[RIGHT], idx_a[RIGHT]);
 | |
|         // top-right face
 | |
|         volume.push_quad(idx_a[RIGHT], idx_b[RIGHT], idx_b[TOP], idx_a[TOP]);
 | |
|         // top-left face
 | |
|         volume.push_quad(idx_a[TOP], idx_b[TOP], idx_b[LEFT], idx_a[LEFT]);
 | |
|         // bottom-left face
 | |
|         volume.push_quad(idx_a[LEFT], idx_b[LEFT], idx_b[BOTTOM], idx_a[BOTTOM]);
 | |
|     }
 | |
| 
 | |
| #undef LEFT
 | |
| #undef RIGHT
 | |
| #undef TOP
 | |
| #undef BOTTOM
 | |
| }
 | |
| 
 | |
| static void point_to_indexed_vertex_array(const Vec3crd& point,
 | |
|     double width,
 | |
|     double height,
 | |
|     GLIndexedVertexArray& volume)
 | |
| {
 | |
|     // builds a double piramid, with vertices on the local axes, around the point
 | |
| 
 | |
|     Vec3d center = unscale(point);
 | |
| 
 | |
|     double scale_factor = 1.0;
 | |
|     double w = scale_factor * width;
 | |
|     double h = scale_factor * height;
 | |
| 
 | |
|     // new vertices ids
 | |
|     int idx_last = int(volume.vertices_and_normals_interleaved.size() / 6);
 | |
|     int idxs[6];
 | |
|     for (int i = 0; i < 6; ++i)
 | |
|     {
 | |
|         idxs[i] = idx_last + i;
 | |
|     }
 | |
| 
 | |
|     Vec3d displacement_x(w, 0.0, 0.0);
 | |
|     Vec3d displacement_y(0.0, w, 0.0);
 | |
|     Vec3d displacement_z(0.0, 0.0, h);
 | |
| 
 | |
|     Vec3d unit_x(1.0, 0.0, 0.0);
 | |
|     Vec3d unit_y(0.0, 1.0, 0.0);
 | |
|     Vec3d unit_z(0.0, 0.0, 1.0);
 | |
| 
 | |
|     // vertices
 | |
|     volume.push_geometry(center - displacement_x, -unit_x); // idxs[0]
 | |
|     volume.push_geometry(center + displacement_x, unit_x);  // idxs[1]
 | |
|     volume.push_geometry(center - displacement_y, -unit_y); // idxs[2]
 | |
|     volume.push_geometry(center + displacement_y, unit_y);  // idxs[3]
 | |
|     volume.push_geometry(center - displacement_z, -unit_z); // idxs[4]
 | |
|     volume.push_geometry(center + displacement_z, unit_z);  // idxs[5]
 | |
| 
 | |
|     // top piramid faces
 | |
|     volume.push_triangle(idxs[0], idxs[2], idxs[5]);
 | |
|     volume.push_triangle(idxs[2], idxs[1], idxs[5]);
 | |
|     volume.push_triangle(idxs[1], idxs[3], idxs[5]);
 | |
|     volume.push_triangle(idxs[3], idxs[0], idxs[5]);
 | |
| 
 | |
|     // bottom piramid faces
 | |
|     volume.push_triangle(idxs[2], idxs[0], idxs[4]);
 | |
|     volume.push_triangle(idxs[1], idxs[2], idxs[4]);
 | |
|     volume.push_triangle(idxs[3], idxs[1], idxs[4]);
 | |
|     volume.push_triangle(idxs[0], idxs[3], idxs[4]);
 | |
| }
 | |
| 
 | |
| void _3DScene::thick_lines_to_verts(
 | |
|     const Lines                 &lines,
 | |
|     const std::vector<double>   &widths,
 | |
|     const std::vector<double>   &heights, 
 | |
|     bool                         closed,
 | |
|     double                       top_z,
 | |
|     GLVolume                    &volume)
 | |
| {
 | |
|     thick_lines_to_indexed_vertex_array(lines, widths, heights, closed, top_z, volume.indexed_vertex_array);
 | |
| }
 | |
| 
 | |
| void _3DScene::thick_lines_to_verts(const Lines3& lines,
 | |
|     const std::vector<double>& widths,
 | |
|     const std::vector<double>& heights,
 | |
|     bool closed,
 | |
|     GLVolume& volume)
 | |
| {
 | |
|     thick_lines_to_indexed_vertex_array(lines, widths, heights, closed, volume.indexed_vertex_array);
 | |
| }
 | |
| 
 | |
| static void thick_point_to_verts(const Vec3crd& point,
 | |
|     double width,
 | |
|     double height,
 | |
|     GLVolume& volume)
 | |
| {
 | |
|     point_to_indexed_vertex_array(point, width, height, volume.indexed_vertex_array);
 | |
| }
 | |
| 
 | |
| void _3DScene::extrusionentity_to_verts(const Polyline &polyline, float width, float height, float print_z, GLVolume& volume)
 | |
| {
 | |
| 	if (polyline.size() >= 2) {
 | |
| 		size_t num_segments = polyline.size() - 1;
 | |
| 		thick_lines_to_verts(polyline.lines(), std::vector<double>(num_segments, width), std::vector<double>(num_segments, height), false, print_z, volume);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Fill in the qverts and tverts with quads and triangles for the extrusion_path.
 | |
| void _3DScene::extrusionentity_to_verts(const ExtrusionPath &extrusion_path, float print_z, GLVolume &volume)
 | |
| {
 | |
| 	extrusionentity_to_verts(extrusion_path.polyline, extrusion_path.width, extrusion_path.height, print_z, volume);
 | |
| }
 | |
| 
 | |
| // Fill in the qverts and tverts with quads and triangles for the extrusion_path.
 | |
| void _3DScene::extrusionentity_to_verts(const ExtrusionPath &extrusion_path, float print_z, const Point ©, GLVolume &volume)
 | |
| {
 | |
|     Polyline            polyline = extrusion_path.polyline;
 | |
|     polyline.remove_duplicate_points();
 | |
|     polyline.translate(copy);
 | |
|     Lines               lines = polyline.lines();
 | |
|     std::vector<double> widths(lines.size(), extrusion_path.width);
 | |
|     std::vector<double> heights(lines.size(), extrusion_path.height);
 | |
|     thick_lines_to_verts(lines, widths, heights, false, print_z, volume);
 | |
| }
 | |
| 
 | |
| // Fill in the qverts and tverts with quads and triangles for the extrusion_loop.
 | |
| void _3DScene::extrusionentity_to_verts(const ExtrusionLoop &extrusion_loop, float print_z, const Point ©, GLVolume &volume)
 | |
| {
 | |
|     Lines               lines;
 | |
|     std::vector<double> widths;
 | |
|     std::vector<double> heights;
 | |
|     for (const ExtrusionPath &extrusion_path : extrusion_loop.paths) {
 | |
|         Polyline            polyline = extrusion_path.polyline;
 | |
|         polyline.remove_duplicate_points();
 | |
|         polyline.translate(copy);
 | |
|         Lines lines_this = polyline.lines();
 | |
|         append(lines, lines_this);
 | |
|         widths.insert(widths.end(), lines_this.size(), extrusion_path.width);
 | |
|         heights.insert(heights.end(), lines_this.size(), extrusion_path.height);
 | |
|     }
 | |
|     thick_lines_to_verts(lines, widths, heights, true, print_z, volume);
 | |
| }
 | |
| 
 | |
| // Fill in the qverts and tverts with quads and triangles for the extrusion_multi_path.
 | |
| void _3DScene::extrusionentity_to_verts(const ExtrusionMultiPath &extrusion_multi_path, float print_z, const Point ©, GLVolume &volume)
 | |
| {
 | |
|     Lines               lines;
 | |
|     std::vector<double> widths;
 | |
|     std::vector<double> heights;
 | |
|     for (const ExtrusionPath &extrusion_path : extrusion_multi_path.paths) {
 | |
|         Polyline            polyline = extrusion_path.polyline;
 | |
|         polyline.remove_duplicate_points();
 | |
|         polyline.translate(copy);
 | |
|         Lines lines_this = polyline.lines();
 | |
|         append(lines, lines_this);
 | |
|         widths.insert(widths.end(), lines_this.size(), extrusion_path.width);
 | |
|         heights.insert(heights.end(), lines_this.size(), extrusion_path.height);
 | |
|     }
 | |
|     thick_lines_to_verts(lines, widths, heights, false, print_z, volume);
 | |
| }
 | |
| 
 | |
| void _3DScene::extrusionentity_to_verts(const ExtrusionEntityCollection &extrusion_entity_collection, float print_z, const Point ©, GLVolume &volume)
 | |
| {
 | |
|     for (const ExtrusionEntity *extrusion_entity : extrusion_entity_collection.entities)
 | |
|         extrusionentity_to_verts(extrusion_entity, print_z, copy, volume);
 | |
| }
 | |
| 
 | |
| void _3DScene::extrusionentity_to_verts(const ExtrusionEntity *extrusion_entity, float print_z, const Point ©, GLVolume &volume)
 | |
| {
 | |
|     if (extrusion_entity != nullptr) {
 | |
|         auto *extrusion_path = dynamic_cast<const ExtrusionPath*>(extrusion_entity);
 | |
|         if (extrusion_path != nullptr)
 | |
|             extrusionentity_to_verts(*extrusion_path, print_z, copy, volume);
 | |
|         else {
 | |
|             auto *extrusion_loop = dynamic_cast<const ExtrusionLoop*>(extrusion_entity);
 | |
|             if (extrusion_loop != nullptr)
 | |
|                 extrusionentity_to_verts(*extrusion_loop, print_z, copy, volume);
 | |
|             else {
 | |
|                 auto *extrusion_multi_path = dynamic_cast<const ExtrusionMultiPath*>(extrusion_entity);
 | |
|                 if (extrusion_multi_path != nullptr)
 | |
|                     extrusionentity_to_verts(*extrusion_multi_path, print_z, copy, volume);
 | |
|                 else {
 | |
|                     auto *extrusion_entity_collection = dynamic_cast<const ExtrusionEntityCollection*>(extrusion_entity);
 | |
|                     if (extrusion_entity_collection != nullptr)
 | |
|                         extrusionentity_to_verts(*extrusion_entity_collection, print_z, copy, volume);
 | |
|                     else {
 | |
|                         throw Slic3r::RuntimeError("Unexpected extrusion_entity type in to_verts()");
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void _3DScene::polyline3_to_verts(const Polyline3& polyline, double width, double height, GLVolume& volume)
 | |
| {
 | |
|     Lines3 lines = polyline.lines();
 | |
|     std::vector<double> widths(lines.size(), width);
 | |
|     std::vector<double> heights(lines.size(), height);
 | |
|     thick_lines_to_verts(lines, widths, heights, false, volume);
 | |
| }
 | |
| 
 | |
| void _3DScene::point3_to_verts(const Vec3crd& point, double width, double height, GLVolume& volume)
 | |
| {
 | |
|     thick_point_to_verts(point, width, height, volume);
 | |
| }
 | |
| 
 | |
| } // namespace Slic3r
 | 
